
Chapter IX
Convergence of Measures on a Polish Space

In Chapters II and III I introduced a notion of convergence on M1(RN ) which
is appropriate when discussing either Central Limit phenomena or the sort of
limits which arose in connection with infinitely divisible laws. In this chapter,
I will give a systematic treatment of this sort of convergence and show how it
extends to probability measures on any Polish space. That is, any complete,
separable, metric space. Unfortunately, this extension will entail an excursion
into territory which borders on abstract nonsense, although I hope to avoid
crossing that border. In any case, just as Banach’s great achievement was the
ingenious use for infinite dimensional vector spaces of completeness to replace
local compactness, so here we will have to learn how to substitute compactness
by completeness in measure-theoretic arguments.

§ 9.1 Prohorov–Varadarajan Theory

The goal in this section is to generalize results like Lemma 2.1.7 and Theorem
3.1.1 to a very abstract setting.

§ 9.1.1. Some Background. When discussing the convergence of probabil-
ity measures on a measurable space (E,B), one always has at least two senses
in which the convergence may take place, and (depending on additional struc-
ture that the space may possess) one may have more. To be more precise,
let B(E;R) ≡ B

(
(E,B);R

)
be the space of bounded, R-valued, B-measurable

functions on E, use M1(E) ≡ M1(E,B) to denote the space of all probability
measures on (E,B), and define the duality relation

〈ϕ, µ〉 =

∫
E

ϕdµ for ϕ ∈ B(E;R) and µ ∈M1(E).

Next, again use ‖ϕ‖u ≡ supx∈E |ϕ(x)| to denote the uniform norm of ϕ ∈
B(E;R), and consider the neighborhood basis at µ ∈ M1(E) determined by
the sets

U(µ, r) =
{
ν ∈M1(E) :

∣∣〈ϕ, ν〉 − 〈ϕ, µ〉∣∣ ≤ r for ϕ ∈ B(E,R) with ‖ϕ‖u ≤ 1
}

as r runs over (0,∞). For obvious reasons, the topology defined by these neigh-
borhoods U is called the uniform topology on M1(E). In order to develop
some feeling for the uniform topology, I will begin by examining a few of its
elementary properties.
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352 IX Convergence of Measures on a Polish Space

Lemma 9.1.1. Define the variation distance between elements µ and ν of
M1(E) by

‖ν − µ‖var = sup
{∣∣〈ϕ, µ〉 − 〈ϕ, ν〉∣∣ : ϕ ∈ B(E;R) with ‖ϕ‖u ≤ 1

}
.

Then (µ, ν) ∈M1(E)2 7−→ ‖µ−ν‖var is a metric on M1(E) which is compatible
with the uniform topology. Moreover, if µ, ν ∈ M1(E) are two elements of
M1(E) and λ is any element of M1(E) with respect to which both µ and ν are
absolutely continuous (e.g., µ+ν

2 ), then

(9.1.2) ‖µ− ν‖var = ‖g − f‖L1(λ;R) where f =
dµ

dλ
and g =

∂ν

∂λ
.

In particular, ‖µ− ν‖var ≤ 2, and equality holds precisely when ν ⊥ µ (i.e., they
are singular). Finally, the metric (µ, ν) ∈M1(E)2 7−→ ‖µ− ν‖var is complete.

Proof: The first assertion needing comment is the one in (9.1.2). But, for every
ϕ ∈ B(E;R) with ‖ϕ‖u ≤ 1,∣∣∣〈ϕ, ν〉 − 〈ϕ, µ〉∣∣∣ =

∣∣∣∣∫
E

ϕ(g − f) dλ

∣∣∣∣ ≤ ‖g − f‖L1(λ;R),

and equality holds when ϕ = sgn ◦ (g− f). To prove the assertion which follows
(9.1.2), note that

‖g − f‖L1(λ;R) ≤ ‖f‖L1(λ;R) + ‖g‖L1(λ;R) = 2

and that the inequality is strict if and only if fg > 0 on a set of strictly positive
λ-measure or, equivalently, if and only if µ 6⊥ ν. Thus, all that remains is to
check the completeness assertion. To this end, let {µn : n ≥ 1} ⊆ M1(E)
satisfying

lim
m→∞

sup
n≥m
‖µn − µm‖var = 0

be given, and set λ =
∑∞
n=1 2−nµn. Clearly, λ is an element of M1(E) with

respect to which each µn is absolutely continuous. Moreover, if fn = dµn
dλ , then,

by (9.1.2), {fn : n ≥ 1} is a Cauchy convergent sequence in L1(λ;R). Hence,
since L1(λ;R) is complete, there is an f ∈ L1(λ;R) to which the fn’s converge in
L1(λ;R). Obviously, we may choose f to be non-negative, and certainly it has
λ-integral 1. Thus, the measure µ given by dµ = f dλ is an element of M1(E),
and, by (9.1.2), ‖µn − µ‖var −→ 0. �

As a consequence of Lemma 9.1.1, we see that the uniform topology on M1(E)
admits a complete metric and that convergence in this topology is intimately
related to L1-convergence in the L1-space of an appropriate element of M1(E).
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In fact, M1(E) looks in the uniform topology like a galaxy which is broken
into many constellations, each constellation consisting of measures which are all
absolutely continuous with respect to some fixed measure. In particular, there
will usually be too many constellations for M1(E) in the uniform topology to
be separable. To wit, if E is uncountable and {x} ∈ B for every x ∈ E, then the
point masses δx, x ∈ E, (i.e., δx(Γ) = 1Γ(x)) form an uncountable subset of
M1(E) and ‖δy − δx‖var = 2 for y 6= x. Hence, in this case, M1(E) cannot be
covered by a countable collection of open ‖ · ‖var-balls of radius 1.

As I said at the beginning of this section, the uniform topology is not the only
one available. Indeed, for many purposes and, in particular, for probability the-
ory, it is too rigid a topology to be useful. For this reason, it is often convenient
to consider a more lenient topology on M1(E). The first one which comes to
mind is the one which results from eliminating the uniformity in the uniform
topology. That is, given a µ ∈M1(E), define

(9.1.3) S
(
µ, δ;ϕ1, . . . , ϕn

)
≡
{
ν ∈M1(E) : max

1≤k≤n

∣∣〈ϕk, ν〉 − 〈ϕk, µ〉∣∣ < δ
}

for n ∈ Z+, ϕ1, . . . , ϕn ∈ B(E;R), and δ > 0. Clearly these sets S determine a
Hausdorff topology on M1(E) in which the net {µα : α ∈ A} converges to µ if
and only if limα〈ϕ, µα〉 = 〈ϕ, µ〉 for every ϕ ∈ B(E;R). For historical reasons,
in spite of the fact that it is obviously weaker than the uniform topology, this
topology on M1(E) is sometimes called the strong topology; although, in some
of the statistics literature, it is also known as the τ -topology.

A good understanding of the relationship between the strong and uniform
topologies is most easily gained through functional analytic considerations which
will not be particularly important for what follows. Nonetheless, it will be useful
to recognize that, except in very special circumstances, the strong topology is
strictly weaker than the uniform topology. For example, take E = [0, 1] with its
Borel field, and consider the probability measures µn(dt) =

(
1 + sin(2nπt)

)
dt

for n ∈ Z+. Noting that, since | sin(2nπt)− sin(2mπt)| ≤ 2 and therefore

1
2‖µn − µm‖var =

∫ 1

0

| sin(2nπt)− sin(2mπt)|
2

dt

≥ 1
4

∫ 1

0

∣∣sin(2nπt)− sin(2mπt)
∣∣2 dt =

1

4

for m 6= n, one sees that {µn : n ≥ 1} not only fails to converge in the uniform
topology, it does not even have any limit points as n → ∞. On the other
hand, because

{
2

1
2 sin(2nπt) : n ≥ 1

}
is orthonormal in L2

(
λ[0,1];R

)
, Bessel’s

inequality says that

2

∞∑
n=1

(∫
[0,1]

ϕ(t) sin(2nπt) dt

)2

≤ ‖ϕ‖2L2(λ[0,1])
≤ ‖ϕ‖2u <∞
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and therefore 〈ϕ, µn〉 −→ 〈ϕ, λ[0,1]〉 for every ϕ ∈ B
(
[0, 1];R

)
. In other words,

{µn : n ≥ 1} converges to λ[0,1] in the strong topology, but it converges to nothing
at all in the uniform topology.

