Sanov's Theorem

Let E be a Polish space, and define $L_{n}: E^{n} \longrightarrow \mathbf{M}_{1}(E)$ to be the empirical measure given by $L_{n}(x)=\frac{1}{n} \sum_{m=1}^{n} \delta_{x_{m}}$ for $x=\left(x_{1}, \ldots, x_{n}\right) \in E^{n}$. Given a $\mu \in \mathbf{M}_{1}(E)$, denote by $\tilde{\mu}_{n}$ the distribution of L_{n} under μ^{n}.

Lemma 1. For each $M \in(0, \infty)$ there is a compact set $\mathcal{K}_{M} \subseteq \mathbf{M}_{1}(E)$ such that

$$
\varlimsup_{n \rightarrow \infty} \frac{1}{n} \log \tilde{\mu}_{n}\left(E \backslash \mathcal{K}_{M}\right) \leq-M
$$

Proof: Choose a non-decreasing sequence $\left\{K_{j}: j \geq 1\right\}$ of compact subsets of E so that $\mu\left(E \backslash K_{j}\right) \leq$ $e^{-2 j}$, and set $E^{\prime}=\sum_{j=1}^{\infty} K_{j}$ and $V=\sum_{j=1}^{\infty} \mathbf{1}_{E \backslash K_{j}}$. Then $V \leq \ell$ on K_{ℓ}, and so

$$
\mathbb{E}^{\mu}\left[e^{V}\right]=\int_{E^{\prime}} e^{V} d \mu=\lim _{\ell \rightarrow \infty} \int_{K_{\ell}} e^{V} d \mu=\sum_{\ell=1}^{\infty} \int_{K_{\ell+1} \backslash K_{\ell}} e^{V} d \mu \leq \frac{e}{e-1}
$$

At the same time, $V \geq \ell$ off K_{ℓ}, and so $\langle V, \nu\rangle \leq R \Longrightarrow \nu\left(E \backslash K_{\ell}\right) \leq \frac{R}{\ell}$. In addition, because V is l.s.c., $\mathcal{K}_{R}=\{\nu:\langle V, \nu\rangle \leq R\}$ is closed. Hence, for each $R>0, \mathcal{K}_{R}$ is compact in $\mathbf{M}_{1}(E)$. Finally,

$$
\tilde{\mu}_{n}\left(\mathcal{K}_{R} \complement\right) \leq e^{-n R} \int e^{n\langle V, \nu\rangle} \tilde{\mu}_{n}(d \nu)=e^{-n R}\left(\int e^{V} d \mu\right)^{n}=e^{-n(R+A)}
$$

where $A=\log \int e^{V} d \mu$.
Lemma 2. Set $\tilde{\Lambda}_{\mu}(\varphi)=\log \mathbb{E}^{\mu}\left[e^{\langle\varphi, \nu\rangle}\right]$ for $\varphi \in C_{\mathrm{b}}(E ; \mathbb{R})$ and

$$
\tilde{\Lambda}_{\mu}^{*}(\nu)=\sup \left\{\langle\varphi, \nu\rangle-\tilde{\Lambda}_{\mu}(\varphi): \varphi \in C_{\mathrm{b}}(E ; \mathbb{R})\right\}
$$

Then $\tilde{\Lambda}_{\mu}^{*}$ is a rate function and

$$
\varlimsup_{n \rightarrow \infty} \frac{1}{n} \log \tilde{\mu}_{n}(A) \leq-\inf _{\bar{A}} \tilde{\Lambda}^{*} \quad \text { for all } A \in \mathcal{B}_{\mathbf{M}_{1}(E)}
$$

Proof: Let $B(\nu, r)$ denote the Lévy ball of radius r around $\nu \in \mathbf{M}_{1}(E)$. Because of Lemma 1 , it suffices to show that

$$
\lim _{r \searrow 0} \varlimsup_{n \rightarrow \infty} \frac{1}{n} \log \tilde{\mu}_{n}(B(\nu, r)) \leq-\tilde{\Lambda}^{*}(\nu) \text { for each } \nu \in \mathbf{M}_{1}(E) \text {. }
$$

But, for each φ, there exist $\epsilon_{\varphi}(r) \searrow 0$ such that

$$
\tilde{\mu}_{n}(B(\nu, r)) \leq e^{-n\langle\varphi, \nu\rangle+n \epsilon_{\varphi}(r)} \mathbb{E}^{\tilde{\mu}_{n}}\left[e^{n\langle\varphi, \nu\rangle}\right]=\exp \left(n\left(-\langle\varphi, \nu\rangle+\tilde{\Lambda}_{\mu}(\varphi)+\epsilon_{\varphi}(r)\right)\right.
$$

and so

$$
\varlimsup_{n \rightarrow \infty} \frac{1}{n} \log \tilde{\mu}_{n}(B(\nu, r)) \leq-\langle\varphi, \nu\rangle+\tilde{\Lambda}(\varphi)+\epsilon_{\varphi}(r)
$$

