Sanov's Theorem

Let *E* be a Polish space, and define $L_n : E^n \longrightarrow \mathbf{M}_1(E)$ to be the empirical measure given by $L_n(x) = \frac{1}{n} \sum_{m=1}^n \delta_{x_m}$ for $x = (x_1, \ldots, x_n) \in E^n$. Given a $\mu \in \mathbf{M}_1(E)$, denote by $\tilde{\mu}_n$ the distribution of L_n under μ^n .

LEMMA 1. For each $M \in (0, \infty)$ there is a compact set $\mathcal{K}_M \subseteq \mathbf{M}_1(E)$ such that

$$\overline{\lim_{n \to \infty}} \, \frac{1}{n} \log \tilde{\mu}_n(E \setminus \mathcal{K}_M) \le -M.$$

PROOF: Choose a non-decreasing sequence $\{K_j : j \ge 1\}$ of compact subsets of E so that $\mu(E \setminus K_j) \le e^{-2j}$, and set $E' = \sum_{j=1}^{\infty} K_j$ and $V = \sum_{j=1}^{\infty} \mathbf{1}_{E \setminus K_j}$. Then $V \le \ell$ on K_ℓ , and so

$$\mathbb{E}^{\mu}\left[e^{V}\right] = \int_{E'} e^{V} d\mu = \lim_{\ell \to \infty} \int_{K_{\ell}} e^{V} d\mu = \sum_{\ell=1}^{\infty} \int_{K_{\ell+1} \setminus K_{\ell}} e^{V} d\mu \le \frac{e}{e-1}$$

At the same time, $V \ge \ell$ off K_{ℓ} , and so $\langle V, \nu \rangle \le R \implies \nu(E \setminus K_{\ell}) \le \frac{R}{\ell}$. In addition, because V is l.s.c., $\mathcal{K}_R = \{\nu : \langle V, \nu \rangle \le R\}$ is closed. Hence, for each R > 0, \mathcal{K}_R is compact in $\mathbf{M}_1(E)$. Finally,

$$\tilde{\mu}_n(\mathcal{K}_R \mathfrak{C}) \le e^{-nR} \int e^{n\langle V,\nu\rangle} \,\tilde{\mu}_n(d\nu) = e^{-nR} \left(\int e^V \,d\mu\right)^n = e^{-n(R+A)}$$

where $A = \log \int e^V d\mu$. \Box

LEMMA 2. Set $\tilde{\Lambda}_{\mu}(\varphi) = \log \mathbb{E}^{\mu} \left[e^{\langle \varphi, \nu \rangle} \right]$ for $\varphi \in C_{\mathrm{b}}(E; \mathbb{R})$ and

$$\tilde{\Lambda}^*_{\mu}(\nu) = \sup \{ \langle \varphi, \nu \rangle - \tilde{\Lambda}_{\mu}(\varphi) : \varphi \in C_{\mathrm{b}}(E; \mathbb{R}) \}.$$

Then $\tilde{\Lambda}^*_{\mu}$ is a rate function and

$$\overline{\lim_{n \to \infty}} \, \frac{1}{n} \log \tilde{\mu}_n(A) \le -\inf_{\overline{A}} \tilde{\Lambda}^* \quad \text{for all } A \in \mathcal{B}_{\mathbf{M}_1(E)}.$$

PROOF: Let $B(\nu, r)$ denote the Lévy ball of radius r around $\nu \in \mathbf{M}_1(E)$. Because of Lemma 1, it suffices to show that

$$\lim_{r \searrow 0} \lim_{n \to \infty} \frac{1}{n} \log \tilde{\mu}_n (B(\nu, r)) \leq -\tilde{\Lambda}^*(\nu) \text{ for each } \nu \in \mathbf{M}_1(E).$$