§ 9.1.2. The Weak Topology. Although the strong topology is weaker than
the uniform and can be effectively used in various applications, it is still not
weak enough for most probabilistic applications. Indeed, even when E possesses
a good topological structure and B = BE is the Borel field over E, the strong
topology on M1(E) shows no respect for the topology on E. For example,
suppose that E is a metric space and, for each x ∈ E, consider the point mass
δx on BE . Then, no matter how close x ∈ E \ {x} gets to y in the sense
of the topology on E, δx is not getting close to δy in the strong topology on
M1(E). More generally (cf. Exercise 9.1.15 below), measures cannot be close in
the strong topology unless their sets of small measure are essentially the same.
Thus, for example, the convergence which is occurring in The Central Limit
Theorem (cf. Theorem 2.1.8) cannot, in general, be taking place in the strong
topology; and since The Central Limit Theorem is an archetypal example of the
sort of convergence result at which probabilists look, it is only sensible for us to
take a hint from the result which we got there.

That is, let E be a metric space, set B = BE , and consider the neighborhood
basis at µ ∈M1(E) given by the sets S(µ, δ; ϕ1, . . . , ϕn) in (9.1.3) when the ϕk’s
are restricted to be elements of Cb(E;R). The topology which results is much
weaker than the strong topology, and is therefore justifiably called the weak
topology on M1(E). (The reader who is familiar with the language of functional
analysis will, with considerable justice, complain about this terminology. Indeed,
if one thinks of Cb(E;R) as a Banach space and of M1(E) as a subspace of its
dual space Cb(E;R)∗, then the topology which I am calling the weak topology
is what a functional analyst would call the weak∗ topology. However, because
it is the most commonly accepted choice of probabilists, I will continue to use
the term weak instead of the more correct term weak∗.) In particular, the weak
topology respects the topology on E: δy tends to δx in the weak topology on
M1(E) if and only if y −→ x in E. Lemma 2.3.3 provides further evidence
that the weak topology is well adapted to the sort of analysis encountered in
probability theory, since, by that lemma, weak convergence of {µn : n ≥ 1} ⊆
M1(RN ) to µ is equivalent to pointwise convergence of µ̂N (ξ) to µ̂(ξ).

Besides being well adapted to probabilistic analysis, the weak topology turns
out to have many intrinsic virtues which are not shared by either the uniform
or strong topologies. In particular, as we will see shortly, when E is a separable
metric space, the weak topology on M1(E) is not only a metric topology, which
(cf. Exercise 9.1.15) the strong topology seldom is, but it is even separable,
which, as we have seen, the uniform topology seldom is. In order to check these
properties, we will first have to review some elementary facts about separable
metric spaces.

Given a metric ρ for a topological space E, I will use Uρb (E;R) to denote
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the space of bounded, ρ-uniformly continuous R-valued functions on E and will
endow Uρb (E;R) with the topology determined by the uniform metric. Thus,
Uρb (E;R) becomes in this way a closed subspace of Cb(E;R).

Lemma 9.1.4. Let E be a separable metric space. Then E is homeomorphic

to a subset of [0, 1]Z
+

. In particular:

(i) If E is compact, then the space C(E;R) is separable with respect to the
uniform metric.

(ii) Even when E is not compact, it nonetheless admits a metric ρ̂ with respect
to which it becomes a totally bounded metric space.

(iii) If ρ̂ is a totally bounded metric on E, then U ρ̂b (E;R) is separable.

Proof: Let ρ be any metric on E, and choose {pn : n ≥ 1} to be a countable,

dense subset of E. Next, define h : E −→ [0, 1]Z
+

to be the mapping whose nth
coordinate is given by

hn(x) =
ρ(x, pn)

1 + ρ(x, pn)
, x ∈ E.

It is then an easy matter to check that h is homeomorphic onto a subset of

[0, 1]Z
+

.

To prove (i), I will first check it for compact subsets K of E = [0, 1]Z
+

. To this

end, denote by P the space of polynomials p : [0, 1]Z
+ −→ R. That is, P consists

of finite, R-linear combinations of the monomials ξ ∈ [0, 1]Z
+ 7−→ ξn1

k1
· · · ξn`k` ,

where ` ≥ 1, 1 ≤ k1 < · · · < k`, and {n1, . . . , n`} ⊆ N. Clearly, if P0 is the
subset of P consisting of those p’s with rational coefficients, then P0 is coutable,
and P0 is dense in P. Thus, it suffices to show that {p � K : p ∈ P} is dense
in C(K;R). But P is obviously an algebra. In addition, if ξ and η are distinct

points in [0, 1]Z
+

, it is an easy (in fact, a one dimensional) matter to see that
there is a p ∈ P for which p(ξ) 6= p(η). Hence, the desired density follows
from the Stone–Weierstrass Approximation Theorem. Finally, for an arbitrary

compact metric space E, define h : E −→ [0, 1]Z
+

as above, note that K ≡ h(E)
is compact, and conclude that the map ϕ ∈ C(K;R) 7−→ ϕ ◦ h ∈ C(E;R) is
a homeomorphism between the uniform topologies on these spaces. Since we
already know that C(K;R) is separable, this completes (i).

The proof of (ii) is easy. Namely, define

D(x,η) =

∞∑
n=1

|ξn − ηn|
2n

for x, η ∈ [0, 1]Z
+

.

Clearly, D is a metric for [0, 1]Z
+

, and therefore

(x, y) ∈ E2 7−→ ρ̂(x, y) ≡ D
(
h(x),h(y)

)
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is a metric for E. At the same time, since [0, 1]Z
+

is compact, and therefore
the restriction of D to any subset is totally bounded, it is clear that ρ̂ is totally
bounded on E.

To prove (iii), let Ê denote the completion of E with respect to the totally

bounded metric ρ̂. Then, because E is dense in Ê, Ê is both complete and
totally bounded and therefore compact. In addition, ϕ̂ ∈ C

(
Ê;R

)
7−→ ϕ̂ � E ∈

U ρ̂b (E;R) is a surjective homeomorphism; and so (iii) now follows from (i). �

One of the main reasons why Lemma 9.1.4 will be important to us is that it
will enable us to show that, for separable metric spaces E, the weak topology
on M1(E) is also a separable metric topology. However, thus far we do not
even know that the neighborhood bases are countably generated, and so, for a
moment longer, I must continue to consider nets when discussing convergence.
In order to indicate that a net {µσ : α ∈ A} ⊆ M1(E) is converging weakly
(i.e., in the weak topoology) to µ, I will write µα =⇒ µ.

Theorem 9.1.5. Let E be any metric space and {µα : α ∈ A} a net in M1(E).
Given any µ ∈M1(E), the following statements are equivalent:

(i) µα =⇒ µ.

(ii) If ρ is any metric for E, then 〈ϕ, µα〉 −→ 〈ϕ, µ〉 for every ϕ ∈ Uρb (E;R).

(iii) For every closed set F ⊆ E, lim
α
µα(F ) ≤ µ(F ).

(iv) For every open set G ⊆ E, lim
α

µα(G) ≥ µ(G).

(v) For every upper semicontinuous function f : E −→ R which is bounded
above, lim

α
〈f, µα〉 ≤ 〈f, µ〉.

(vi) For every lower semicontinuous function f : E −→ R which is bounded
below, lim

α

〈f, µα〉 ≥ 〈f, µ〉.

(vii) For every f ∈ B(E;R) which is continuous at µ-almost every x ∈ E,
〈f, µα〉 −→ 〈f, µ〉.

Finally, assume that E is separable, and let ρ̂ be a totally bounded metric for

E. Then there exists a countable subset {ϕn : n ≥ 1} ⊆ U ρ̂b (E; [0, 1]
)

which is

dense in U ρ̂b (E;R), and therefore the mapping H : M1(E) −→ [0, 1]Z
+

given by

H(µ) =
(
〈ϕ1, µ〉, . . . , 〈ϕn, µ〉, . . .

