Sanov’s Theorem
Let E be a Polish space, and define L,, : E™ — M;(E) to be the empirical measure given by
Ly(x) =130 _ 6, forz=(z1,...,2,) € E". Given a u € M;(E), denote by fi, the distribution

T n

of L, under u™.

LEMMA 1. For each M € (0,00) there is a compact set Ky € My (E) such that
1
lim —log fin(E\ Kn) < —M.
n—oo N

PROOF: Choose a non-decreasing sequence {Kj : j > 1} of compact subsets of E' so that u(£\ K;) <
e, and set B' =322 Kj and V = 372 1k, Then V </ on Ky, and so

E*[eY :/evd:lim eV du = / eV du < © .

e+1\ K

At the same time, V > ¢ off Ky, and so (V,v) < R = v(E\ K;) < £. In addition, because V' is
lLs.c., Krp ={v: (V,v) < R} is closed. Hence, for each R > 0, K is compact in M;(F). Finally,

n

i 06a0) < e [y = e ([ ) = e,

where A =log [€" du. O
LEMMA 2. Set A, (p) = log E* [e?)] for ¢ € Cy(E;R) and
A () = sup{{p,v) = Ku(0) : 9 € Cu(E5R)}.

Then ]\; is a rate function and
T 1 ~ . e
lim —logfi,(A) < —inf A" for all A € By, (k).
n—,oo N, A

PROOF: Let B(v,r) denote the Lévy ball of radius r around v € M;(E). Because of Lemma 1, it
suffices to show that

1 .
lim lim — log f, (B(v, < —A* f h M;(FE).
rl{%ﬂl_}rrolon og fin (B(v,1)) < (v) for each v € My (FE)

But, for each ¢, there exist e, (r) N\, 0 such that

fin (B(v,1)) < ol v)+nes (N in [en<%l/>] = exp <n(—(g0, V) + Au(p) + ew(r)>,
and so 1
Jim —log fin (B(v;1)) < ={p,v) + M) + €4 (r).
Now take the limit as » N\, 0 and then the supremum over ¢ € Cy(E;R). O
LEMMA 3. Forv € M;(X), define

Js flog fdp ifv < pand f= %
o0 otherwise. :

) = {

Then ]\Z(l/) = H(v|p). In particular, v ~» H(v|u) is Ls.c. and convex. In fact, if H(vy|p)V H(v2|p) <
oo and 0 € (0,1), then H((1 — 0)vy + 0vs) < (1 — 0)H (v1|p) + 6H (v2|p).
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PRrROOF: The final assertion follows immediately from the strict convexity of x € [0, 00) — zlogz € R.
If v < pand vy =60pu+ (1—0)v for 6 € [0,1], then H(v|n) = limg~,0 H(vp|p). To see this, set
f= g—; and fop =60+ (1 —6)f. Since z € [0,00) — xlog z is convex, Jensen’s inequality says that

H(volu) = / Jolog fody < (1— 6) / flog f dp = (1 — ) H(v|p).

At the same time, since z € [0,00) — logx is non-decreasing and concave, log fs dominates both
log 6 and (1 — 0) log f; and therefore

H(wol) =0 [ log fodyu + (1 0) [ Flog fudyu = 0106+ (1~ 6/ H(v|n).

After combining these two, one clearly gets the asserted convergence.
I next show that if v < p, then Ay (v) < H(v|u). In view of the preceding and the obvious fact

that v € My (2) —> A;(y) is lower semi-continuous, I may and will assume that f = Z—Z > 6 for some
6 € (0,1). In particular, by Jensen’s inequality,

exp [/gpdy - H(Mu)} = exp [/((p —log f) dy:| < eXI}MdU = /exp[gp] dp;
from which it is clear that /N\::(I/) < H(v|p).