But, for each φ , there exist $\epsilon_{\varphi}(r) \searrow 0$ such that

$$\tilde{\mu}_n\big(B(\nu,r)\big) \le e^{-n\langle\varphi,\nu\rangle + n\epsilon_{\varphi}(r)} \mathbb{E}^{\tilde{\mu}_n}\big[e^{n\langle\varphi,\nu\rangle}\big] = \exp\Big(n\big(-\langle\varphi,\nu\rangle + \tilde{\Lambda}_{\mu}(\varphi) + \epsilon_{\varphi}(r)\big),$$

and so

$$\overline{\lim_{n \to \infty}} \, \frac{1}{n} \log \tilde{\mu}_n \big(B(\nu, r) \big) \le - \langle \varphi, \nu \rangle + \tilde{\Lambda}(\varphi) + \epsilon_{\varphi}(r).$$

Now take the limit as $r \searrow 0$ and then the supremum over $\varphi \in C_{\rm b}(E;\mathbb{R})$. LEMMA 3. For $\nu \in \mathbf{M}_1(\Sigma)$, define

$$H(\nu|\mu) = \begin{cases} \int_{\Sigma} f \log f \, d\mu & \text{ if } \nu \ll \mu \text{ and } f = \frac{d\nu}{d\mu} \\ \infty & \text{ otherwise.} \end{cases}$$

Then $\tilde{\Lambda}^*_{\mu}(\nu) = H(\nu|\mu)$. In particular, $\nu \rightsquigarrow H(\nu|\mu)$ is l.s.c. and convex. In fact, if $H(\nu_1|\mu) \lor H(\nu_2|\mu) < \infty$ and $\theta \in (0, 1)$, then $H((1 - \theta)\nu_1 + \theta\nu_2) < (1 - \theta)H(\nu_1|\mu) + \theta H(\nu_2|\mu)$.

PROOF: The final assertion follows immediately from the strict convexity of $x \in [0, \infty) \longrightarrow x \log x \in \mathbb{R}$.

If $\nu \ll \mu$ and $\nu_{\theta} \equiv \theta \mu + (1 - \theta)\nu$ for $\theta \in [0, 1]$, then $H(\nu|\mu) = \lim_{\theta \searrow 0} H(\nu_{\theta}|\mu)$. To see this, set $f = \frac{d\nu}{d\mu}$ and $f_{\theta} = \theta + (1 - \theta)f$. Since $x \in [0, \infty) \mapsto x \log x$ is convex, Jensen's inequality says that

$$H(\nu_{\theta}|\mu) = \int f_{\theta} \log f_{\theta} \, d\mu \le (1-\theta) \int f \log f \, d\mu = (1-\theta)H(\nu|\mu).$$

At the same time, since $x \in [0, \infty) \longrightarrow \log x$ is non-decreasing and concave, $\log f_{\theta}$ dominates both $\log \theta$ and $(1 - \theta) \log f$; and therefore

$$H(\nu_{\theta}|\mu) = \theta \int \log f_{\theta} \, d\mu + (1-\theta) \int f \log f_{\theta} \, d\mu \ge \theta \log \theta + (1-\theta)^2 H(\nu|\mu).$$

After combining these two, one clearly gets the asserted convergence.

I next show that if $\nu \ll \mu$, then $\tilde{\Lambda}^*_{\mu}(\nu) \leq H(\nu|\mu)$. In view of the preceding and the obvious fact that $\nu \in \mathbf{M}_1(\Sigma) \longrightarrow \tilde{\Lambda}^*_{\mu}(\nu)$ is lower semi-continuous, I may and will assume that $f = \frac{d\nu}{d\mu} \geq \theta$ for some $\theta \in (0, 1)$. In particular, by Jensen's inequality,

$$\exp\left[\int \varphi \, d\nu - H(\nu|\mu)\right] = \exp\left[\int (\varphi - \log f) \, d\nu\right] \le \int \frac{\exp[\varphi]}{f} \, d\nu = \int \exp[\varphi] \, d\mu;$$

from which it is clear that $\Lambda^*_{\mu}(\nu) \leq H(\nu|\mu)$.