)
is a homeomorphism from the weak topology

on M1(E) into [0, 1]Z
+

. In particular, when E is separable, M1(E) with the
weak topology is itself a separable metric space and, in fact, one can take

(µ, ν) ∈M1(E)2 7−→ R(µ, ν) ≡
∞∑
n=1

∣∣〈ϕn, µ〉 − 〈ϕn, ν〉∣∣
2n

to be a metric for M1(E).
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Proof: The implications

(vii) =⇒ (i) =⇒ (ii), (iii) ⇐⇒ (iv), and (v) ⇐⇒ (vi)

are all trivial. Thus, the first part will be complete once I check that (ii) =⇒
(iii), (iv) =⇒ (vi), and that (v) together with (vi) imply (vii). To see the
first of these, let F be a closed subset of E, and set

ψn(x) = 1−
(

ρ(x, F )

1 + ρ(x, F )

) 1
n

for n ∈ Z+ and x ∈ E.

It is then clear that ψn ∈ Uρb (E;R) for each n ∈ Z+ and that 1 ≥ ψn(x)↘ 1F (x)
as n→∞ for each x ∈ E. Thus, The Monotone Convergence Theorem followed
by (ii) imply that

µ(F ) = lim
n→∞

〈ψn, µ〉 = lim
n→∞

lim
α
〈ψn, µα〉 ≥ lim

α
µα(F ).

In proving that (iv) =⇒ (vi), I may and will assume that f is a non-negative,
lower semicontinuous function. For n ∈ N, define

fn =

∞∑
`=0

` ∧ 4n

2n
1I`,n ◦ f =

1

2n

4n∑
`=0

1J`,n ◦ f,

where

I`,n =

(
`

2n
,
`+ 1

2n

]
and J`,n =

(
`

2n
,∞
)
.

It is then clear that 0 ≤ fn ↗ f and therefore that 〈fn, µ〉 −→ 〈f, µ〉 as n→∞.
At the same time, by lower semicontinuity, the sets {f ∈ J`,n} are open, and so
(iv) implies

〈fn, µ〉 ≤ lim
α

〈fn, µα〉 ≤ lim
α

〈f, µα〉

for each n ∈ Z+. After letting n→∞, one sees that (iv) =⇒ (vi).
Turning to the proof that (v) & (vi) =⇒ (vii), suppose that f ∈ B(E;R) is

continuous at µ-almost every x ∈ E, and define

f(x) = lim
y→x

f(y) and f(x) = lim
y→x

f(y) for x ∈ E.

It is then an easy matter to check that f ≤ f ≤ f everywhere and that equal-

ity holds µ-almost surely. Furthermore, f is lower semicontinuous, f is upper
semicontinuous, and both are bounded. Hence, by (v) and (vi),

lim
α
〈f, µα〉 ≤ lim

α
〈f, µα〉 ≤ 〈f, µ〉 = 〈f, µ〉 ≤ lim

α

〈f, µα〉 ≤ lim
α

〈f, µα〉;
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and so we have now completed the proof that conditions (i) through (vii) are
equivalent.

Now assume that E is separable, and let ρ̂ be a totally bounded metric for E.

By (iii) of Lemma 9.1.4, U ρ̂b (E;R) is separable. Hence, we can find a countable

set {ϕn : n ≥ 1} which is dense in U ρ̂b (E;R). In particular, by the equivalence of
(i) and (ii) above, we see that 〈ϕn, µα〉 −→ 〈ϕn, µ〉 for all n ∈ Z+ if and only if

µα =⇒ µ; which is to say that the corresponding map H : M1(E) −→ [0, 1]Z
+

is

a homeomorphism. Since [0, 1]Z
+

is a compact metric space and D (cf. the proof
of (ii) in Lemma 9.1.4) is a metric for it, we also see that the R described is a
totally bounded metric for M1(E). In particular, M1(E) is separable. Finally,
since, by (ii) in Lemma 9.1.4, it is always possible to find a totally bounded
metric for E, the last assertion needs no further comment. �

The reader would do well to pay close attention to what (iii) and (iv) say
about the nature of weak convergence. Namely, even though µα =⇒ µ, it is
possible that some or all of the mass which the µα’s assign to the interior of a
set may gravitate to the boundary in the limit. This phenomenon is most easily
understood by taking E = R, µα to be the unit point mass δα at α ∈ [0, 1),
checking that δα =⇒ δ1, and noting that δ1

(
(0, 1)

)
= 0 < 1 = δα

(
(0, 1)

)
for each

α ∈ [0, 1).

Remark 9.1.6. Those who find nets distasteful will be pleased to learn that,
from now on, I will be restricting my attention to separable metric spaces E and
therefore need only discuss sequential convergence when working with the weak
topology on M1(E). Furthermore, unless the contrary is explicitly stated, I will
always be thinking of the weak topology when working with M1(E).

Given a separable metric space E, I next want to find conditions which guar-
antee that a subset of M1(E) is compact; and at this point it will be convenient
to have introduced the notation K ⊂⊂ E to indicate that K is a compact subset
of E. The key to my analysis is the following extension of the sort of Riesz Rep-
resentation result in Theorem 3.1.1 combined with a crucial observation made
by S. Ulam.∗

Lemma 9.1.7. Let E be a separable metric space, ρ a metric for E, and Λ a
non-negative linear functional on Uρb (E;R) (i.e., Λ is a linear map which assigns
any non-negative value to a non-negative ϕ ∈ Uρb (E;R)) with Λ(1) = 1. Then in
order for there to be a (necessarily unique) µ ∈M1(E) satisfying Λ(ϕ) = 〈ϕ, µ〉
for all ϕ ∈ Uρb (E;R), it is sufficient that, for every ε > 0, there exist a K ⊂⊂ E

∗ It is no accident that Ulam was the first to make this observation. Indeed, the term Polish
space was coined by Bourbaki in recognition of the contribution made to this subject by the

Polish school in general and C. Kuratowski in particular (cf. Kuratowski’s Topologie, Vol. I,
Warszawa–Lwow, (1933)). Ulam had studied with Kuratowski.
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such that

(9.1.8)
∣∣Λ(ϕ)

∣∣ ≤ sup
x∈K
|ϕ(x)|+ ε‖ϕ‖u, ϕ ∈ Uρb (E;R).

Conversely, if E is a Polish space and µ ∈M1(E), then for every ε > 0 there is a
K ⊂⊂ E such that µ(K) ≥ 1− ε. In particular, if µ ∈M1(E) and Λ(ϕ) = 〈ϕ, µ〉
for ϕ ∈ Cb(E;R), then, for each ε > 0, (9.1.8) holds for some K ⊂⊂ E.

Proof: I begin with the trivial observation that, because Λ is non-negative and
Λ(1) = 1,

∣∣Λ(ϕ)
∣∣ ≤ ‖ϕ‖u. Next, according to the Daniell theory of integration,

the first statement will be proved as soon as we know that Λ(ϕn)↘ 0 whenever
{ϕn : n ≥ 1} is a non-increasing sequence of functions from Uρb

(
E; [0,∞)

)
which tend pointwise to 0 as n→∞. To this end, let ε > 0 be given, and choose
K ⊂⊂ E so that (9.1.8) holds. One then has that

lim
n→∞

∣∣Λ(ϕn)∣∣ ≤ lim
n→∞

sup
x∈K
|ϕn(x)|+ ε‖ϕ1‖u = ε‖ϕ1‖u,

since, by Dini’s Lemma, ϕn ↘ 0 uniformly on compact subsets of E.
Turning to the second part, assume that E is Polish, and use B(x, r) to denote

the open ball of radius r > 0 around x ∈ E, computed with respect to a complete
metric ρ for E. Next, let {pk : k ≥ 1} be a countable dense subset of E, and set
Bk,n = B

(
pk,

1
n

)
for k, n ∈ Z+. Given µ ∈ M1(E) and ε > 0, we can choose,

for each n ∈ Z+, an `n ∈ Z+ so that

µ

(
`n⋃
k=1

Bk,n

)
≥ 1− ε

2n
.