Now take the limit as $r \searrow 0$ and then the supremum over $\varphi \in C_{\mathrm{b}}(E ; \mathbb{R})$.
Lemma 3. For $\nu \in \mathbf{M}_{1}(\Sigma)$, define

$$
H(\nu \mid \mu)= \begin{cases}\int_{\Sigma} f \log f d \mu & \text { if } \nu \ll \mu \text { and } f=\frac{d \nu}{d \mu} \\ \infty & \text { otherwise }\end{cases}
$$

Then $\tilde{\Lambda}_{\mu}^{*}(\nu)=H(\nu \mid \mu)$. In particular, $\nu \rightsquigarrow H(\nu \mid \mu)$ is l.s.c. and convex. In fact, if $H\left(\nu_{1} \mid \mu\right) \vee H\left(\nu_{2} \mid \mu\right)<$ ∞ and $\theta \in(0,1)$, then $H\left((1-\theta) \nu_{1}+\theta \nu_{2}\right)<(1-\theta) H\left(\nu_{1} \mid \mu\right)+\theta H\left(\nu_{2} \mid \mu\right)$.

Proof: The final assertion follows immediately from the strict convexity of $x \in[0, \infty) \longmapsto x \log x \in \mathbb{R}$.
If $\nu \ll \mu$ and $\nu_{\theta} \equiv \theta \mu+(1-\theta) \nu$ for $\theta \in[0,1]$, then $H(\nu \mid \mu)=\lim _{\theta \searrow 0} H\left(\nu_{\theta} \mid \mu\right)$. To see this, set $f=\frac{d \nu}{d \mu}$ and $f_{\theta}=\theta+(1-\theta) f$. Since $x \in[0, \infty) \longmapsto x \log x$ is convex, Jensen's inequality says that

$$
H\left(\nu_{\theta} \mid \mu\right)=\int f_{\theta} \log f_{\theta} d \mu \leq(1-\theta) \int f \log f d \mu=(1-\theta) H(\nu \mid \mu)
$$

At the same time, since $x \in[0, \infty) \longmapsto \log x$ is non-decreasing and concave, $\log f_{\theta}$ dominates both $\log \theta$ and $(1-\theta) \log f$; and therefore

$$
H\left(\nu_{\theta} \mid \mu\right)=\theta \int \log f_{\theta} d \mu+(1-\theta) \int f \log f_{\theta} d \mu \geq \theta \log \theta+(1-\theta)^{2} H(\nu \mid \mu)
$$

After combining these two, one clearly gets the asserted convergence.
I next show that if $\nu \ll \mu$, then $\tilde{\Lambda}_{\mu}^{*}(\nu) \leq H(\nu \mid \mu)$. In view of the preceding and the obvious fact that $\nu \in \mathbf{M}_{1}(\Sigma) \longmapsto \tilde{\Lambda}_{\mu}^{*}(\nu)$ is lower semi-continuous, I may and will assume that $f=\frac{d \nu}{d \mu} \geq \theta$ for some $\theta \in(0,1)$. In particular, by Jensen's inequality,

$$
\exp \left[\int \varphi d \nu-H(\nu \mid \mu)\right]=\exp \left[\int(\varphi-\log f) d \nu\right] \leq \int \frac{\exp [\varphi]}{f} d \nu=\int \exp [\varphi] d \mu
$$

from which it is clear that $\tilde{\Lambda}_{\mu}^{*}(\nu) \leq H(\nu \mid \mu)$.
As a consequence of the preceding, all that remains is to show that if $\tilde{\Lambda}_{\mu}^{*}(\nu)<\infty$, then $d \nu=f d \mu$ and

$$
\begin{equation*}
\tilde{\Lambda}_{\mu}^{*}(\nu) \geq \int f \log f d \mu \tag{*}
\end{equation*}
$$