As a consequence of the preceding, all that remains is to show that if $\tilde{\Lambda}^*_{\mu}(\nu) < \infty$, then $d\nu = f d\mu$ and

(*)
$$\tilde{\Lambda}^*_{\mu}(\nu) \ge \int f \log f \, d\mu.$$

Given ν with $\Lambda^*_{\mu}(\nu) < \infty$, one has

(4)
$$\int \varphi \, d\nu - \log\left(\int \exp[\varphi] \, d\mu\right) \le \tilde{\Lambda}^*_{\mu}(\nu) < \infty$$

for every bounded continuous φ . Since the class of φ 's for which (4) holds is closed under bounded point-wise convergence, (4) continues to be true for every bounded \mathcal{B}_E -measurable φ . In particular, one can now show that $\nu \ll \mu$. Indeed, suppose that $\Gamma \in \mathcal{B}_E$ with $\mu(\Gamma) = 0$. Then, by (4) with $\varphi = r \mathbf{1}_{\Gamma}, r\nu(\Gamma) \leq \tilde{\Lambda}^*_{\mu}(\nu), r > 0$; and therefore $\nu(\Gamma) = 0$. Knowing that $\nu \ll \mu$, set $f = \frac{d\nu}{d\mu}$. If f is uniformly positive and uniformly bounded, then (*) is an immediate consequence of (4) with $\varphi = \log f$. If f is uniformly positive but not necessarily uniformly bounded, set $f_n = f \wedge n$ and use (4) together with Fatou's Lemma to justify

$$\int f \log f \, d\mu = \int \log f \, d\nu \le \lim_{n \to \infty} \int \log f_n \, d\nu \le \tilde{\Lambda}^*_{\mu}(\nu) + \lim_{n \to \infty} \log \left(\int f \wedge n \, d\mu \right) = \tilde{\Lambda}^*_{\mu}(\nu).$$

Finally, to treat the general case, define ν_{θ} and $f_{\theta} = \theta + (1 - \theta)f$ for $\theta \in [0, 1]$ as in the first paragraph of this proof. By the preceding, $\int f_{\theta} \log f_{\theta} d\mu \leq \tilde{\Lambda}^*_{\mu}(\nu_{\theta})$ as long as $\theta \in (0, 1)$. Moreover, since $\theta \in [0, 1] \mapsto \tilde{\Lambda}^*_{\mu}(\nu_{\theta})$ is bounded, lower semi-continuous, and convex on [0, 1], it is continuous there. In conjunction with the result obtained in the first paragraph, this now completes the proof. \Box

As a consequence of Lemma 3 and (4), one knows that

(5)
$$\langle \varphi, \nu \rangle \le H(\nu|\mu) + \log E^{\mu} [e^{\varphi}]$$

for any \mathcal{B}_E -measurable $\varphi: E \longrightarrow \mathbb{R}$ which is bounded below.

THEOREM 6 (Sanov). The map $\nu \in \mathbf{M}_1(E) \longmapsto H(\nu|\mu) \in [0,\infty]$ is a good rate function and

$$-\inf_{\nu\in A^{o}}H(\nu|\mu)\leq \lim_{n\to\infty}\frac{1}{n}\log\tilde{\mu}_{n}(A)\leq \overline{\lim_{n\to\infty}}\frac{1}{n}\log\tilde{\mu}_{n}(A)\leq -\inf_{\nu\in\overline{A}}H(\nu|\mu)$$

for all $A \in \mathcal{B}_{\mathbf{M}_1(E)}$.

PROOF: In view of Lemmas 1, 2, and 3, it suffices to prove that if G is open in $\mathbf{M}_1(E)$ and $\nu \in G$ with $H(\nu|\mu) < \infty$ then $\underline{\lim}_{n\to\infty} \frac{1}{n} \log \tilde{\mu}_n(G) \ge H(\nu|\mu)$. To this end, suppose that $\nu \in G$ with $H(\nu|\mu) < \infty$, and let $f = \frac{d\nu}{d\mu}$. For $n \ge 1$, set $F_n(x) = \prod_{m=1}^n f(x_m)$ for $x \in E^n$ and $A_n = \{x \in E^n : L_n(x) \in G \text{ and } F_n(x) > 0\}$. Then, because $t \log t \ge -\frac{1}{e}$, Jensen's inequality implies