Hence, if

Cn ≡
`n⋃
k=1

Bk,n and K =

∞⋂
n=1

Cn,

then µ(K) ≥ 1 − ε. At the same time, it is obvious that, on the one hand,
K is closed (and therefore ρ-complete) and that, on the other hand, K ⊆⋃`n
k=1B

(
pk,

2
n

)
for every n ∈ Z+. Hence, K is both complete and totally

bounded with respect to ρ and, as such, is compact. �

As Lemma 9.1.7 makes clear, probability measures on a Polish space like to
be nearly concentrated on a compact set. Following Prohorov and Varadarajan,∗

∗ See Yu. V. Prohorov’s article “Convergence of random processes and limit theorems in prob-

ability theory,” Theory of Prob. & Appl., which appeared in 1956. Independently, V.S.
Varadarajan developed essentially the same theory in “Weak convergence of measures on a

separable metric spaces,” Sankhyǎ, which was published in 1958. Although Prohorov got into
print first, subsequent expositions, including this one, rely heavily on Varadarajan.
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what we are about to see is that, for a Polish space E, relatively compact subsets
of M1(E) are those whose elements are nearly concentrated on the same compact
set of E. More precisely, given a separable metric space E, say that M ⊆M1(E)
is tight if, for every ε > 0, there exists a K ⊂⊂ E such that µ(K) ≥ 1 − ε for
all µ ∈M .

Theorem 9.1.9. Let E be a separable metric space and M ⊆M1(E). Then
M is compact if M is tight. Conversely, when E is Polish, M is tight if M is
compact.∗

Proof: Since it is clear, from (iii) in Theorem 9.1.5, that M is tight if and only
if M is, I will assume throughout that M is closed in M1(E).

To prove the first statement, take ρ̂ to be a totally bounded metric on E,

choose {ϕn : n ≥ 1} ⊆ U ρ̂b
(
E; [0, 1]

)
accordingly, as in the last part of Theorem

9.1.5, and let ϕ0 = 1. Given a sequence {µ` : ` ≥ 1} ⊆ M1(E), we can use a
standard diagonalization procedure to extract a subsequence

{
µ`k : k ≥ 1

}
such

that
Λ(ϕn) ≡ lim

k→∞
〈ϕn, µ`k〉

exists for each n ∈ N. Since Λ(ϕ) ≡ limk→∞〈ϕ, µ`k〉 continues to exist for
every ϕ in the uniform closure of the span of {ϕn : n ≥ 1}, we now see that

Λ determines a non-negative linear functional on U ρ̂b (E;R) and that Λ(1) = 1.
Moreover, because M is tight, we can find, for any ε > 0, a K ⊂⊂ E such that
µ(K) ≥ 1 − ε for every µ ∈ M ; and therefore (9.1.8) holds with this choice
of K. Hence, by Lemma 9.1.7, we know that there is a µ ∈ M1(E) for which

Λ(ϕ) = 〈ϕ, µ〉, ϕ ∈ U ρ̂b (E;R). Because this means that 〈ϕ, µ`k〉 −→ 〈ϕ, µ〉 for

every ϕ ∈ U ρ̂b (E;R), the equivalence of (i) and (ii) in Theorem 9.1.5 allows us
to conclude that µ`k =⇒ µ.

Finally, suppose that E is Polish and that M is compact in M1(E). To see
that M must be tight, repeat the argument used to prove the second part of
Lemma 9.1.7. Thus, choose Bk,n, k, n ∈ Z+ as in the proof there, and set

f`,n(µ) = µ

(⋃̀
k=1

Bk,n

)
for `, n ∈ Z+.

By (iv) in Theorem 9.1.5, µ ∈M1(E) 7−→ f`,n(µ) ∈ [0, 1] is lower semicontinu-
ous. Moreover, for each n ∈ Z+, f`,n ↗ 1 as ` ↗ ∞. Thus, by Dini’s Lemma,
we can choose, for each n ∈ Z+, one `n ∈ Z+ so that f`n,n(µ) ≥ 1 − ε

2n for all

∗ For the reader who wishes to investigate just how far these results can be pushed before

they start of break down, a good place to start is Appendix III in P. Billingsley’s Convergence
of Probability Measures, publ. by J. Wiley, (1968) . In particular, although it is reasonably

clear that completeness is more or less essential for the necessity, the havoc which results from
dropping separability may come as a surprise.
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µ ∈ M ; and at this point the rest of the argument is precisely the same as the
one given at the end of the proof of Lemma 9.1.7. �

§ 9.1.3. The Lévy Metric and Completeness of M1(E). We have now seen
that M1(E) inherits properties from E. To be more specific, if E is a metric
space, then M1(E) is separable or compact if E itself is. What I want to show
next is that completeness also gets transferred. That is, I will show that M1(E)
is Polish if E is. In order to do this, I will need a lemma which is of considerable
importance in its own right.

Lemma 9.1.10. Let E be a Polish space and Φ a bounded subset of Cb(E;R)
which is equicontinuous at each x ∈ E. (That is, for each x ∈ E, supϕ∈Φ |ϕ(y)−
ϕ(x)| = 0 as y → x.) If {µn : n ≥ 1} ∪ {µ} ⊆M1(E) and µn =⇒ µ, then

lim
n→∞

sup
ϕ∈Φ

∣∣∣〈ϕ, µn〉 − 〈ϕ, µ〉∣∣∣ = 0.

Proof: Let ε > 0 be given, and use the second part of Theorem 9.1.9 to choose
K ⊂⊂ E so that (

sup
ϕ∈Φ
‖ϕ‖u

)(
sup
n∈Z+

µn
(
K{
))

<
ε

4
.

By (iv) of Theorem 9.1.5, µ
(
K{
)

satisfies the same estimate. Next, choose a
metric ρ for E and a countable dense set {pk : k ≥ 1} in K. Using equicontinuity
together with compactness, find ` ∈ Z+ and δ1, . . . , δ` > 0 so that K ⊆

{
x :

ρ(x, pk) < δk for some 1 ≤ k ≤ `
}

and

sup
ϕ∈Φ

∣∣ϕ(x)− ϕ(pk)
∣∣ < ε

4
for 1 ≤ k ≤ ` and x ∈ K with ρ(x, pk) < 2δk.

Because r ∈ (0,∞) 7−→ µ
({
y ∈ K : ρ(y, x) ≤ r

})
∈ [0, 1] is non-decreasing

for each x ∈ K, we can find, for each 1 ≤ k ≤ `, an rk ∈
(
δk, 2δk

)
such that

µ(∂Bk) = 0 when Bk ≡
{
x ∈ K : ρ

(
x, pk

)
< rk

}
. Finally, set A1 = B1 and

Ak+1 = Bk+1 \
⋃k
j=1Bj for 1 ≤ k < `. Then, K ⊆

⋃`
k=1Ak, the Ak’s are

disjoint, and, for each 1 ≤ k ≤ `,

sup
ϕ∈Φ

sup
x∈Ak

∣∣ϕ(x)− ϕ
(
pk
)∣∣ < ε

4
and µ

(
∂Ak

)
= 0.

Hence, by (vii) in Theorem 9.1.5 applied to the 1Ak ’s:

lim
n→∞

sup
ϕ∈Φ

∣∣∣〈ϕ, µn〉−〈ϕ, µ〉∣∣∣ < ε+ lim
n→∞

∑̀
k=1

sup
ϕ∈Φ

∣∣ϕ(pk)∣∣ ∣∣µn(Ak)−µ(Ak)∣∣ = ε. �
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Theorem 9.1.11. Let E be a Polish space and ρ a complete metric for E.
Given (µ, ν) ∈M1(E)2, define

L(µ, ν) = inf
{
δ :µ(F ) ≤ ν

(
F (δ)

)
+ δ

and ν(F ) ≤ µ
(
F (δ)

)
+ δ for all closed F ⊆ E

}
,

where F (δ) denotes the set of x ∈ E which lie a ρ-distance less than δ from F .
Then L is a complete metric for M1(E), and therefore M1(E) is Polish.

Proof: It is clear that L is symmetric and that it satisfies the triangle in-
equality. Thus, we will know that it is a metric for M1(E) as soon as we show
that L

(
µn, µ

)
−→ 0 if and only if µn =⇒ µ. To this end, first suppose that

L
(
µn, µ

)
−→ 0. Then, for every closed F , µ

(
F (δ)

)
+ δ ≥ limn→∞ µn(F ) for all

δ > 0; and therefore, by countable additivity, µ(F ) ≥ limn→∞ µn(F ) for every
closed F . Hence, by the equivalence of (i) and (iii) in Theorem 9.1.5, µn =⇒ µ.
Now suppose that µn =⇒ µ, and let δ > 0 be given. Given a closed F in E,
define

ψF (x) =
ρ
(
x, F (δ){

)
ρ
(
x, F (δ){

)
+ ρ(x, F )

for x ∈ E.