As a consequence of the preceding, all that remains is to show that if AZ(}/) < 00, then dv = fdu
and

*) &)= [ fogfdu

Given v with ]\;(y) < 00, one has

(4) /«pdv — log (/ exply] du) < A% (v) < o0

for every bounded continuous ¢. Since the class of ¢’s for which (4) holds is closed under bounded
point-wise convergence, (4) continues to be true for every bounded Bg-measurable ¢. In particular,
one can now show that v < p. Indeed, suppose that I' € Bg with u(I') = 0. Then, by (4) with
o =rlp, rv(l) < AZ(V), r > 0; and therefore v(I') = 0. Knowing that v < u, set f = El%' If fis
uniformly positive and uniformly bounded, then (*) is an immediate consequence of (4) with ¢ = log f.
If f is uniformly positive but not necessarily uniformly bounded, set f,, = f An and use (4) together

with Fatou’s Lemma to justify

/flogfdu:/logfdyg lim [ log fdv < A% (v) + lim log (/fAndu) = A5 (v).

n—oo n—oo

Finally, to treat the general case, define vy and fy = 6 + (1 — 0)f for 6 € [0,1] as in the first
paragraph of this proof. By the preceding, [ fylog fodu < Aj(vg) as long as 6 € (0,1). Moreover,

since 6 € [0,1] — ]\Z(V@) is bounded, lower semi-continuous, and convex on [0, 1], it is continuous
there. In conjunction with the result obtained in the first paragraph, this now completes the proof. [J

As a consequence of Lemma 3 and (4), one knows that
(5) (¢,v) < H(v|p) + log E*[4]
for any Bg-measurable ¢ : E — R which is bounded below.
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THEOREM 6 (Sanov). The map v € M;(FE) —— H(v|u) € [0,00] is a good rate function and

veA° n— oo n—o0 N,

~ inf H(vln) < lim ~login(4) < T —log in(A) < — inf H(v|p)
veEA

for all A € By, (g)-

PROOF: In view of Lemmas 1, 2, and 3, it suffices to prove that if G is open in M;(FE) and v € G with
H(v|p) < oo then lim ., Llogfi,(G) > H(v|w). To this end, suppose that v € G with H(v|u) < oo,

and let f = g—;. For n > 1, set F,(z) = [[_; f(z) for € E™ and A,, = {z € E™ : L,(x) €
G and F,(x) > 0}. Then, because tlogt > —%, Jensen’s inequality implies

log(ji,(G)) > log (/A

> log(y”(An)) — lﬂ‘(lAn)/A log(Fn(a)) v (do)

i)

n (o)

> 108(0"(40)) =~ S ~ ] [ 0e(Fu(e) (o)
zlog(V”(An)) o z —’I”LH(V’M)

ev™(Ay) v (Ay)

as long as v"(A,,) > 0. Finally, by the Strong Law of Large Numbers, v"(A,) — 1l asn — oco. O
Cramér vs. Sanov

Let E be a separable, real Banach space, and assume that u € M;(F) satisfies E* [eo‘”m”E} < 00
for all &« > 0. Next, set A, (z*) = logE* [e““”*)] for z* € E*, and define

Aj(z) = sup{(z,2*) — A, (2z*) : ¥ € E*} forz € E.

Finally, let u,, € M;(E) denote the distribution of

r€E"— S, =

SERS

n
Z Tm € B under p".
m=1

The goal here is to show that A}, is good, that {u, : n > 1} satisfies the full large deviations principle
with respect to A}, and that

(7) A (z) = Ju(z) = inf {H(V|,u) : /||x|| dv < oo and /yl/(dy) = x} .

Let Z be the set v € My (E) such that E”[||z]|]] < co. Then Z € §,(M;1(E)) and fi,(Z) = 1 for all
n>1.

LeEMMA 8.  There is a l.s.c. V : E — [0,00) such that V(z) > ||z||g, limz|,—oo % = o0, and
E*[eV] < oo. In particular, if 0 < Ry /* oo is chosen so that V(z) > l||z||g for |z||g > Ry, then for
each M > 0 there is an Oy € (0,00) such that lim,, % log fin (M1 (E) \ Far) < —M where

Fu = 1/:/ ||x||Edl/§C—MforaH€€Z+ .
lallz<Re ¢
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PROOF: For each ¢ € Z*, choose R, € (0,00) so that || elelle (de) < 27¢. Without loss in

llzll e> R,
generality, assume that R,  co. Set

V(z) = |lz|z (1 + Zl(Re,oo)q'mHE)) :
=1

Then V is Ls.c., V(z) > ||z|| g for all z € E, V(z) < /{||z|| g when |z||g < Ry, and V(z) > ¢||z||g when
|||z > R¢. Hence,

s S)  em a
=1 7Y Re<|lzl|[E<Reqa

and so
fin ((V,v) > C) < e "CRAn [e”W”’)] = exp (—nC + nlog E¥ [ev]) < e n(C—log2e),

