
Sanov’s Theorem

Let E be a Polish space, and define Ln : En −→ M1(E) to be the empirical measure given by
Ln(x) = 1

n

∑n
m=1 δxm for x = (x1, . . . , xn) ∈ En. Given a µ ∈M1(E), denote by µ̃n the distribution

of Ln under µn.

Lemma 1. For each M ∈ (0,∞) there is a compact set KM ⊆M1(E) such that

lim
n→∞

1

n
log µ̃n(E \ KM ) ≤ −M.

Proof: Choose a non-decreasing sequence {Kj : j ≥ 1} of compact subsets of E so that µ(E \Kj) ≤
e−2j , and set E′ =

∑∞
j=1Kj and V =

∑∞
j=1 1E\Kj

. Then V ≤ ` on K`, and so

Eµ
[
eV
]

=

∫
E′
eV dµ = lim

`→∞

∫
K`

eV dµ =

∞∑
`=1

∫
K`+1\K`

eV dµ ≤ e

e− 1
.

At the same time, V ≥ ` off K`, and so 〈V, ν〉 ≤ R =⇒ ν(E \K`) ≤ R
` . In addition, because V is

l.s.c., KR = {ν : 〈V, ν〉 ≤ R} is closed. Hence, for each R > 0, KR is compact in M1(E). Finally,

µ̃n
(
KR{

)
≤ e−nR

∫
en〈V,ν〉 µ̃n(dν) = e−nR

(∫
eV dµ

)n
= e−n(R+A),

where A = log
∫
eV dµ. �

Lemma 2. Set Λ̃µ(ϕ) = logEµ
[
e〈ϕ,ν〉

]
for ϕ ∈ Cb(E;R) and

Λ̃∗µ(ν) = sup
{
〈ϕ, ν〉 − Λ̃µ(ϕ) : ϕ ∈ Cb(E;R)

}
.

Then Λ̃∗µ is a rate function and

lim
n→∞

1

n
log µ̃n(A) ≤ − inf

A
Λ̃∗ for all A ∈ BM1(E).

Proof: Let B(ν, r) denote the Lévy ball of radius r around ν ∈ M1(E). Because of Lemma 1, it
suffices to show that

lim
r↘0

lim
n→∞

1

n
log µ̃n

(
B(ν, r)

)
≤ −Λ̃∗(ν) for each ν ∈M1(E).

But, for each ϕ, there exist εϕ(r)↘ 0 such that

µ̃n
(
B(ν, r)

)
≤ e−n〈ϕ,ν〉+nεϕ(r)Eµ̃n

[
en〈ϕ,ν〉

]
= exp

(
n
(
−〈ϕ, ν〉+ Λ̃µ(ϕ) + εϕ(r)

)
,

and so

lim
n→∞

1

n
log µ̃n

(
B(ν, r)

)
≤ −〈ϕ, ν〉+ Λ̃(ϕ) + εϕ(r).

Now take the limit as r ↘ 0 and then the supremum over ϕ ∈ Cb(E;R). �

Lemma 3. For ν ∈M1(Σ), define

H(ν|µ) =

{ ∫
Σ
f log f dµ if ν � µ and f = dν

dµ

∞ otherwise.
.

Then Λ̃∗µ(ν) = H(ν|µ). In particular, ν  H(ν|µ) is l.s.c. and convex. In fact, if H(ν1|µ)∨H(ν2|µ) <

∞ and θ ∈ (0, 1), then H
(
(1− θ)ν1 + θν2

)
< (1− θ)H(ν1|µ) + θH(ν2|µ).
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Proof: The final assertion follows immediately from the strict convexity of x ∈ [0,∞) 7−→ x log x ∈ R.
If ν � µ and νθ ≡ θµ + (1 − θ)ν for θ ∈ [0, 1], then H(ν|µ) = limθ↘0H(νθ|µ). To see this, set

f = dν
dµ and fθ = θ + (1− θ)f . Since x ∈ [0,∞) 7−→ x log x is convex, Jensen’s inequality says that

H(νθ|µ) =

∫
fθ log fθ dµ ≤ (1− θ)

∫
f log f dµ = (1− θ)H(ν|µ).

At the same time, since x ∈ [0,∞) 7−→ log x is non-decreasing and concave, log fθ dominates both
log θ and (1− θ) log f ; and therefore

H(νθ|µ) = θ

∫
log fθ dµ+ (1− θ)

∫
f log fθ dµ ≥ θ log θ + (1− θ)2H(ν|µ).