It is then an easy matter to check that both

1F ≤ ψF ≤ 1F (δ) and
∣∣ψF (x)− ψF (y)

∣∣ ≤ ρ(x, y)

δ
.

In particular, by Lemma 9.1.10, we can choose m ∈ Z+ so that

sup
n≥m

sup
{∣∣∣〈ψF , µn〉 − 〈ψF , µ〉∣∣∣ : F closed in E

}
< δ;

from which it is an easy matter to see that, for all n ≥ m,

µ(F ) ≤ µn
(
F (δ)

)
+ δ and µn(F ) ≤ µ

(
F (δ)

)
+ δ.

In other words, supn≥m L
(
µn, µ

)
≤ δ; and, since δ > 0 was arbitrary, we have

shown that L
(
µn, µ

)
−→ 0.

In order to finish the proof, I must show that if {µn : n ≥ 1} ⊆ M1(E) is
L-Cauchy convergent, then it is tight. Thus, let ε > 0 be given, and choose, for
each ` ∈ Z+, an m` ∈ Z+ and a K` ⊂⊂ E so that

sup
n≥m`

L
(
µn, µm`

)
≤ ε

2`+1
and max

1≤n≤m`
µn
(
K`{

)
≤ ε

2`+1
.
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Setting ε` = ε
2`

, one then has that:

sup
n∈Z+

µn
(
K

(ε`)
` {

)
≤ ε` for each ` ∈ Z+.

In particular, if

K ≡
∞⋂
`=1

K
(ε`)
` ,

then µn(K) ≥ 1 − ε for all n ∈ Z+. Finally, because each K` is compact, it is
easy to see that K is both ρ-complete and totally bounded and therefore also
compact. �

When E = R, P. Lévy was the first one to construct a complete metric on
M1(E), and it is for this reason that I will call the metric L described in The-
orem 9.1.11 the Lévy metric determined by ρ. Using an abstract argument,
Varadarajan showed that M1(E) must be Polish whenever E is, and the explicit
construction which I have used is essentially the one first produced by Prohorov.

Before closing this subsection, it seems appropriate to introduce and explain
some of the more classical terminology connected with applications of weak
convergence to probability theory. For this purpose, let (Ω,F ,P) be a probability
space and E a metric space. Given E-valued random variables {Xn : n ≥
1} ∪ {X} on (Ω,F ,P), one says that the sequence Xn tends to X in law

(or distribution) and writes Xn
L−→ X if (cf. Exercise 1.1.16) (Xn)∗P =⇒

X∗P. The idea here is that, when the measures under consideration are the
distributions of random variables, one wants to think of weak convergence of the
distributions as determining a kind of convergence of the corresponding random
variables. Thus, one can add convergence in law to the list of possible ways in
which random variables might converge. In order to elucidate the relationship
between convergence in law, P-almost sure convergence, and convergence in P-
measure, it will be convenient to have the following lemma.

Lemma 9.1.12. Let (Ω,F ,P) be a probability space and E a metric space.
Given any E-valued random variables {Xn : n ≥ 1}∪ {X} on (Ω,F ,P) and any
pair of topologically equivalent metrics ρ and σ for E, ρ

(
Xn, X

)
−→ 0 in P-

measure if and only if σ
(
Xn, X

)
−→ 0 in P-measure. In particular, convergence

in P-measure does not depend on the choice of metric, and so one can write
Xn −→ X in P-measure without specifying a metric. Moreover, if Xn −→ X in

P-measure, then Xn
L−→ X. In fact, if E is a Polish space and L is the Lévy

metric on M1(E) associated with a complete metric ρ for E, then

L
(
X∗P, Y∗P) ≤≤ δ ∨ P

(
ρ(X,Y ) ≥ δ

)
and all δ > 0 and E-valued random variables X and Y .
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Proof: To prove the first assertion, suppose that

ρ(Xn, X) −→ 0 in P-measure but that σ(Xn, X) 6−→ 0 in P-measure.

After passing to a subsequence if necessary, we could then arrange that ρ(Xn, X)
−→ 0 (a.s.,P) but P

(
σ(Xn, X) ≥ ε

)
≥ ε for all n ∈ Z+ and some ε > 0. But this

is impossible, since then we would have that σ(Xn, X) −→ 0 P-almost surely
but not in P-measure. Hence, we now know that convergence in P-measure does
not depend on the choice of metric. To complete the first part, suppose that
ρ(Xn, X) −→ 0 in P-measure. Then, for every ϕ ∈ Uρb (E;R) and δ > 0,

lim
n→∞

∣∣EP[ϕ(Xn

)]
− EP[ϕ(X)

]∣∣ ≤ lim
n→∞

EP[∣∣ϕ(Xn

)
− ϕ(X)

∣∣]
≤ ε(δ) + ‖ϕ‖u lim

n→∞
P
(
ρ
(
Xn, X

)
≥ δ
)

= ε(δ),

where

ε(δ) ≡ sup
{
|ϕ(y)− ϕ(x)| : ρ(x, y) ≤ δ

}
−→ 0 as δ ↘ 0.

Thus, by (ii) in Theorem 9.1.5, (Xn)∗P =⇒ X∗P.
Now assume that E is Polish, and take ρ and L accordingly. Then, for any

closed set F and δ > 0,

X∗P(F ) = P(X ∈ F ) ≤ P
(
ρ(Y, F ) < δ

)
+ P

(
ρ(X,Y ) ≥ δ

)
= Y∗

(
F (δ)

)
+ P

(
ρ(X,Y ) ≥ δ

)
.

Hence, since the same is true when the roles of X and Y are reversed, the
asserted estimate on L

(
X∗P, Y∗P) holds. �

As a demonstration of the sort of use to which one can put these ideas, I
present the following version of the Principle of Accompanying Laws.

Theorem 9.1.13. Let E be a Polish space and, for each k ∈ Z+, let {Yk,n :
n ≥ 1} be a sequence of E-valued random variables on the probability space
(Ω,F ,P). Further, assume that, for each k ∈ Z+, there is a µk ∈ M1(E) such
that Y ∗k,nP =⇒ µk as n → ∞. Finally, let ρ be a complete metric for E, and

suppose that {Xn : n ≥ 1} is a sequence of E-valued random variables on
(Ω,F ,P) with the property that

(9.1.14) lim
k→∞

lim
n→∞

P
(
ρ
(
Xn, Yk,n

)
≥ δ
)

= 0 for every δ > 0.

Then there is a µ ∈M1(E) such that µk =⇒ µ as k →∞ and (Xn)∗P =⇒ µ as

n → ∞. In particular, if, as n →∞, Yn
L−→ X and P

(
ρ(Xn, Yn) ≥ δ

)
−→ 0 for

each δ > 0, then Xn
L−→ X.
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Proof: Let L be the Lévy metric associated with a complete metric ρ for E.
By the second part of Lemma 9.1.12,

sup
`≥k

L
(
(Y`,n)∗P, (Xn)∗P

)
≤ δ ∨

(
sup
`≥k

lim
n→∞

P
(
ρ(Y`,n, Xn) ≥ δ

))
,

and therefore, by (9.1.14),

(*) lim
k→∞

lim
n→∞

L
(
(Y`,n)∗P, (Xn)∗P

)
= 0.

Thus, since for any k ∈ Z+,

sup
`≥k

L
(
µ`, µk

)
= sup

`≥k
lim
n→∞

L
(
(Y`,n)∗P, (Yk,n)∗P

)
,

{µk : k ≥ 1} is an L-Cauchy sequence and, as such, converges to some µ. Finally,
for every k ∈ Z+,

L
(
µ, (Xn)∗P

)
≤ L(µ, µk) + L

(
µk, (Yk,n)∗

)
+ L

(
(Yk,n)∗P, (Xn)∗P

)
,

and so

lim
n→∞

L
(
µ, (Xn)∗P

)
≤ L(µ, µk) + lim

n→∞
L
(
(Yk,n)∗P, (Xn)∗P

)
.