Therefore, if Cy; = M +log 2e, then lim,,_; oo %logﬂn(ﬂ/, 1/)) < —M. Since (V,v) < Cpy = v € Fu,
this completes the proof. O

Continuing with the notation in Lemma 8, note that each of the sets Fjs is closed in M;j(E)
and contained in Z. Next, define ¥ : T — F so that ¥(v) = [z v(dz). Then ¥ | Fys is bounded
and continuous for each M. Indeed, the boundedness is obvious. To prove continuity, choose 1 €
C(R;[0,1]) so that n(t) = 1 if ¢ < 0 and n(t) = 0 if ¢ > 1. Then, for each ¢ € ZT, the function
U, : My (E) — E given by Wy(v) = [ n(||z||g — R¢)z v(dz) is bounded and continuous. Furthermore,
as f — oo, Wy — ¥ uniformly on Fy,.

LEMMA 9. For each M € (0,00) there is a Ky CC E such that lim,, % log pn(E\ Kpr) < —M.

PROOF: Choose Ky CC M;(FE) as in Lemma 1, and set Ky = \II(ICM N ]:M). Then, because
Ky N Fyr CC My (E) and U | Fyy is continuous, Ky CC E. In addition, by Lemmas 1 and 8,

— 1 — 1 .
Jim —log i (E\ Kar) = Tim —log fin (M1 (E) \ (Kar 0 Fi)) < =M. O

LEMMA 10. The function J, is a good rate function which is convex. Moreover, if v € E and
Ju(x) < oo, there exists a unique v € T such that ¥(v) = x and H(v|p) = J,(z).

PROOF: Suppose that J,(z) < co. Then I can find {v}, : £ > 1} C 7 such that ¥(v;) = = and
H(vg|p) < Ju(z)+ +. In particular, {v : k > 1} is relatively compact and, by (5) with ¢ equal to the
function V' in Lemma 8, sup,~; (V, vx) < Jyu(2)+1+log E* [V ], which means that {vy : k> 1} C Fpy
for some M < oco. Thus, without loss in generality, I may assume that vy = v for some v € Fy,.
Since W [ Fs is continuous and H (- |u) is L.s.c., this implies that W(v) = z and that H(v|u) < Aj(z),
which means that H(v|u) = A} (x). Further, if v1, v, were distinct elements of Z satisfying ¥(v1) =
z = U(v2) and H(v1|p) = J,(z) = H(vo|p), then one would have that X132 € T, ¥ (“422) = z, and
H (422 < J,(z), which is impossible.

To prove that {J, < L} CC FE, suppose {z;, : k > 1} C E with J,(x;) < L. For each k, choose
v € I so that ¥(vy) = xp and H(vg|p) = J,(zk). Then, because H(-|pn) is good, {v : k > 1} is
relatively compact. In addition, just as above, {vy : k > 1} C Fjs for some M < oco. Finally, choose
a subsequence {vg, : m > 1} so that vy, = v. Then v € F); and, because ¥ | Fj; is continuous,
zy,, = V(vg,,) — x = ¥(v). Because H(v|p) <lim . H(v, |n) <L, J,(x) < L.

To prove that J,, is convex, suppose that z1,z2 € E with J,(x1)VJ,(x2) < 0o, and choose v, v, €
7T so that ¥(v;) = z; and Jy,(z;) = H(vi|p) for i € {1,2}. Then ¥((1 — 0)vy + 0vp) = (1 — 0)z1 + bz,
and

JH((l — 9)3?1 + 932‘2) < H((l — (9)111 + 91/2) < (1 — Q)JH(LUl) + QJM(J,‘Q) O



LEMMA 11. For any closed F C E, lim,,_, o0 %log,un(F) < —infp J,.
PROOF: Refer to the notation in Lemma 8 and the paragraph following the lemma.
For any M > 0,
in(F) = fn({v €Z: ¥(v) € F}) < fin({v € Far : Y(v) € F}) + fin, (M1(E) \ Fur),

and so, by Sanov’s Theorem and Lemma 8§,

— 1
im ~ log jin(F) < — [inf{H(uLu) cveEFy & U(v) EF}A M] < - [i%f Ju A M] . O
n—oo N
LEMMA 12. For each open G C E, lim . Llogp,(G) > —infg J,.