$$\log(\tilde{\mu}_n(G)) \ge \log\left(\int_{A_n} \frac{1}{F_n(\sigma)}\nu^n(d\sigma)\right)$$
$$\ge \log(\nu^n(A_n)) - \frac{1}{\nu^n(A_n)}\int_{A_n}\log(F_n(\sigma))\nu^n(d\sigma)$$
$$\ge \log(\nu^n(A_n)) - \frac{1}{e\nu^n(A_n)} - \frac{1}{\nu^n(A_n)}\int_{\Sigma^n}\log(F_n(\sigma))\nu^n(d\sigma)$$
$$= \log(\nu^n(A_n)) - \frac{1}{e\nu^n(A_n)} - n\frac{H(\nu|\mu)}{\nu^n(A_n)}$$

as long as $\nu^n(A_n) > 0$. Finally, by the Strong Law of Large Numbers, $\nu^n(A_n) \longrightarrow 1$ as $n \to \infty$. \Box

Cramér vs. Sanov

Let *E* be a separable, real Banach space, and assume that $\mu \in \mathbf{M}_1(E)$ satisfies $\mathbb{E}^{\mu}\left[e^{\alpha ||x||_E}\right] < \infty$ for all $\alpha \geq 0$. Next, set $\Lambda_{\mu}(x^*) = \log \mathbb{E}^{\mu}\left[e^{\langle x, x^* \rangle}\right]$ for $x^* \in E^*$, and define

$$\Lambda^*_{\mu}(x) = \sup\{\langle x, x^* \rangle - \Lambda_{\mu}(x^*) : x^* \in E^*\} \quad \text{for } x \in E.$$

Finally, let $\mu_n \in \mathbf{M}_1(E)$ denote the distribution of

$$x \in E^n \mapsto \overline{S}_n \equiv \frac{1}{n} \sum_{m=1}^n x_m \in E$$
 under μ^n .

The goal here is to show that Λ^*_{μ} is good, that $\{\mu_n : n \ge 1\}$ satisfies the full large deviations principle with respect to Λ^*_{μ} , and that

(7)
$$\Lambda^*_{\mu}(x) = J_{\mu}(x) \equiv \inf \left\{ H(\nu|\mu) : \int ||x|| \, d\nu < \infty \text{ and } \int y \, \nu(dy) = x \right\}.$$

Let \mathcal{I} be the set $\nu \in \mathbf{M}_1(E)$ such that $\mathbb{E}^{\nu}[||x||] < \infty$. Then $\mathcal{I} \in \mathfrak{F}_{\sigma}(\mathbf{M}_1(E))$ and $\tilde{\mu}_n(\mathcal{I}) = 1$ for all $n \ge 1$.

LEMMA 8. There is a l.s.c. $V : E \longrightarrow [0,\infty)$ such that $V(x) \ge ||x||_E$, $\lim_{\|x\|_E \to \infty} \frac{V(x)}{\|x\|_E} = \infty$, and $\mathbb{E}^{\mu}[e^V] < \infty$. In particular, if $0 \le R_{\ell} \nearrow \infty$ is chosen so that $V(x) \ge \ell ||x||_E$ for $||x||_E \ge R_{\ell}$, then for each M > 0 there is an $C_M \in (0,\infty)$ such that $\overline{\lim_{n\to\infty} \frac{1}{n} \log \tilde{\mu}_n} (\mathbf{M}_1(E) \setminus \mathcal{F}_M) \le -M$ where

$$\mathcal{F}_M \equiv \left\{ \nu : \int_{\|x\|_E < R_\ell} \|x\|_E \, d\nu \le \frac{C_M}{\ell} \text{ for all } \ell \in \mathbb{Z}^+ \right\}.$$

PROOF: For each $\ell \in \mathbb{Z}^+$, choose $R_\ell \in (0,\infty)$ so that $\int_{\|x\|_E \ge R_\ell} e^{\ell \|x\|_E} \mu(dx) \le 2^{-\ell}$. Without loss in generality, assume that $R_\ell \nearrow \infty$. Set

$$V(x) = \|x\|_E \left(1 + \sum_{\ell=1}^{\infty} \mathbf{1}_{(R_\ell,\infty)}(\|x\|_E)\right).$$