Given ν with $\tilde{\Lambda}_{\mu}^{*}(\nu)<\infty$, one has

$$
\begin{equation*}
\int \varphi d \nu-\log \left(\int \exp [\varphi] d \mu\right) \leq \tilde{\Lambda}_{\mu}^{*}(\nu)<\infty \tag{4}
\end{equation*}
$$

for every bounded continuous φ. Since the class of φ 's for which (4) holds is closed under bounded point-wise convergence, (4) continues to be true for every bounded \mathcal{B}_{E}-measurable φ. In particular, one can now show that $\nu \ll \mu$. Indeed, suppose that $\Gamma \in \mathcal{B}_{E}$ with $\mu(\Gamma)=0$. Then, by (4) with $\varphi=r \mathbf{1}_{\Gamma}, r \nu(\Gamma) \leq \tilde{\Lambda}_{\mu}^{*}(\nu), r>0$; and therefore $\nu(\Gamma)=0$. Knowing that $\nu \ll \mu$, set $f=\frac{d \nu}{d \mu}$. If f is uniformly positive and uniformly bounded, then $\left(^{*}\right)$ is an immediate consequence of (4) with $\varphi=\log f$. If f is uniformly positive but not necessarily uniformly bounded, set $f_{n}=f \wedge n$ and use (4) together with Fatou's Lemma to justify

$$
\int f \log f d \mu=\int \log f d \nu \leq \underline{\lim _{n \rightarrow \infty}} \int \log f_{n} d \nu \leq \tilde{\Lambda}_{\mu}^{*}(\nu)+\underline{\lim }_{n \rightarrow \infty} \log \left(\int f \wedge n d \mu\right)=\tilde{\Lambda}_{\mu}^{*}(\nu)
$$

Finally, to treat the general case, define ν_{θ} and $f_{\theta}=\theta+(1-\theta) f$ for $\theta \in[0,1]$ as in the first paragraph of this proof. By the preceding, $\int f_{\theta} \log f_{\theta} d \mu \leq \tilde{\Lambda}_{\mu}^{*}\left(\nu_{\theta}\right)$ as long as $\theta \in(0,1)$. Moreover, since $\theta \in[0,1] \longmapsto \tilde{\Lambda}_{\mu}^{*}\left(\nu_{\theta}\right)$ is bounded, lower semi-continuous, and convex on $[0,1]$, it is continuous there. In conjunction with the result obtained in the first paragraph, this now completes the proof.

As a consequence of Lemma 3 and (4), one knows that

$$
\begin{equation*}
\langle\varphi, \nu\rangle \leq H(\nu \mid \mu)+\log E^{\mu}\left[e^{\varphi}\right] \tag{5}
\end{equation*}
$$

for any \mathcal{B}_{E}-measurable $\varphi: E \longrightarrow \mathbb{R}$ which is bounded below.

Theorem 6 (Sanov). The map $\nu \in \mathbf{M}_{1}(E) \longmapsto H(\nu \mid \mu) \in[0, \infty]$ is a good rate function and

$$
-\inf _{\nu \in A^{\circ}} H(\nu \mid \mu) \leq \lim _{n \rightarrow \infty} \frac{1}{n} \log \tilde{\mu}_{n}(A) \leq \varlimsup_{n \rightarrow \infty} \frac{1}{n} \log \tilde{\mu}_{n}(A) \leq-\inf _{\nu \in \bar{A}} H(\nu \mid \mu)
$$

for all $A \in \mathcal{B}_{\mathrm{M}_{1}(E)}$.
Proof: In view of Lemmas 1,2 , and 3, it suffices to prove that if G is open in $\mathbf{M}_{1}(E)$ and $\nu \in G$ with $H(\nu \mid \mu)<\infty$ then $\underline{\lim }_{n \rightarrow \infty} \frac{1}{n} \log \tilde{\mu}_{n}(G) \geq H(\nu \mid \mu)$. To this end, suppose that $\nu \in G$ with $H(\nu \mid \mu)<\infty$, and let $f=\frac{d \nu}{d \mu}$. For $n \geq 1$, set $F_{n}(x)=\prod_{m=1}^{n} f\left(x_{m}\right)$ for $x \in E^{n}$ and $A_{n}=\left\{x \in E^{n}: L_{n}(x) \in\right.$ G and $\left.F_{n}(x)>0\right\}$. Then, because $t \log t \geq-\frac{1}{e}$, Jensen's inequality implies

$$
\begin{aligned}
\log \left(\tilde{\mu}_{n}(G)\right) & \geq \log \left(\int_{A_{n}} \frac{1}{F_{n}(\sigma)} \nu^{n}(d \sigma)\right) \\
& \geq \log \left(\nu^{n}\left(A_{n}\right)\right)-\frac{1}{\nu^{n}\left(A_{n}\right)} \int_{A_{n}} \log \left(F_{n}(\sigma)\right) \nu^{n}(d \sigma) \\
& \geq \log \left(\nu^{n}\left(A_{n}\right)\right)-\frac{1}{e \nu^{n}\left(A_{n}\right)}-\frac{1}{\nu^{n}\left(A_{n}\right)} \int_{\Sigma^{n}} \log \left(F_{n}(\sigma)\right) \nu^{n}(d \sigma) \\
& =\log \left(\nu^{n}\left(A_{n}\right)\right)-\frac{1}{e \nu^{n}\left(A_{n}\right)}-n \frac{H(\nu \mid \mu)}{\nu^{n}\left(A_{n}\right)}
\end{aligned}
$$

as long as $\nu^{n}\left(A_{n}\right)>0$. Finally, by the Strong Law of Large Numbers, $\nu^{n}\left(A_{n}\right) \longrightarrow 1$ as $n \rightarrow \infty$.