Thus, after letting k → ∞ and applying (*), one concludes that (Xn)∗P =⇒
µ. �

Exercises for § 9.1

Exercise 9.1.15. Let (E,B) be a measurable space with the property that
{x} ∈ B for all x ∈ E. In this exercise, we will investigate the strong topology
in a little more detail. In particular, in part (iv) below, we will show that when
µ ∈M1(E) is non-atomic (i.e., µ

(
{x}
)

= 0 for every x ∈ E), then there is no
countable neighborhood basis of µ in the strong topology. Obviously, this means
that the strong topology for M1(E) admits no metric whenever M1(E) contains
a non-atomic element.

(i) Show that, in general,

‖ν − µ‖var = 2 max
{
ν(A)− µ(A) : A ∈ B

}
and that in the case when E is a metric space, B its Borel field, and ρ a metric
for E,

‖ν − µ‖var = sup
{
〈ϕ, ν〉 − 〈ϕ, µ〉 : ϕ ∈ Uρb (E;R) and ‖ϕ‖u ≤ 1

}
.

(ii) Show that if {µn : n ≥ 1} is a sequence in M1(E) which tends in the strong
topology to µ ∈M1(E), then µ�

∑∞
n=1 2−nµn.
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(iii) Given µ ∈ M1(E), show that µ admits a countable neighborhood basis
in the strong topology if and only if there exists a countable {ϕk : k ≥ 1} ⊆
B(E;R) such that, for any net

{
µα : α ∈ A

}
⊆M1(E), µα −→ µ in the strong

topology as soon as limα〈ϕk, µα〉 = 〈ϕk, µ〉 for every k ∈ Z+.

(iv) Referring to Exercises 1.1.14 and 1.1.16, set Ω = EZ+

and F = BZ+

. Next,

let µ ∈ M1(E) be given, and define P = µZ+

on (Ω,F). Show that, for any
ϕ ∈ B(E;R), the random variables x ∈ Ω 7−→ Xϕ

n (x) ≡ ϕ
(
xn
)
, n ∈ Z+, are

mutually P-independent and all have distribution ϕ∗µ. In particular, use the
Strong Law of Large Numbers to conclude that

lim
n→∞

1

n

n∑
m=1

Xϕ
m(x) = 〈ϕ, µ

〉
for each x outside of a P-null set.

Now assume that µ is non-atomic, and suppose that µ admitted a countable
neighborhood basis in the strong topology. Choose {ϕk : k ≥ 1} ⊆ B(E;R)
accordingly, as in (iii), and (using the preceding) conclude that there exists at
least one x ∈ Ω for which the measures µn given by µn ≡ 1

n

∑n
m=1 δxm , n ∈ Z+,

converge in the strong topology to µ. Finally, apply (ii) to see that this is
impossible.

Exercise 9.1.16. Throughout this exercise, E is a separable metric space.

(i) We already know that M1(E) is separable; however our proof was non-con-
structive. Show that if {pk : k ≥ 1

}
is a dense subset of E, then the set of

all convex combinations
∑n
k=1 αkδpk , where n ∈ Z+ and

{
αk : 1 ≤ k ≤ n

}
⊂

[0, 1] ∩Q with
∑n

1 αk = 1, is a countable dense set in M1(E).

(ii) We have seen that M1(E) is compact if E is. To see that the converse is
also true, show that x ∈ E 7−→ δx ∈M1(E) is a homeomorphism whose image
is closed.

(iii) Although it is a little off our track, it is amusing to show that E being
compact is equivalent to Cb(E;R) being separable; and, in view of (i) in Lemma
9.1.4, this comes down to checking that E is compact if Cb(E;R) is separable.

Hint: Let ρ̂ be a totally bounded metric on E, and use Ê to denote the ρ̂-
completion of E. Show that if {xn : n ≥ 1} ⊆ E has the properties that

xn −→ x̂ ∈ Ê and limn→∞ ϕ(xn) exists for every ϕ ∈ Cb(E;R), then x̂ ∈ E.
(Suppose not, set ψ(x) = 1

ρ̂(x,x̂) , and consider functions of the form f ◦ ψ for

f ∈ Cb(R;R).) Finally, assuming that Cb(E;R) is separable, and using a diago-
nalization procedure, show that every sequence {xn : n ≥ 1} ⊆ E admits a sub-

sequence {xnm : m ≥ 1} which converges to some x̂ ∈ Ê and limm→∞ ϕ
(
xnm

)
exists for every ϕ ∈ Cb(E;R).
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(iv) Let {Mn : n ≥ 1} be a sequence of finite, non-negative measures on (E,B).
Assuming that {Mn : n ≥ 1} is tight in the sense that {Mn(E) : n ≥ 1} is
bounded and that, for each ε > 0, there is a K ⊂⊂ E such that supnMn

(
K{
)
≤

ε, show that there is a subsequence {Mnk : k ≥ 1} and a finite measure M such
that ∫

E

ϕdM = lim
k→∞

∫
E

ϕdMnk , for all ϕ ∈ Cb(E;R).

Conversely, if E is Polish and there is a finite measure M such that
∫
E
ϕdMn −→∫

E
ϕdM for every ϕ ∈ Cb(E;R), show that {Mn : n ≥ 1} is tight.

Exercise 9.1.17. Let {E` : ` ≥ 1} be a sequence of Polish spaces, set E =∏∞
1 E`, and give E the product topology.

(i) For each ` ∈ Z+, let ρ` be a complete metric for E`, and define

R(x,y) =

∞∑
`=1

1

2`
ρ`(x`, y`)

1 + ρ`(x`, y`)
for x, y ∈ E.

Show that R is a complete metric for E, and conclude that E is a Polish space.
In addition, check that BE =

∏∞
1 BE` .

(ii) For ` ∈ Z+, let π` be the natural projection map from E onto E`, and show
that K ⊂⊂ E if and only if

K =
⋂
`∈Z+

π−1
` (K`) where K` ⊂⊂ E` for each ` ∈ Z+.

Also, show that the span of the functions∏̀
k=1

ϕk ◦ πk where ` ∈ Z+ and ϕk ∈ Uρkb (Ek;R), 1 ≤ k ≤ `,

is dense in UR
b (E;R). In particular, conclude from these that A ⊆ M1(E) is

tight if and only if
{

(π`)∗µ : µ ∈ A
}
⊆ M1(E`) is tight for every ` ∈ Z+ and

that µn =⇒ µ in M1(E) if and only if〈∏̀
k=1

ϕk ◦ πk, µn

〉
−→

〈∏̀
k=1

ϕk ◦ πk, µ

〉
for every ` ∈ Z+ and choice of ϕk ∈ Uρkb (Ek;R), 1 ≤ k ≤ `.

(iii) For each ` ∈ Z+, set E` =
∏`
k=1Ek, and let π` denote the natural projection

map from E onto E`. Next, let µ[1,`] be an element of M1

(
E`

)
, and assume that

the µ[1,`]’s are consistent in the sense that, for every ` ∈ Z+,

µ[1,`+1]

(
Γ× E`+1

)
= µ[1,`](Γ) for all Γ ∈ BE` .

Show that there is a unique µ ∈ M1(E) such that µ[1,`] = (π`)∗µ for every

` ∈ Z+.
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Hint: Choose and fix an e ∈ E, and define Φ` : E` −→ E so that

(
Φ`
(
x1, . . . , x`

))
n

=

{
xn if n ≤ `
en otherwise.

Show that
{

(Φ`)∗µ[1,`] : ` ∈ Z+
}
∈M1(E) is tight and that any limit must be

the desired µ.

The conclusion drawn in (iii) is the renowned Kolmogorov Extension (or
Consistency) Theorem. Notice that, at least for Polish spaces, it represents
a vast generalization of the result obtained in Exercise 1.1.14.