Then V is l.s.c., $V(x) \ge ||x||_E$ for all $x \in E$, $V(x) \le \ell ||x||_E$ when $||x||_E \le R_\ell$, and $V(x) \ge \ell ||x||_E$ when $||x||_E \ge R_\ell$. Hence,

$$\mathbb{E}^{\mu} \left[e^{V} \right] \le e + \sum_{\ell=1}^{\infty} \int_{R_{\ell} < \|x\|_{E} \le R_{\ell+1}} e^{(\ell+1) \|x\|_{E}} \, \mu(dx) \le 2e,$$

and so

$$\tilde{\mu}_n(\langle V,\nu\rangle \ge C) \le e^{-nC} \mathbb{E}^{\tilde{\mu}_n} \left[e^{n\langle V,\nu\rangle} \right] = \exp\left(-nC + n\log\mathbb{E}^{\mu} \left[e^V \right] \right) \le e^{-n(C-\log 2e)}.$$

Therefore, if $C_M = M + \log 2e$, then $\overline{\lim}_{n \to \infty} \frac{1}{n} \log \tilde{\mu}_n(\langle V, \nu \rangle) \leq -M$. Since $\langle V, \nu \rangle \leq C_M \implies \nu \in \mathcal{F}_M$, this completes the proof. \Box

Continuing with the notation in Lemma 8, note that each of the sets \mathcal{F}_M is closed in $\mathbf{M}_1(E)$ and contained in \mathcal{I} . Next, define $\Psi : \mathcal{I} \longrightarrow E$ so that $\Psi(\nu) = \int x \nu(dx)$. Then $\Psi \upharpoonright \mathcal{F}_M$ is bounded and continuous for each M. Indeed, the boundedness is obvious. To prove continuity, choose $\eta \in C(\mathbb{R}; [0,1])$ so that $\eta(t) = 1$ if $t \leq 0$ and $\eta(t) = 0$ if $t \geq 1$. Then, for each $\ell \in \mathbb{Z}^+$, the function $\Psi_\ell : \mathbf{M}_1(E) \longrightarrow E$ given by $\Psi_\ell(\nu) = \int \eta(\|x\|_E - R_\ell) x \nu(dx)$ is bounded and continuous. Furthermore, as $\ell \to \infty, \Psi_\ell \longrightarrow \Psi$ uniformly on \mathcal{F}_M .

LEMMA 9. For each $M \in (0, \infty)$ there is a $K_M \subset \mathbb{C} E$ such that $\lim_{n\to\infty} \frac{1}{n} \log \mu_n(E \setminus K_M) \leq -M$. PROOF: Choose $\mathcal{K}_M \subset \mathbb{C} \mathbf{M}_1(E)$ as in Lemma 1, and set $K_M = \Psi(\mathcal{K}_M \cap \mathcal{F}_M)$. Then, because $\mathcal{K}_M \cap \mathcal{F}_M \subset \mathbb{C} \mathbf{M}_1(E)$ and $\Psi \upharpoonright \mathcal{F}_M$ is continuous, $K_M \subset \mathbb{C} E$. In addition, by Lemmas 1 and 8,

$$\overline{\lim_{n \to \infty}} \frac{1}{n} \log \mu_n(E \setminus K_M) = \overline{\lim_{n \to \infty}} \frac{1}{n} \log \tilde{\mu}_n(\mathbf{M}_1(E) \setminus (\mathcal{K}_M \cap \mathcal{F}_M)) \leq -M. \quad \Box$$

LEMMA 10. The function J_{μ} is a good rate function which is convex. Moreover, if $x \in E$ and $J_{\mu}(x) < \infty$, there exists a unique $\nu \in \mathcal{I}$ such that $\Psi(\nu) = x$ and $H(\nu|\mu) = J_{\mu}(x)$.