Cramér vs. Sanov

Let E be a separable, real Banach space, and assume that $\mu \in \mathbf{M}_{1}(E)$ satisfies $\mathbb{E}^{\mu}\left[e^{\alpha\|x\|_{E}}\right]<\infty$ for all $\alpha \geq 0$. Next, set $\Lambda_{\mu}\left(x^{*}\right)=\log \mathbb{E}^{\mu}\left[e^{\left\langle x, x^{*}\right\rangle}\right]$ for $x^{*} \in E^{*}$, and define

$$
\Lambda_{\mu}^{*}(x)=\sup \left\{\left\langle x, x^{*}\right\rangle-\Lambda_{\mu}\left(x^{*}\right): x^{*} \in E^{*}\right\} \quad \text { for } x \in E
$$

Finally, let $\mu_{n} \in \mathbf{M}_{1}(E)$ denote the distribution of

$$
x \in E^{n} \longmapsto \bar{S}_{n} \equiv \frac{1}{n} \sum_{m=1}^{n} x_{m} \in E \quad \text { under } \mu^{n}
$$

The goal here is to show that Λ_{μ}^{*} is good, that $\left\{\mu_{n}: n \geq 1\right\}$ satisfies the full large deviations principle with respect to Λ_{μ}^{*}, and that

$$
\begin{equation*}
\Lambda_{\mu}^{*}(x)=J_{\mu}(x) \equiv \inf \left\{H(\nu \mid \mu): \int\|x\| d \nu<\infty \text { and } \int y \nu(d y)=x\right\} . \tag{7}
\end{equation*}
$$

Let \mathcal{I} be the set $\nu \in \mathbf{M}_{1}(E)$ such that $\mathbb{E}^{\nu}[\|x\|]<\infty$. Then $\mathcal{I} \in \mathfrak{F}_{\sigma}\left(\mathbf{M}_{1}(E)\right)$ and $\tilde{\mu}_{n}(\mathcal{I})=1$ for all $n \geq 1$.
Lemma 8. There is a l.s.c. $V: E \longrightarrow[0, \infty)$ such that $V(x) \geq\|x\|_{E}, \lim _{\|x\|_{E} \rightarrow \infty} \frac{V(x)}{\|x\|_{E}}=\infty$, and $\mathbb{E}^{\mu}\left[e^{V}\right]<\infty$. In particular, if $0 \leq R_{\ell} \nearrow \infty$ is chosen so that $V(x) \geq \ell\|x\|_{E}$ for $\|x\|_{E} \geq R_{\ell}$, then for each $M>0$ there is an $C_{M} \in(0, \infty)$ such that $\overline{\lim }_{n \rightarrow \infty} \frac{1}{n} \log \tilde{\mu}_{n}\left(\mathbf{M}_{1}(E) \backslash \mathcal{F}_{M}\right) \leq-M$ where

$$
\mathcal{F}_{M} \equiv\left\{\nu: \int_{\|x\|_{E}<R_{\ell}}\|x\|_{E} d \nu \leq \frac{C_{M}}{\ell} \text { for all } \ell \in \mathbb{Z}^{+}\right\}
$$

Proof: For each $\ell \in \mathbb{Z}^{+}$, choose $R_{\ell} \in(0, \infty)$ so that $\int_{\|x\|_{E} \geq R_{\ell}} e^{\ell\|x\|_{E}} \mu(d x) \leq 2^{-\ell}$. Without loss in generality, assume that $R_{\ell} \nearrow \infty$. Set

$$
V(x)=\|x\|_{E}\left(1+\sum_{\ell=1}^{\infty} \mathbf{1}_{\left(R_{\ell}, \infty\right)}\left(\|x\|_{E}\right)\right) .
$$