After combining these two, one clearly gets the asserted convergence.
I next show that if ν � µ, then Λ̃∗µ(ν) ≤ H(ν|µ). In view of the preceding and the obvious fact

that ν ∈M1(Σ) 7−→ Λ̃∗µ(ν) is lower semi-continuous, I may and will assume that f = dν
dµ ≥ θ for some

θ ∈ (0, 1). In particular, by Jensen’s inequality,

exp

[∫
ϕdν −H(ν|µ)

]
= exp

[∫ (
ϕ− log f

)
dν

]
≤
∫

exp[ϕ]

f
dν =

∫
exp[ϕ] dµ;

from which it is clear that Λ̃∗µ(ν) ≤ H(ν|µ).

As a consequence of the preceding, all that remains is to show that if Λ̃∗µ(ν) <∞, then dν = f dµ
and

(*) Λ̃∗µ(ν) ≥
∫
f log f dµ.

Given ν with Λ̃∗µ(ν) <∞, one has

(4)

∫
ϕdν − log

(∫
exp[ϕ] dµ

)
≤ Λ̃∗µ(ν) <∞

for every bounded continuous ϕ. Since the class of ϕ ’s for which (4) holds is closed under bounded
point-wise convergence, (4) continues to be true for every bounded BE-measurable ϕ. In particular,
one can now show that ν � µ. Indeed, suppose that Γ ∈ BE with µ(Γ) = 0. Then, by (4) with
ϕ = r 1Γ, rν(Γ) ≤ Λ̃∗µ(ν), r > 0; and therefore ν(Γ) = 0. Knowing that ν � µ, set f = dν

dµ . If f is

uniformly positive and uniformly bounded, then (*) is an immediate consequence of (4) with ϕ = log f .
If f is uniformly positive but not necessarily uniformly bounded, set fn = f ∧ n and use (4) together
with Fatou’s Lemma to justify∫

f log f dµ =

∫
log f dν ≤ lim

n→∞

∫
log fn dν ≤ Λ̃∗µ(ν) + lim

n→∞
log

(∫
f ∧ ndµ

)
= Λ̃∗µ(ν).

Finally, to treat the general case, define νθ and fθ = θ + (1 − θ)f for θ ∈ [0, 1] as in the first
paragraph of this proof. By the preceding,

∫
fθ log fθ dµ ≤ Λ̃∗µ(νθ) as long as θ ∈ (0, 1). Moreover,

since θ ∈ [0, 1] 7−→ Λ̃∗µ(νθ) is bounded, lower semi-continuous, and convex on [0, 1], it is continuous
there. In conjunction with the result obtained in the first paragraph, this now completes the proof. �

As a consequence of Lemma 3 and (4), one knows that

(5) 〈ϕ, ν〉 ≤ H(ν|µ) + logEµ
[
eϕ
]

for any BE-measurable ϕ : E −→ R which is bounded below.
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Theorem 6 (Sanov). The map ν ∈M1(E) 7−→ H(ν|µ) ∈ [0,∞] is a good rate function and

− inf
ν∈Ao

H(ν|µ) ≤ lim
n→∞

1

n
log µ̃n(A) ≤ lim

n→∞

1

n
log µ̃n(A) ≤ − inf

ν∈A
H(ν|µ)

for all A ∈ BM1(E).

Proof: In view of Lemmas 1, 2, and 3, it suffices to prove that if G is open in M1(E) and ν ∈ G with
H(ν|µ) <∞ then limn→∞

1
n log µ̃n(G) ≥ H(ν|µ). To this end, suppose that ν ∈ G with H(ν|µ) <∞,

and let f = dν
dµ . For n ≥ 1, set Fn(x) =

∏n
m=1 f(xm) for x ∈ En and An = {x ∈ En : Ln(x) ∈

G and Fn(x) > 0}. Then, because t log t ≥ − 1
e , Jensen’s inequality implies

log
(
µ̃n(G)

)
≥ log

(∫
An

1

Fn(σ)
νn(dσ)

)
≥ log

(
νn(An)

)
− 1

νn(An)

∫
An

log
(
Fn(σ)

)
νn(dσ)

≥ log
(
νn(An)

)
− 1

eνn(An)
− 1

νn(An)

∫
Σn

log
(
Fn(σ)

)
νn(dσ)

= log
(
νn(An)

)
− 1

eνn(An)
− nH(ν|µ)

νn(An)

as long as νn(An) > 0. Finally, by the Strong Law of Large Numbers, νn(An) −→ 1 as n→∞. �

Cramér vs. Sanov

Let E be a separable, real Banach space, and assume that µ ∈M1(E) satisfies Eµ
[
eα‖x‖E

]
< ∞

for all α ≥ 0. Next, set Λµ(x∗) = logEµ
[
e〈x,x

∗〉] for x∗ ∈ E∗, and define

Λ∗µ(x) = sup
{
〈x, x∗〉 − Λµ(x∗) : x∗ ∈ E∗

}
for x ∈ E.