Exercise 9.1.18. In this exercise we will use the theory of weak convergence
to develop variations on The Strong Law of Large Numbers (cf. Theorem 1.4.9).
Thus, let E be a Polish space, (Ω,F , P ) a probability space, and {Xn : n ≥ 1}
a sequence of mutually independent E-valued random variables on (Ω,F , P )
with common distribution µ ∈ M1(E). Next, define the empirical distribution
functional

ω ∈ Ω 7−→ Ln(ω) ≡ 1

n

n∑
m=1

δXm(ω) ∈M1(E);

and observe that, for any ϕ ∈ B(E;R),

〈
ϕ,Ln(ω)

〉
=

1

n

n∑
m=1

ϕ
(
Xm(ω)

)
, n ∈ Z+ and ω ∈ Ω.

As a consequence of The Strong Law, show that

(9.1.19) Ln(ω) =⇒ µ for P -almost every ω ∈ Ω,

which is the Strong Law of Large Numbers for the empirical distribtu-
tion.

Next show that (9.1.19) provides another (cf. Exercises 6.1.16 and 6.2.19)
proof of the Strong Law of Large Numbers for Banach space valued random
variables. Thus, let E be a real, separable, Banach space with dual space E∗,
and set Sn(ω) = 1

n

∑n
1 Xm(ω) for n ∈ Z+ and ω ∈ Ω.

(i) As a preliminary step, begin with the case when

(*) µ
(
BE(0, R){

)
= 0 for some R ∈ (0,∞).

Choose η ∈ Cb

(
R;R

)
so that η(t) = t for t ∈ [−R,R] and η(t) = 0 when |t| ≥

R + 1, and define ψx∗ ∈ Cb(E;R) for x∗ ∈ E∗ by ψx∗(x) = η
(
〈x, x∗〉

)
, x ∈ E,
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where 〈x, x∗〉 is used here to denote the action of x∗ ∈ E∗ on x ∈ E. Taking (*)
into account and applying (9.1.19) and Lemma 9.1.10, show that

lim
n→∞

sup
‖x∗‖E∗≤1

∣∣∣∣〈ψx∗ ,Ln(ω)〉 −
∫
E

〈x, x∗〉µ(dx)

∣∣∣∣ = 0

for P-almost every ω ∈ Ω; and conclude from this that

lim
n→∞

∥∥Sn(ω)−m
∥∥
E

= 0 for P-almost every ω ∈ Ω,

where (cf. Lemma 5.1.10) m = Eµ[x].

(ii) The next step is to replace the boundedness assumption in (*) by the hy-
pothesis ∫

E

‖x‖E µ(dx) <∞.

Assuming that this holds, define, for R ∈ (0,∞), n ∈ Z+, and ω ∈ Ω:

X(R)
n (ω) =

{
Xn(ω) if

∥∥Xn(ω)
∥∥
E
< R

0 otherwise

and Y
(R)
n (ω) = Xn(ω) − X(R)

n (ω). Next, set S
(R)

n = 1
n

∑n
1 X

(R)
m , n ∈ Z+; and,

from (i), note that
{
S

(R)

n (ω) : n ≥ 1
}

converges in E for P-almost every ω ∈ Ω.
In particular, if ε > 0 is given and R ∈ (0,∞) is chosen so that∫

{‖x‖E≥R}

‖x‖E µ(dx) <
ε

8
,

use the preceding and Theorem 1.4.9 to verify the computation

lim
m→∞

P

(
sup
n≥m

∥∥Sn − Sm∥∥E ≥ ε)
≤ lim
m→∞

P

(
sup
n≥m

∥∥S(R)

n − S(R)

m

∥∥ ≥ ε

2

)
+ 2 lim

m→∞
P

(
sup
n≥m

∥∥∥∥∥ 1

n

n∑
1

Y
(R)
k

∥∥∥∥∥
E

≥ ε

4

)

≤ 2 lim
m→∞

P

(
sup
n≥m

1

n

n∑
1

∥∥Y (R)
k

∥∥
E
≥ ε

4

)
= 0;

and from this, conclude that Sn −→ Eµ[x] P-almost surely.
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(iii) Finally, repeat the argument given in the proof of Theorem 1.4.9 to show
that ‖x‖ is µ-integrable if

{
Sn : n ≥ 1

}
converges in E on a set of positive

P-measure.††

§ 9.2 Regular Conditional Probability Distributions

As I mentioned in the discussion following Theorem 5.1.4, there are quite general
situations in which conditional expectation values can be computed as expecta-
tion values. The following is a basic result in that direction.

Theorem 9.2.1. Suppose that Ω is a Polish space and that F = BΩ. Then,
for every sub-σ-algebra Σ of F , there is a P-almost surely unique Σ-measurable
map ω ∈ Ω 7−→ PΣ

ω ∈M1(Ω) with the property that

P
(
A ∩B

)
=

∫
A

PΣ
ω (B)P(dω) for all A ∈ Σ and B ∈ F .

In particular, for each (−∞,∞]-valued random variable X which is bounded

below, ω ∈ Ω 7−→ EPΣ
ω [X] is a conditional expectation value of X given Σ.

Finally, if Σ is countably generated, then there is a P-null set N ∈ Σ with the
property that PΣ

ω (A) = 1A(ω) for all ω /∈ N and A ∈ Σ.

Proof: To prove the uniqueness, suppose ω ∈ Ω 7−→ QΣ
ω ∈ M1(Ω) were a

second such mapping. We would then know that, for each B ∈ F , QΣ
ω (B) =

PΣ
ω (B) for P-almost every ω ∈ Ω. Hence, since F (as the Borel field over a

second countable topological space) is countably generated, we could find one
Σ-measurable P-null set off of which QΣ

ω = PΣ
ω . Similarly, to prove the final

assertion when Σ is countably generated, note (cf. (5.1.7)) that, for each A ∈
Σ, PΣ

ω (A) = 1A(ω) = δω(A) for P-almost every ω ∈ Ω. Thus, once again
countability allows us to choose one Σ-measurable P-null set N such that PΣ

ω �
Σ = δω � Σ if ω /∈ N .

I turn next to the question of existence. For this purpose, first choose (cf. (ii)
of Lemma 9.1.4) ρ to be a totally bounded metric for Ω, and let U = Uρb (Ω;R) be
the space of bounded, ρ-uniformly continuous, R-valued functions on Ω. Then
(cf. (iii) of Lemma 9.1.4) U is a separable Banach space with respect to the
uniform norm. In particular, we can choose a sequence {fn : n ≥ 0} ⊆ U so
that f0 = 1, the functions f0, . . . , fn are linearly independent for each n ∈ Z+,
and the linear span S of {fn : n ≥ 0} is dense in U . Set g0 = 1, and, for each
n ∈ Z+, let gn be some fixed representative of EP[fn |Σ]. Next, set

R =
{
α ∈ RN : ∃m ∈ N αn = 0 for all n ≥ m

}
††The beautiful argument which I have just given is due to Ranga Rao. See his 1963 article

“The law of large numbers for D[0, 1]-valued random variables,” Theory of Prob. & Appl.
VIII, 1, where he shows that this method applies even outside the separable context.
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and define

fα =

∞∑
n=0

αn fn and gα =

∞∑
n=0

αn gn

for α ∈ R. Because of the linear independence of the fn’s, we know that fα = fβ
if and only if α = β. Hence, for each ω ∈ Ω, we can define the (not necessarily
continuous) linear functional Λω : S −→ R so that

Λω
(
fα
)

= gα(ω), α ∈ R.

Clearly, Λω(1) = 1 for all ω ∈ Ω. On the other hand, we cannot say that Λω
is always non-negative as a linear functional on S. In fact, the best we can
do is extract a Σ-measurable P-null set N so that Λω is a non-negative linear
functional on S whenever ω /∈ N . To this end, let Q denote the rational reals
and set

Q+ =
{
α ∈ R ∩QN : fα ≥ 0

}
.