PROOF: Suppose that $J_{\mu}(x) < \infty$. Then I can find $\{\nu_k : k \ge 1\} \subseteq \mathcal{I}$ such that $\Psi(\nu_k) = x$ and $H(\nu_k|\mu) \le J_{\mu}(x) + \frac{1}{k}$. In particular, $\{\nu_k : k \ge 1\}$ is relatively compact and, by (5) with φ equal to the function V in Lemma 8, $\sup_{k\ge 1} \langle V, \nu_k \rangle \le J_{\mu}(x) + 1 + \log \mathbb{E}^{\mu}[e^V]$, which means that $\{\nu_k : k \ge 1\} \subseteq \mathcal{F}_M$ for some $M < \infty$. Thus, without loss in generality, I may assume that $\nu_k \implies \nu$ for some $\nu \in \mathcal{F}_M$. Since $\Psi \upharpoonright \mathcal{F}_M$ is continuous and $H(\cdot|\mu)$ is l.s.c., this implies that $\Psi(\nu) = x$ and that $H(\nu|\mu) \le \Lambda^*_{\mu}(x)$, which means that $H(\nu|\mu) = \Lambda^*_{\mu}(x)$. Further, if ν_1, ν_2 were distinct elements of \mathcal{I} satisfying $\Psi(\nu_1) = x = \Psi(\nu_2)$ and $H(\nu_1|\mu) = J_{\mu}(x) = H(\nu_2|\mu)$, then one would have that $\frac{\nu_1 + \nu_2}{2} \in \mathcal{I}, \Psi(\frac{\nu_1 + \nu_2}{2}) = x$, and $H(\frac{\nu_1 + \nu_2}{2}) < J_{\mu}(x)$, which is impossible.

To prove that $\{J_{\mu} \leq L\} \subset \mathbb{C}$, suppose $\{x_k : k \geq 1\} \subseteq E$ with $J_{\mu}(x_k) \leq L$. For each k, choose $\nu_k \in \mathcal{I}$ so that $\Psi(\nu_k) = x_k$ and $H(\nu_k|\mu) = J_{\mu}(x_k)$. Then, because $H(\cdot|\mu)$ is good, $\{\nu_k : k \geq 1\}$ is relatively compact. In addition, just as above, $\{\nu_k : k \geq 1\} \subseteq \mathcal{F}_M$ for some $M < \infty$. Finally, choose a subsequence $\{\nu_{k_m} : m \geq 1\}$ so that $\nu_{k_m} \Longrightarrow \nu$. Then $\nu \in \mathcal{F}_M$ and, because $\Psi \upharpoonright \mathcal{F}_M$ is continuous, $x_{k_m} = \Psi(\nu_{k_m}) \longrightarrow x = \Psi(\nu)$. Because $H(\nu|\mu) \leq \underline{\lim}_{m \to \infty} H(\nu_{k_m}|\mu) \leq L, J_{\mu}(x) \leq L$.

To prove that J_{μ} is convex, suppose that $x_1, x_2 \in E$ with $J_{\mu}(x_1) \lor J_{\mu}(x_2) < \infty$, and choose $\nu_1, \nu_2 \in \mathcal{I}$ so that $\Psi(\nu_i) = x_i$ and $J_{\mu}(x_i) = H(\nu_i|\mu)$ for $i \in \{1, 2\}$. Then $\Psi((1-\theta)\nu_1 + \theta\nu_2) = (1-\theta)x_1 + \theta x_2$ and

$$J_{\mu}\big((1-\theta)x_1+\theta x_2\big) \le H\big((1-\theta)\nu_1+\theta\nu_2\big) \le (1-\theta)J_{\mu}(x_1)+\theta J_{\mu}(x_2). \quad \Box$$

LEMMA 11. For any closed $F \subseteq E$, $\overline{\lim}_{n \to \infty} \frac{1}{n} \log \mu_n(F) \leq -\inf_F J_{\mu}$.

PROOF: Refer to the notation in Lemma 8 and the paragraph following the lemma. For any M > 0,

$$\mu_n(F) = \tilde{\mu}_n\big(\{\nu \in \mathcal{I} : \Psi(\nu) \in F\}\big) \le \tilde{\mu}_n\big(\{\nu \in \mathcal{F}_M : \Psi(\nu) \in F\}\big) + \tilde{\mu}_n\big(\mathbf{M}_1(E) \setminus \mathcal{F}_M\big),$$

and so, by Sanov's Theorem and Lemma 8,

$$\overline{\lim_{n \to \infty}} \frac{1}{n} \log \mu_n(F) \le -\left[\inf \left\{ H(\nu|\mu) : \nu \in \mathcal{F}_M \& \Psi(\nu) \in F \right\} \land M \right] \le -\left[\inf_F J_\mu \land M \right]. \quad \Box$$

LEMMA 12. For each open $G \subseteq E$, $\underline{\lim}_{n \to \infty} \frac{1}{n} \log \mu_n(G) \ge -\inf_G J_{\mu}$.