Then V is l.s.c., $V(x) \geq\|x\|_{E}$ for all $x \in E, V(x) \leq \ell\|x\|_{E}$ when $\|x\|_{E} \leq R_{\ell}$, and $V(x) \geq \ell\|x\|_{E}$ when $\|x\|_{E} \geq R_{\ell}$. Hence,

$$
\mathbb{E}^{\mu}\left[e^{V}\right] \leq e+\sum_{\ell=1}^{\infty} \int_{R_{\ell}<\|x\|_{E} \leq R_{\ell+1}} e^{(\ell+1)\|x\|_{E}} \mu(d x) \leq 2 e,
$$

and so

$$
\tilde{\mu}_{n}(\langle V, \nu\rangle \geq C) \leq e^{-n C} \mathbb{E}^{\tilde{\mu}_{n}}\left[e^{n\langle V, \nu\rangle}\right]=\exp \left(-n C+n \log \mathbb{E}^{\mu}\left[e^{V}\right]\right) \leq e^{-n(C-\log 2 e)} .
$$

Therefore, if $C_{M}=M+\log 2 e$, then $\varlimsup_{n \rightarrow \infty} \frac{1}{n} \log \tilde{\mu}_{n}(\langle V, \nu\rangle) \leq-M$. Since $\langle V, \nu\rangle \leq C_{M} \Longrightarrow \nu \in \mathcal{F}_{M}$, this completes the proof.

Continuing with the notation in Lemma 8, note that each of the sets \mathcal{F}_{M} is closed in $\mathbf{M}_{1}(E)$ and contained in \mathcal{I}. Next, define $\Psi: \mathcal{I} \longrightarrow E$ so that $\Psi(\nu)=\int x \nu(d x)$. Then $\Psi \upharpoonright \mathcal{F}_{M}$ is bounded and continuous for each M. Indeed, the boundedness is obvious. To prove continuity, choose $\eta \in$ $C(\mathbb{R} ;[0,1])$ so that $\eta(t)=1$ if $t \leq 0$ and $\eta(t)=0$ if $t \geq 1$. Then, for each $\ell \in \mathbb{Z}^{+}$, the function $\Psi_{\ell}: \mathbf{M}_{1}(E) \longrightarrow E$ given by $\Psi_{\ell}(\nu)=\int \eta\left(\|x\|_{E}-R_{\ell}\right) x \nu(d x)$ is bounded and continuous. Furthermore, as $\ell \rightarrow \infty, \Psi_{\ell} \longrightarrow \Psi$ uniformly on \mathcal{F}_{M}.
Lemma 9. For each $M \in(0, \infty)$ there is a $K_{M} \subset \subset E$ such that $\overline{\lim }_{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}\left(E \backslash K_{M}\right) \leq-M$.
Proof: Choose $\mathcal{K}_{M} \subset \subset \mathbf{M}_{1}(E)$ as in Lemma 1, and set $K_{M}=\Psi\left(\mathcal{K}_{M} \cap \mathcal{F}_{M}\right)$. Then, because $\mathcal{K}_{M} \cap \mathcal{F}_{M} \subset \subset \mathbf{M}_{1}(E)$ and $\Psi \upharpoonright \mathcal{F}_{M}$ is continuous, $K_{M} \subset \subset E$. In addition, by Lemmas 1 and 8 ,

$$
\varlimsup_{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}\left(E \backslash K_{M}\right)=\varlimsup_{n \rightarrow \infty} \frac{1}{n} \log \tilde{\mu}_{n}\left(\mathbf{M}_{1}(E) \backslash\left(\mathcal{K}_{M} \cap \mathcal{F}_{M}\right)\right) \leq-M
$$

Lemma 10. The function J_{μ} is a good rate function which is convex. Moreover, if $x \in E$ and $J_{\mu}(x)<\infty$, there exists a unique $\nu \in \mathcal{I}$ such that $\Psi(\nu)=x$ and $H(\nu \mid \mu)=J_{\mu}(x)$.
Proof: Suppose that $J_{\mu}(x)<\infty$. Then I can find $\left\{\nu_{k}: k \geq 1\right\} \subseteq \mathcal{I}$ such that $\Psi\left(\nu_{k}\right)=x$ and $H\left(\nu_{k} \mid \mu\right) \leq J_{\mu}(x)+\frac{1}{k}$. In particular, $\left\{\nu_{k}: k \geq 1\right\}$ is relatively compact and, by (5) with φ equal to the function V in Lemma $8, \sup _{k \geq 1}\left\langle V, \nu_{k}\right\rangle \leq J_{\mu}(x)+1+\log \mathbb{E}^{\mu}\left[e^{V}\right]$, which means that $\left\{\nu_{k}: k \geq 1\right\} \subseteq \mathcal{F}_{M}$ for some $M<\infty$. Thus, without loss in generality, I may assume that $\nu_{k} \Longrightarrow \nu$ for some $\nu \in \mathcal{F}_{M}$. Since $\Psi \upharpoonright \mathcal{F}_{M}$ is continuous and $H(\cdot \mid \mu)$ is l.s.c., this implies that $\Psi(\nu)=x$ and that $H(\nu \mid \mu) \leq \Lambda_{\mu}^{*}(x)$, which means that $H(\nu \mid \mu)=\Lambda_{\mu}^{*}(x)$. Further, if ν_{1}, ν_{2} were distinct elements of \mathcal{I} satisfying $\Psi\left(\nu_{1}\right)=$ $x=\Psi\left(\nu_{2}\right)$ and $H\left(\nu_{1} \mid \mu\right)=J_{\mu}(x)=H\left(\nu_{2} \mid \mu\right)$, then one would have that $\frac{\nu_{1}+\nu_{2}}{2} \in \mathcal{I}, \Psi\left(\frac{\nu_{1}+\nu_{2}}{2}\right)=x$, and $H\left(\frac{\nu_{1}+\nu_{2}}{2}\right)<J_{\mu}(x)$, which is impossible.