PROOF: Again refer to Lemma 8.

Let vy € Z with H(vlp) < oo and xg = U(ry) € G be given, and choose r > 0 so that
BE($0,27") - G.

By (5), C = (V,1y) < H(w|p) + logEF[e¥] < co. Hence vy € Fy for any M with Cp > C.
Choose M > H(vp|p) + 2 so that Cpy > C and £ € Z* so that €4 < 7. Then ¥(v) € Bg(zo,2r) if
v € Fy and Vy(v) € Bg(zo, ), and so

pn(G) = pin (Bp(x0,2r)) > fin({v € Far + Uo(v) € B(wo,7)})
> fin (Ve(v) € Bg(wo,7)) — fin (M1 (E) \ Far).

Finally, since W,(vo) € Bg(xo,r), Sanov’s Theorem and Lemma 8 say that, for each 0 < § < 1,
fin (U4 (v) € Bp(wo,r)) > e "HIT) and ii(My(E)\ Fay) < e "M =9

for all sufficiently large n’s. Hence, lim ,_ 1logji,(G) > —H(vlp) — 4. O

By combining Lemmas 11 and 12, one sees that {u, : n > 1} satisfies the full large deviations
principle with the good rate function J,. As a consequence of this and Varadhan’s Theorem,

Ap(z") = 221;((%963 — Ju(2)).

Since J,, is l.s.c. and convex, this means that (7) holds.

THEOREM 13 (Cramér). The rate function A}, is good, and {u, : n > 1} satisfies the full large
deviations principle with respect to it. In addition, (7) holds.

Gibbs Measures
Given z* € E*, define the Gibbs measure ~,- € M;(FE) by

(14) o (dy) =

(y,z") *) (y,2")
e ldy) where M, (o) = [ <7 ),
M, (x*) g

LeEmMmA 15.  For each z* € E*, v,+» € T and

(16) H (e

,“) = <\Il('7r*)7m*> - A,u(x*) = A;(\Il('yr*))'

In particular, H(v|p) > H(vg+|p) for any v € T\ {vz+} with U(v) = ¥(y,+).
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PROOF: The first equality in (16) is obvious. To prove the second, suppose that v € Z with ¥(v) =

x = V(y,+) and H(v|p) < co. Set f = df‘i”* and g = dgz* , and note that

H(vlp) = / log f du+ / log g dv = H(vjya)+ / (0,2} v(dy) — A () > (2, 2%) — Ay (2*) = H e

14)-

Hence, by (7)7 H(’Yac*

p) = A}, (), and equality in the preceding hold only if v = v,». [

THEOREM 17. Given x € E, there exists a v € T such that ¥(v) = x and H(v|u) < oo if and only
if A},(x) < oo. Moreover, if A}, (x) < oo, then there exists a unique v € T such that ¥(v) = x and
H(v|p) = A} (x). Finally, z* € E* satisfies W(v,«) = x if and only if (z,2*) — A, (2*) = A} (), in
which case H (v~ |p) = A7 ().

PrOOF: The only assertion yet to be proved is that (z,z*) — A, (z") = A} (v) = ¥(y,+) =z. But
(z,2*) — Ay(z*) = A () implies that

y* € E* — F(y*) = (z,y*) — log/e@”y*> du(dy)
achieves a maximum at x*, and therefore, by the first derivative test,

r W) = /ymdy) — DF(")=0. O

COROLLARY 18. If (H,E,W) is an abstract Wiener space and v € M;(FE), then H(v|\W) < oo
implies that [ ||z||% v(dz) < oo and that ¥(v) € H. Furthermore, for any z € E and z* € E, x = hy»
if and only if x = W(v,+). Thus, if v € E, then

v € B* —s /6<yz’y*> W(dy) € (0, 00)

achieves a minimum if and only if x = hy+ for some x* € E*.

PROOF: By Fernique’s Theorem, A = EW [e‘*”z””i“] < oo is for some a > 0. Thus, if H(v|W) < oo,
then, by (5), o [ ||z||% dv < H(v|p) +log A < co. Furthermore, by (7), A}y, (¥(r)) < oo, and therefore
U(v) € H. The second assertion is simply that observation that v,- = Tj_.)V and therefore that
U(vyy«) = hg«. Given the earlier ones, the final assertion is an easy application of the last part of
Theorem 17. [J