Finally, let µn ∈M1(E) denote the distribution of

x ∈ En 7−→ Sn ≡
1

n

n∑
m=1

xm ∈ E under µn.

The goal here is to show that Λ∗µ is good, that {µn : n ≥ 1} satisfies the full large deviations principle
with respect to Λ∗µ, and that

(7) Λ∗µ(x) = Jµ(x) ≡ inf

{
H(ν|µ) :

∫
‖x‖ dν <∞ and

∫
y ν(dy) = x

}
.

Let I be the set ν ∈M1(E) such that Eν [‖x‖] <∞. Then I ∈ Fσ
(
M1(E)

)
and µ̃n(I) = 1 for all

n ≥ 1.

Lemma 8. There is a l.s.c. V : E −→ [0,∞) such that V (x) ≥ ‖x‖E , lim‖x‖E→∞
V (x)
‖x‖E = ∞, and

Eµ
[
eV
]
< ∞. In particular, if 0 ≤ R` ↗ ∞ is chosen so that V (x) ≥ `‖x‖E for ‖x‖E ≥ R`, then for

each M > 0 there is an CM ∈ (0,∞) such that limn→∞
1
n log µ̃n

(
M1(E) \ FM

)
≤ −M where

FM ≡

{
ν :

∫
‖x‖E<R`

‖x‖E dν ≤
CM
`

for all ` ∈ Z+

}
.
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Proof: For each ` ∈ Z+, choose R` ∈ (0,∞) so that
∫
‖x‖E≥R`

e`‖x‖E µ(dx) ≤ 2−`. Without loss in

generality, assume that R` ↗∞. Set

V (x) = ‖x‖E

(
1 +

∞∑
`=1

1(R`,∞)(‖x‖E)

)
.

Then V is l.s.c., V (x) ≥ ‖x‖E for all x ∈ E, V (x) ≤ `‖x‖E when ‖x‖E ≤ R`, and V (x) ≥ `‖x‖E when
‖x‖E ≥ R`. Hence,

Eµ
[
eV
]
≤ e+

∞∑
`=1

∫
R`<‖x‖E≤R`+1

e(`+1)‖x‖E µ(dx) ≤ 2e,

and so

µ̃n
(
〈V, ν〉 ≥ C

)
≤ e−nCEµ̃n

[
en〈V,ν〉

]
= exp

(
−nC + n logEµ

[
eV
])
≤ e−n(C−log 2e).

Therefore, if CM = M+log 2e, then limn→∞
1
n log µ̃n

(
〈V, ν〉

)
≤ −M . Since 〈V, ν〉 ≤ CM =⇒ ν ∈ FM ,

this completes the proof. �

Continuing with the notation in Lemma 8, note that each of the sets FM is closed in M1(E)
and contained in I. Next, define Ψ : I −→ E so that Ψ(ν) =

∫
x ν(dx). Then Ψ � FM is bounded

and continuous for each M . Indeed, the boundedness is obvious. To prove continuity, choose η ∈
C
(
R; [0, 1]

)
so that η(t) = 1 if t ≤ 0 and η(t) = 0 if t ≥ 1. Then, for each ` ∈ Z+, the function

Ψ` : M1(E) −→ E given by Ψ`(ν) =
∫
η(‖x‖E −R`)x ν(dx) is bounded and continuous. Furthermore,

as `→∞, Ψ` −→ Ψ uniformly on FM .

Lemma 9. For each M ∈ (0,∞) there is a KM ⊂⊂ E such that limn→∞
1
n logµn(E \KM ) ≤ −M .

Proof: Choose KM ⊂⊂ M1(E) as in Lemma 1, and set KM = Ψ
(
KM ∩ FM

)
. Then, because

KM ∩ FM ⊂⊂M1(E) and Ψ � FM is continuous, KM ⊂⊂ E. In addition, by Lemmas 1 and 8,

lim
n→∞

1

n
logµn(E \KM ) = lim

n→∞

1

n
log µ̃n

(
M1(E) \ (KM ∩ FM )

)
≤ −M. �

Lemma 10. The function Jµ is a good rate function which is convex. Moreover, if x ∈ E and
Jµ(x) <∞, there exists a unique ν ∈ I such that Ψ(ν) = x and H(ν|µ) = Jµ(x).