To prove that $\left\{J_{\mu} \leq L\right\} \subset \subset E$, suppose $\left\{x_{k}: k \geq 1\right\} \subseteq E$ with $J_{\mu}\left(x_{k}\right) \leq L$. For each k, choose $\nu_{k} \in \mathcal{I}$ so that $\Psi\left(\nu_{k}\right)=x_{k}$ and $H\left(\nu_{k} \mid \mu\right)=J_{\mu}\left(x_{k}\right)$. Then, because $H(\cdot \mid \mu)$ is good, $\left\{\nu_{k}: k \geq 1\right\}$ is relatively compact. In addition, just as above, $\left\{\nu_{k}: k \geq 1\right\} \subseteq \mathcal{F}_{M}$ for some $M<\infty$. Finally, choose a subsequence $\left\{\nu_{k_{m}}: m \geq 1\right\}$ so that $\nu_{k_{m}} \Longrightarrow \nu$. Then $\nu \in \mathcal{F}_{M}$ and, because $\Psi \upharpoonright \mathcal{F}_{M}$ is continuous, $x_{k_{m}}=\Psi\left(\nu_{k_{m}}\right) \longrightarrow x=\Psi(\nu)$. Because $H(\nu \mid \mu) \leq \underline{\lim }_{m \rightarrow \infty} H\left(\nu_{k_{m}} \mid \mu\right) \leq L, J_{\mu}(x) \leq L$.

To prove that J_{μ} is convex, suppose that $x_{1}, x_{2} \in E$ with $J_{\mu}\left(x_{1}\right) \vee J_{\mu}\left(x_{2}\right)<\infty$, and choose $\nu_{1}, \nu_{2} \in$ \mathcal{I} so that $\Psi\left(\nu_{i}\right)=x_{i}$ and $J_{\mu}\left(x_{i}\right)=H\left(\nu_{i} \mid \mu\right)$ for $i \in\{1,2\}$. Then $\Psi\left((1-\theta) \nu_{1}+\theta \nu_{2}\right)=(1-\theta) x_{1}+\theta x_{2}$ and

$$
J_{\mu}\left((1-\theta) x_{1}+\theta x_{2}\right) \leq H\left((1-\theta) \nu_{1}+\theta \nu_{2}\right) \leq(1-\theta) J_{\mu}\left(x_{1}\right)+\theta J_{\mu}\left(x_{2}\right) .
$$

Lemma 11. For any closed $F \subseteq E, \overline{\lim }_{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(F) \leq-\inf _{F} J_{\mu}$.
Proof: Refer to the notation in Lemma 8 and the paragraph following the lemma.
For any $M>0$,

$$
\mu_{n}(F)=\tilde{\mu}_{n}(\{\nu \in \mathcal{I}: \Psi(\nu) \in F\}) \leq \tilde{\mu}_{n}\left(\left\{\nu \in \mathcal{F}_{M}: \Psi(\nu) \in F\right\}\right)+\tilde{\mu}_{n}\left(\mathbf{M}_{1}(E) \backslash \mathcal{F}_{M}\right),
$$

and so, by Sanov's Theorem and Lemma 8,

$$
\varlimsup_{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(F) \leq-\left[\inf \left\{H(\nu \mid \mu): \nu \in \mathcal{F}_{M} \& \Psi(\nu) \in F\right\} \wedge M\right] \leq-\left[\inf _{F} J_{\mu} \wedge M\right]
$$

Lemma 12. For each open $G \subseteq E, \underline{\lim }_{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(G) \geq-\inf _{G} J_{\mu}$.
Proof: Again refer to Lemma 8.
Let $\nu_{0} \in \mathcal{I}$ with $H\left(\nu_{0} \mid \mu\right)<\infty$ and $x_{0}=\Psi\left(\nu_{0}\right) \in G$ be given, and choose $r>0$ so that $B_{E}\left(x_{0}, 2 r\right) \subseteq G$.