PROOF: Again refer to Lemma 8.

Let $\nu_0 \in \mathcal{I}$ with $H(\nu_0|\mu) < \infty$ and $x_0 = \Psi(\nu_0) \in G$ be given, and choose r > 0 so that $B_E(x_0, 2r) \subseteq G$.

By (5), $C \equiv \langle V, \nu_0 \rangle \leq H(\nu_0 | \mu) + \log \mathbb{E}^{\mu} [e^V] < \infty$. Hence $\nu_0 \in \mathcal{F}_M$ for any M with $C_M \geq C$. Choose $M > H(\nu_0 | \mu) + 2$ so that $C_M \geq C$ and $\ell \in \mathbb{Z}^+$ so that $\frac{C_M}{\ell} < r$. Then $\Psi(\nu) \in B_E(x_0, 2r)$ if $\nu \in \mathcal{F}_M$ and $\Psi_{\ell}(\nu) \in B_E(x_0, r)$, and so

$$\mu_n(G) \ge \mu_n \big(B_E(x_0, 2r) \big) \ge \tilde{\mu}_n \big(\{ \nu \in \mathcal{F}_M : \Psi_\ell(\nu) \in B(x_0, r) \} \big) \\\ge \tilde{\mu}_n \big(\Psi_\ell(\nu) \in B_E(x_0, r) \big) - \tilde{\mu}_n \big(\mathbf{M}_1(E) \setminus \mathcal{F}_M \big).$$

Finally, since $\Psi_{\ell}(\nu_0) \in B_E(x_0, r)$, Sanov's Theorem and Lemma 8 say that, for each $0 < \delta < 1$,

$$\tilde{\mu}_n(\Psi_\ell(\nu) \in B_E(x_0, r)) \ge e^{-n(H(\nu_0|\mu)+\delta)} \text{ and } \tilde{\mu}(\mathbf{M}_1(E) \setminus \mathcal{F}_M) \le e^{-n(M-\delta)}$$

for all sufficiently large *n*'s. Hence, $\underline{\lim}_{n\to\infty} \frac{1}{n} \log \tilde{\mu}_n(G) \ge -H(\nu_0|\mu) - \delta$. \Box

By combining Lemmas 11 and 12, one sees that $\{\mu_n : n \ge 1\}$ satisfies the full large deviations principle with the good rate function J_{μ} . As a consequence of this and Varadhan's Theorem,

$$\Lambda_{\mu}(x^*) = \sup_{x \in E} (\langle x, x^* \rangle - J_{\mu}(x)).$$

Since J_{μ} is l.s.c. and convex, this means that (7) holds.

THEOREM 13 (**Cramér**). The rate function Λ^*_{μ} is good, and $\{\mu_n : n \ge 1\}$ satisfies the full large deviations principle with respect to it. In addition, (7) holds.

Gibbs Measures

Given $x^* \in E^*$, define the **Gibbs measure** $\gamma_{x^*} \in \mathbf{M}_1(E)$ by

(14)
$$\gamma_{x^*}(dy) = \frac{1}{M_{\mu}(x^*)} e^{\langle y, x^* \rangle} \mu(dy) \text{ where } M_{\mu}(x^*) = \int e^{\langle y, x^* \rangle} \mu(dy),$$

LEMMA 15. For each $x^* \in E^*$, $\gamma_{x^*} \in \mathcal{I}$ and

(16)
$$H(\gamma_{x^*}|\mu) = \left\langle \Psi(\gamma_{x^*}), x^* \right\rangle - \Lambda_{\mu}(x^*) = \Lambda_{\mu}^* \left(\Psi(\gamma_{x^*}) \right).$$

In particular, $H(\nu|\mu) > H(\gamma_{x^*}|\mu)$ for any $\nu \in \mathcal{I} \setminus \{\gamma_{x^*}\}$ with $\Psi(\nu) = \Psi(\gamma_{x^*})$.