Proof: Suppose that Jµ(x) < ∞. Then I can find {νk : k ≥ 1} ⊆ I such that Ψ(νk) = x and
H(νk|µ) ≤ Jµ(x) + 1

k . In particular, {νk : k ≥ 1} is relatively compact and, by (5) with ϕ equal to the
function V in Lemma 8, supk≥1〈V, νk〉 ≤ Jµ(x)+1+logEµ

[
eV
]
, which means that {νk : k ≥ 1} ⊆ FM

for some M < ∞. Thus, without loss in generality, I may assume that νk =⇒ ν for some ν ∈ FM .
Since Ψ � FM is continuous and H( · |µ) is l.s.c., this implies that Ψ(ν) = x and that H(ν|µ) ≤ Λ∗µ(x),
which means that H(ν|µ) = Λ∗µ(x). Further, if ν1, ν2 were distinct elements of I satisfying Ψ(ν1) =

x = Ψ(ν2) and H(ν1|µ) = Jµ(x) = H(ν2|µ), then one would have that ν1+ν2
2 ∈ I, Ψ

(
ν1+ν2

2

)
= x, and

H
(
ν1+ν2

2

)
< Jµ(x), which is impossible.

To prove that {Jµ ≤ L} ⊂⊂ E, suppose {xk : k ≥ 1} ⊆ E with Jµ(xk) ≤ L. For each k, choose
νk ∈ I so that Ψ(νk) = xk and H(νk|µ) = Jµ(xk). Then, because H( · |µ) is good, {νk : k ≥ 1} is
relatively compact. In addition, just as above, {νk : k ≥ 1} ⊆ FM for some M < ∞. Finally, choose
a subsequence {νkm : m ≥ 1} so that νkm =⇒ ν. Then ν ∈ FM and, because Ψ � FM is continuous,
xkm = Ψ(νkm) −→ x = Ψ(ν). Because H(ν|µ) ≤ limm→∞H(νkm |µ) ≤ L, Jµ(x) ≤ L.

To prove that Jµ is convex, suppose that x1, x2 ∈ E with Jµ(x1)∨Jµ(x2) <∞, and choose ν1, ν2 ∈
I so that Ψ(νi) = xi and Jµ(xi) = H(νi|µ) for i ∈ {1, 2}. Then Ψ

(
(1− θ)ν1 + θν2

)
= (1− θ)x1 + θx2

and
Jµ
(
(1− θ)x1 + θx2

)
≤ H

(
(1− θ)ν1 + θν2

)
≤ (1− θ)Jµ(x1) + θJµ(x2). �
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Lemma 11. For any closed F ⊆ E, limn→∞
1
n logµn(F ) ≤ − infF Jµ.

Proof: Refer to the notation in Lemma 8 and the paragraph following the lemma.
For any M > 0,

µn(F ) = µ̃n
(
{ν ∈ I : Ψ(ν) ∈ F}

)
≤ µ̃n

(
{ν ∈ FM : Ψ(ν) ∈ F}

)
+ µ̃n

(
M1(E) \ FM

)
,

and so, by Sanov’s Theorem and Lemma 8,

lim
n→∞

1

n
logµn(F ) ≤ −

[
inf
{
H(ν|µ) : ν ∈ FM & Ψ(ν) ∈ F

}
∧M

]
≤ −

[
inf
F
Jµ ∧M

]
. �

Lemma 12. For each open G ⊆ E, limn→∞
1
n logµn(G) ≥ − infG Jµ.

Proof: Again refer to Lemma 8.
Let ν0 ∈ I with H(ν0|µ) < ∞ and x0 = Ψ(ν0) ∈ G be given, and choose r > 0 so that

BE(x0, 2r) ⊆ G.
By (5), C ≡ 〈V, ν0〉 ≤ H(ν0|µ) + logEµ

[
eV
]
< ∞. Hence ν0 ∈ FM for any M with CM ≥ C.

Choose M > H(ν0|µ) + 2 so that CM ≥ C and ` ∈ Z+ so that CM

` < r. Then Ψ(ν) ∈ BE(x0, 2r) if
ν ∈ FM and Ψ`(ν) ∈ BE(x0, r), and so

µn(G) ≥ µn
(
BE(x0, 2r)

)
≥ µ̃n

(
{ν ∈ FM : Ψ`(ν) ∈ B(x0, r)}

)
≥ µ̃n

(
Ψ`(ν) ∈ BE(x0, r)

)
− µ̃n

(
M1(E) \ FM

)
.