By (5), $C \equiv\left\langle V, \nu_{0}\right\rangle \leq H\left(\nu_{0} \mid \mu\right)+\log \mathbb{E}^{\mu}\left[e^{V}\right]<\infty$. Hence $\nu_{0} \in \mathcal{F}_{M}$ for any M with $C_{M} \geq C$. Choose $M>H\left(\nu_{0} \mid \mu\right)+2$ so that $C_{M} \geq C$ and $\ell \in \mathbb{Z}^{+}$so that $\frac{C_{M}}{\ell}<r$. Then $\Psi(\nu) \in B_{E}\left(x_{0}, 2 r\right)$ if $\nu \in \mathcal{F}_{M}$ and $\Psi_{\ell}(\nu) \in B_{E}\left(x_{0}, r\right)$, and so

$$
\begin{aligned}
\mu_{n}(G) & \geq \mu_{n}\left(B_{E}\left(x_{0}, 2 r\right)\right) \geq \tilde{\mu}_{n}\left(\left\{\nu \in \mathcal{F}_{M}: \Psi_{\ell}(\nu) \in B\left(x_{0}, r\right)\right\}\right) \\
& \geq \tilde{\mu}_{n}\left(\Psi_{\ell}(\nu) \in B_{E}\left(x_{0}, r\right)\right)-\tilde{\mu}_{n}\left(\mathbf{M}_{1}(E) \backslash \mathcal{F}_{M}\right) .
\end{aligned}
$$

Finally, since $\Psi_{\ell}\left(\nu_{0}\right) \in B_{E}\left(x_{0}, r\right)$, Sanov's Theorem and Lemma 8 say that, for each $0<\delta<1$,

$$
\tilde{\mu}_{n}\left(\Psi_{\ell}(\nu) \in B_{E}\left(x_{0}, r\right)\right) \geq e^{-n\left(H\left(\nu_{0} \mid \mu\right)+\delta\right)} \text { and } \tilde{\mu}\left(\mathbf{M}_{1}(E) \backslash \mathcal{F}_{M}\right) \leq e^{-n(M-\delta)}
$$

for all sufficiently large n 's. Hence, $\underline{\lim }_{n \rightarrow \infty} \frac{1}{n} \log \tilde{\mu}_{n}(G) \geq-H\left(\nu_{0} \mid \mu\right)-\delta$.
By combining Lemmas 11 and 12 , one sees that $\left\{\mu_{n}: n \geq 1\right\}$ satisfies the full large deviations principle with the good rate function J_{μ}. As a consequence of this and Varadhan's Theorem,

$$
\Lambda_{\mu}\left(x^{*}\right)=\sup _{x \in E}\left(\left\langle x, x^{*}\right\rangle-J_{\mu}(x)\right) .
$$

Since J_{μ} is l.s.c. and convex, this means that (7) holds.
Theorem 13 (Cramér). The rate function Λ_{μ}^{*} is good, and $\left\{\mu_{n}: n \geq 1\right\}$ satisfies the full large deviations principle with respect to it. In addition, (7) holds.

Gibbs Measures

Given $x^{*} \in E^{*}$, define the Gibbs measure $\gamma_{x^{*}} \in \mathbf{M}_{1}(E)$ by

$$
\begin{equation*}
\gamma_{x^{*}}(d y)=\frac{1}{M_{\mu}\left(x^{*}\right)} e^{\left\langle y, x^{*}\right\rangle} \mu(d y) \quad \text { where } M_{\mu}\left(x^{*}\right)=\int e^{\left\langle y, x^{*}\right\rangle} \mu(d y), \tag{14}
\end{equation*}
$$

Lemma 15. For each $x^{*} \in E^{*}, \gamma_{x^{*}} \in \mathcal{I}$ and

$$
\begin{equation*}
H\left(\gamma_{x^{*}} \mid \mu\right)=\left\langle\Psi\left(\gamma_{x^{*}}\right), x^{*}\right\rangle-\Lambda_{\mu}\left(x^{*}\right)=\Lambda_{\mu}^{*}\left(\Psi\left(\gamma_{x^{*}}\right)\right) . \tag{16}
\end{equation*}
$$

In particular, $H(\nu \mid \mu)>H\left(\gamma_{x^{*}} \mid \mu\right)$ for any $\nu \in \mathcal{I} \backslash\left\{\gamma_{x^{*}}\right\}$ with $\Psi(\nu)=\Psi\left(\gamma_{x^{*}}\right)$.