PROOF: The first equality in (16) is obvious. To prove the second, suppose that $\nu \in \mathcal{I}$ with $\Psi(\nu) = x \equiv \Psi(\gamma_{x^*})$ and $H(\nu|\mu) < \infty$. Set $f = \frac{d\nu}{d\gamma_{x^*}}$ and $g = \frac{d\gamma_{x^*}}{d\mu}$, and note that

$$H(\nu|\mu) = \int \log f \, d\nu + \int \log g \, d\nu = H(\nu|\gamma_{x^*}) + \int \langle y, x^* \rangle \, \nu(dy) - \Lambda_{\mu}(x^*) \ge \langle x, x^* \rangle - \Lambda_{\nu}(x^*) = H(\gamma_{x^*}|\mu).$$

Hence, by (7), $H(\gamma_{x^*}|\mu) = \Lambda^*_{\mu}(x)$, and equality in the preceding hold only if $\nu = \gamma_{x^*}$. \Box

THEOREM 17. Given $x \in E$, there exists a $\nu \in \mathcal{I}$ such that $\Psi(\nu) = x$ and $H(\nu|\mu) < \infty$ if and only if $\Lambda^*_{\mu}(x) < \infty$. Moreover, if $\Lambda^*_{\mu}(x) < \infty$, then there exists a unique $\nu \in \mathcal{I}$ such that $\Psi(\nu) = x$ and $H(\nu|\mu) = \Lambda^*_{\mu}(x)$. Finally, $x^* \in E^*$ satisfies $\Psi(\gamma_{x^*}) = x$ if and only if $\langle x, x^* \rangle - \Lambda_{\mu}(x^*) = \Lambda^*_{\mu}(x)$, in which case $H(\gamma_{x^*}|\mu) = \Lambda^*_{\mu}(x)$.

PROOF: The only assertion yet to be proved is that $\langle x, x^* \rangle - \Lambda_\mu(x^*) = \Lambda^*_\mu(x) \implies \Psi(\gamma_{x^*}) = x$. But $\langle x, x^* \rangle - \Lambda_\mu(x^*) = \Lambda^*_\mu(x)$ implies that

$$y^* \in E^* \longmapsto F(y^*) = \langle x, y^* \rangle - \log \int e^{\langle y, y^* \rangle} d\mu(dy)$$

achieves a maximum at x^* , and therefore, by the first derivative test,

$$x - \Psi(\gamma_{x^*}) = x - \int y \gamma_{x^*}(dy) = DF(x^*) = 0.$$

COROLLARY 18. If (H, E, W) is an abstract Wiener space and $\nu \in \mathbf{M}_1(E)$, then $H(\nu|W) < \infty$ implies that $\int ||x||_E^2 \nu(dx) < \infty$ and that $\Psi(\nu) \in H$. Furthermore, for any $x \in E$ and $x^* \in E$, $x = h_{x^*}$ if and only if $x = \Psi(\gamma_{x^*})$. Thus, if $x \in E$, then

$$y^* \in E^* \longmapsto \int e^{\langle y - x, y^* \rangle} \mathcal{W}(dy) \in (0, \infty)$$

achieves a minimum if and only if $x = h_{x^*}$ for some $x^* \in E^*$.

PROOF: By Fernique's Theorem, $A = \mathbb{E}^{\mathcal{W}}\left[e^{\alpha \|x\|_{E}^{2}}\right] < \infty$ is for some $\alpha > 0$. Thus, if $H(\nu|\mathcal{W}) < \infty$, then, by (5), $\alpha \int \|x\|_{E}^{2} d\nu \leq H(\nu|\mu) + \log A < \infty$. Furthermore, by (7), $\Lambda_{\mathcal{W}}^{*}\left(\Psi(\nu)\right) < \infty$, and therefore $\Psi(\nu) \in H$. The second assertion is simply that observation that $\gamma_{x^{*}} = T_{h_{x^{*}}}\mathcal{W}$ and therefore that $\Psi(\gamma_{x^{*}}) = h_{x^{*}}$. Given the earlier ones, the final assertion is an easy application of the last part of Theorem 17. \Box