Finally, since Ψ`(ν0) ∈ BE(x0, r), Sanov’s Theorem and Lemma 8 say that, for each 0 < δ < 1,

µ̃n
(
Ψ`(ν) ∈ BE(x0, r)

)
≥ e−n(H(ν0|µ)+δ) and µ̃

(
M1(E) \ FM

)
≤ e−n(M−δ)

for all sufficiently large n’s. Hence, limn→∞
1
n log µ̃n(G) ≥ −H(ν0|µ)− δ. �

By combining Lemmas 11 and 12, one sees that {µn : n ≥ 1} satisfies the full large deviations
principle with the good rate function Jµ. As a consequence of this and Varadhan’s Theorem,

Λµ(x∗) = sup
x∈E

(
〈x, x∗〉 − Jµ(x)

)
.

Since Jµ is l.s.c. and convex, this means that (7) holds.

Theorem 13 (Cramér). The rate function Λ∗µ is good, and {µn : n ≥ 1} satisfies the full large
deviations principle with respect to it. In addition, (7) holds.

Gibbs Measures

Given x∗ ∈ E∗, define the Gibbs measure γx∗ ∈M1(E) by

(14) γx∗(dy) =
1

Mµ(x∗)
e〈y,x

∗〉 µ(dy) where Mµ(x∗) =

∫
e〈y,x

∗〉 µ(dy),

Lemma 15. For each x∗ ∈ E∗, γx∗ ∈ I and

(16) H(γx∗ |µ) =
〈
Ψ(γx∗), x

∗〉− Λµ(x∗) = Λ∗µ
(
Ψ(γx∗)

)
.

In particular, H(ν|µ) > H(γx∗ |µ) for any ν ∈ I \ {γx∗} with Ψ(ν) = Ψ(γx∗).
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Proof: The first equality in (16) is obvious. To prove the second, suppose that ν ∈ I with Ψ(ν) =
x ≡ Ψ(γx∗) and H(ν|µ) <∞. Set f = dν

dγx∗
and g = dγx∗

dµ , and note that

H(ν|µ) =

∫
log f dν+

∫
log g dν = H(ν|γx∗)+

∫
〈y, x∗〉 ν(dy)−Λµ(x∗) ≥ 〈x, x∗〉−Λν(x∗) = H(γx∗ |µ).

Hence, by (7), H(γx∗ |µ) = Λ∗µ(x), and equality in the preceding hold only if ν = γx∗ . �

Theorem 17. Given x ∈ E, there exists a ν ∈ I such that Ψ(ν) = x and H(ν|µ) < ∞ if and only
if Λ∗µ(x) < ∞. Moreover, if Λ∗µ(x) < ∞, then there exists a unique ν ∈ I such that Ψ(ν) = x and
H(ν|µ) = Λ∗µ(x). Finally, x∗ ∈ E∗ satisfies Ψ(γx∗) = x if and only if 〈x, x∗〉 − Λµ(x∗) = Λ∗µ(x), in
which case H(γx∗ |µ) = Λ∗µ(x).

Proof: The only assertion yet to be proved is that 〈x, x∗〉 − Λµ(x∗) = Λ∗µ(x) =⇒ Ψ(γx∗) = x. But
〈x, x∗〉 − Λµ(x∗) = Λ∗µ(x) implies that

y∗ ∈ E∗ 7−→ F (y∗) = 〈x, y∗〉 − log

∫
e〈y,y

∗〉 dµ(dy)

achieves a maximum at x∗, and therefore, by the first derivative test,

x−Ψ(γx∗) = x−
∫
y γx∗(dy) = DF (x∗) = 0. �

Corollary 18. If (H,E,W) is an abstract Wiener space and ν ∈ M1(E), then H(ν|W) < ∞
implies that

∫
‖x‖2E ν(dx) <∞ and that Ψ(ν) ∈ H. Furthermore, for any x ∈ E and x∗ ∈ E, x = hx∗

if and only if x = Ψ(γx∗). Thus, if x ∈ E, then

y∗ ∈ E∗ 7−→
∫
e〈y−x,y

∗〉W(dy) ∈ (0,∞)

achieves a minimum if and only if x = hx∗ for some x∗ ∈ E∗.

Proof: By Fernique’s Theorem, A = EW
[
eα‖x‖

2
E

]
< ∞ is for some α > 0. Thus, if H(ν|W) < ∞,

then, by (5), α
∫
‖x‖2E dν ≤ H(ν|µ) + logA <∞. Furthermore, by (7), Λ∗W

(
Ψ(ν)

)
<∞, and therefore

Ψ(ν) ∈ H. The second assertion is simply that observation that γx∗ = Thx∗W and therefore that
Ψ(γx∗) = hx∗ . Given the earlier ones, the final assertion is an easy application of the last part of
Theorem 17. �
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