Proof: The first equality in (16) is obvious. To prove the second, suppose that $\nu \in \mathcal{I}$ with $\Psi(\nu)=$ $x \equiv \Psi\left(\gamma_{x^{*}}\right)$ and $H(\nu \mid \mu)<\infty$. Set $f=\frac{d \nu}{d \gamma_{x^{*}}}$ and $g=\frac{d \gamma_{x^{*}}}{d \mu}$, and note that
$H(\nu \mid \mu)=\int \log f d \nu+\int \log g d \nu=H\left(\nu \mid \gamma_{x^{*}}\right)+\int\left\langle y, x^{*}\right\rangle \nu(d y)-\Lambda_{\mu}\left(x^{*}\right) \geq\left\langle x, x^{*}\right\rangle-\Lambda_{\nu}\left(x^{*}\right)=H\left(\gamma_{x^{*}} \mid \mu\right)$.
Hence, by (7), $H\left(\gamma_{x^{*}} \mid \mu\right)=\Lambda_{\mu}^{*}(x)$, and equality in the preceding hold only if $\nu=\gamma_{x^{*}}$.
Theorem 17. Given $x \in E$, there exists a $\nu \in \mathcal{I}$ such that $\Psi(\nu)=x$ and $H(\nu \mid \mu)<\infty$ if and only if $\Lambda_{\mu}^{*}(x)<\infty$. Moreover, if $\Lambda_{\mu}^{*}(x)<\infty$, then there exists a unique $\nu \in \mathcal{I}$ such that $\Psi(\nu)=x$ and $H(\nu \mid \mu)=\Lambda_{\mu}^{*}(x)$. Finally, $x^{*} \in E^{*}$ satisfies $\Psi\left(\gamma_{x^{*}}\right)=x$ if and only if $\left\langle x, x^{*}\right\rangle-\Lambda_{\mu}\left(x^{*}\right)=\Lambda_{\mu}^{*}(x)$, in which case $H\left(\gamma_{x^{*}} \mid \mu\right)=\Lambda_{\mu}^{*}(x)$.
Proof: The only assertion yet to be proved is that $\left\langle x, x^{*}\right\rangle-\Lambda_{\mu}\left(x^{*}\right)=\Lambda_{\mu}^{*}(x) \Longrightarrow \Psi\left(\gamma_{x^{*}}\right)=x$. But $\left\langle x, x^{*}\right\rangle-\Lambda_{\mu}\left(x^{*}\right)=\Lambda_{\mu}^{*}(x)$ implies that

$$
y^{*} \in E^{*} \longmapsto F\left(y^{*}\right)=\left\langle x, y^{*}\right\rangle-\log \int e^{\left\langle y, y^{*}\right\rangle} d \mu(d y)
$$

achieves a maximum at x^{*}, and therefore, by the first derivative test,

$$
x-\Psi\left(\gamma_{x^{*}}\right)=x-\int y \gamma_{x^{*}}(d y)=D F\left(x^{*}\right)=0
$$

Corollary 18. If (H, E, \mathcal{W}) is an abstract Wiener space and $\nu \in \mathbf{M}_{1}(E)$, then $H(\nu \mid \mathcal{W})<\infty$ implies that $\int\|x\|_{E}^{2} \nu(d x)<\infty$ and that $\Psi(\nu) \in H$. Furthermore, for any $x \in E$ and $x^{*} \in E, x=h_{x^{*}}$ if and only if $x=\Psi\left(\gamma_{x^{*}}\right)$. Thus, if $x \in E$, then

$$
y^{*} \in E^{*} \longmapsto \int e^{\left\langle y-x, y^{*}\right\rangle} \mathcal{W}(d y) \in(0, \infty)
$$

achieves a minimum if and only if $x=h_{x^{*}}$ for some $x^{*} \in E^{*}$.
Proof: By Fernique's Theorem, $A=\mathbb{E}^{\mathcal{W}}\left[e^{\alpha\|x\|_{E}^{2}}\right]<\infty$ is for some $\alpha>0$. Thus, if $H(\nu \mid \mathcal{W})<\infty$, then, by (5), $\alpha \int\|x\|_{E}^{2} d \nu \leq H(\nu \mid \mu)+\log A<\infty$. Furthermore, by (7), $\Lambda_{\mathcal{W}}^{*}(\Psi(\nu))<\infty$, and therefore $\Psi(\nu) \in H$. The second assertion is simply that observation that $\gamma_{x^{*}}=T_{h_{x^{*}}} \mathcal{W}$ and therefore that $\Psi\left(\gamma_{x^{*}}\right)=h_{x^{*}}$. Given the earlier ones, the final assertion is an easy application of the last part of Theorem 17.