Since gα ≥ 0 (a.s., P) for every α ∈ Q+ and Q+ is countable,

N ≡
{
ω ∈ Ω : ∃α ∈ Q+ gα(ω) < 0

}
is a Σ-measurable, P-null set. In addition, it is obvious that, for every ω /∈ N ,
Λω(f) ≥ 0 whenever f is a non-negative element of S. In particular, for ω /∈ N ,

‖f‖u ± Λω(f) = Λω
(
‖f‖u 1± f

)
≥ 0, f ∈ S,

and therefore Λω admits a unique extension as a non-negative, continuous linear
functional on U which takes 1 to 1. Furthermore, it is an easy matter to check
that, for every f ∈ U , the function

g(ω) =

{
Λω(f) for ω /∈ N
EP[f ] for ω ∈ N

is a conditional expectation value of f given Σ.
At this point, all that remains is to show that, for P-almost every ω /∈ N ,

Λω is given by integration with respect to a Pω ∈M1(Ω). In particular, by the
Riesz Representation Theorem, there is nothing more to do in the case when Ω
is compact. To treat the case when Ω is not compact, I will use Lemma 9.1.7.
Namely, first choose (cf. the last part of Lemma 9.1.7) a non-decreasing sequence
of sets Kn ⊂⊂ Ω, n ∈ Z+, with the property that P

(
Kn{

)
≤ 1

2n . Next, define

ηm,n(ω) =
mρ(ω,Kn)

1 +mρ(ω,Kn)
for m, n ∈ Z+.
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Clearly, ηm,n ∈ U for each pair (m,n) and 0 ≤ ηm,n ↗ 1Kn{ as m→∞ for each
n ∈ Z+. Thus, by the Monotone Convergence Theorem, for each n ∈ Z+,∫

N{
sup
m∈Z+

Λω
(
ηm,n

)
P(dω) = lim

m→∞

∫
N{

Λω
(
ηm,n

)
P(dω)

= lim
m→∞

EP[ηm,n] ≤ 1

2n
;

and so, by the Borel–Cantelli Lemma, we can find a Σ-measurable P-null set
N ′ ⊇ N such that

M(ω) ≡ sup
n∈Z+

n

(
sup
m∈Z+

Λω
(
ηm,n

))
<∞ for every ω /∈ N ′.

Hence, if ω /∈ N ′, then, for every f ∈ U and n ∈ Z+,∣∣Λω(f)
∣∣ ≤ ∣∣Λω((1− ηm,n) f

)∣∣+
∣∣Λω(ηm,n f)∣∣

≤
∥∥(1− ηm,n) f

∥∥
u +

M(ω)

n
‖f‖u

for all m ∈ Z+. But
∥∥(1− ηm,n) f

∥∥
u −→ ‖f‖u,Kn as m→∞, and so we now see

that the condition in (9.1.8) is satisfied by Λω for every ω /∈ N ′. In other words,
we have shown that, for each ω /∈ N ′, there is a unique PΣ

ω ∈M1(Ω) such that

Λω(f) = EPΣ
ω [f ] for all f ∈ U . Finally, if we complete the definition of the map

ω ∈ Ω 7−→ PΣ
ω by taking PΣ

ω = P for ω ∈ N ′, then this map is Σ-measurable and

EP[f, A] =

∫
Ω

EPΣ
ω [f ]P(dω), A ∈ Σ,

first for all f ∈ U and thence for all F-measurable f ’s which are bounded
below. �

If P is a probability measure on (Ω,F) and Σ is a sub σ-algebra of F , then
a conditional probability distribution of P given Σ is a map (ω,B) 7−→
PΣ
ω (B) such that PΣ

ω is a probability measure on (Ω,F) for each ω ∈ Ω and
ω  PΣ

ω (B) a conditional probability of B given Σ for all B ∈ F . If, in addi-
tion, for ω outside a Σ-measurable, P-null set and all A ∈ Σ, PΣ(A) = 1A(ω),
then the conditional probability distribution is said to be regular. Notice that,
although they may not always exist, conditional probability distributions are
always unique up to a Σ-measurable P-null set so long as F is countably gener-
ated. Moreover, Theorem 9.2.1 says that they will always exist if Ω is Polish and
F = BΩ. Finally, whenever a conditional probability distribution of P given Σ
exists, the argument leading to the last part of Theorem 9.2.1 when Σ is count-
ably generated is completely general and shows that a regular version can be
found.

§ 9.2.1. Fibering a Measure. When Ω is a product space E1 × E2 of two
Polish spaces and Σ is the σ-algebra generated by the second coordinate, then
the conclusion of Theorem 9.2.1 takes a particularly pleasing form.
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Theorem 9.2.2. Let E1 and E2 be a pair of Polish spaces, and take Ω to be
the Polish space E1 × E2. Given µ ∈ M1(Ω), use µ2 to denote the marginal
distribution of µ on E2: µ2(Γ) = µ(E1 × Γ) for Γ ∈ BE2

. Then there is a
measurable map x2 ∈ E2 7−→ µ(x2, · ) ∈ M1(E1) such that µ(dx1 × dx2) =
µ(x2, dx1)µ2(dx2).

Proof: Referring to Theorem 9.2.1, take P = µ, Σ = {E1 × Γ : Γ ∈ BE2}, and
let ω ∈ Ω 7−→ PΣ

ω ∈ M1(Ω) be the map guaranteed by the result there. Next,
choose and fix a point x0

1 ∈ E1. Then, because ω  PΣ
ω is Σ-measurable, we

know that PΣ
(x1,x2) = PΣ

(x0
1,x2)

. In addition, because Σ is countably generated,

the final part of Theorem 9.2.1 guarantees that there exists a µ2-null set B ∈
BE2

such that PΣ
(x0

1,x2)

(
E1 × {x2}

)
= 1 for all x2 /∈ B. Hence, if we define

x2  µ(x2, · ) by µ(x2,Γ) = PΣ
(x0

1,x2)
(Γ × E2), then, for any Borel measurable

ϕ : E1 × E2 −→ [0,∞), 〈ϕ, µ〉 equals∫ (∫
ϕ(ω′)PΣ

ω (dω′)

)
P(dω) =

∫
E2

(∫
E1

ϕ(x1, x2)µ(x2, dx1)

)
µ2(dx2). �

In the older literature, the result in Theorem 9.2.2 would be called a fibering
of µ. The name derives from the idea that µ on E1×E2 can be decomposed into
its “vertical component” µ2 and its “restrictions” µ(x2, · ) to “horizontal fibers”
E1 × {x2}. Alternatively, Theorem 9.2.2 can be interpreted as saying that any
µ ∈M1(E1 × E2) can be decomposed into its marginal distribution on E2 and
a transition probability x2 ∈ E2 7−→ µ(x2, · ) ∈M1(E1). The two extreme cases
are when the coordinates are independent, in which case µ(x2, · ) is independent
of x2, and the case when the coordinates are equal, in which case µ(x2, · ) = δx2

.
As an application of Theorem 9.2.2, I present the following important special

case of a more general result which indicates just how remarkably fungible non-
atomic measures are.

Corollary 9.2.3. Let λ[0,1) denote Lebesgue measure on [0, 1). For each

N ∈ Z+ and µ ∈ M1(RN ), there is a Borel measurable map f : [0, 1) −→ RN
such that µ = f∗λ[0,1).

Proof: I will work by induction on N ∈ Z+. When N = 1, take

f(u) = inf
{
t ∈ R : µ

(
(−∞, t]

)
≥ u

}
, u ∈ [0, 1).

Next, assume the result is true for N , take E1 = R and E2 = RN in Theorem
9.2.2, and, given µ ∈M1(RN ), define µ2 ∈M1(RN ) and y ∈ RN 7−→ µ(y, · ) ∈
M1(R) accordingly. By the induction hypothesis, µ2 = f2( · )∗λ[0,1) for some

f2 : [0, 1) −→ RN . Thus, if g : [0, 1)2 −→ R× RN is given by

g(u1, u2) =
(

inf
{
t ∈ R : µ

(
f2(u2), (−∞, t]

)
≥ u1

}
, f2(u2)

)
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for (u1, u2) ∈ [0, 1)2, then g is Borel measurable on [0, 1)2 and µ = g∗λ
2
[0,1).

Finally, by Lemma 1.1.6 or part (ii) of Exercise 1.1.11, we know that there is a
Borel measurable map u ∈ [0, 1) 7−→ U(u) =

(
U1(u), U2(u)

)
∈ [0, 1)2 such that

U∗λ[0,1) = λ2
[0,1), and so we can take f(u) = g ◦U. �

§ 9.2.2. Representing Lévy Measures via the Itô Map. There is another
way of thinking about the construction of the Poisson jump processes, one which
is based on Corollary 9.2.3 and the transformation property described in Lemma
4.2.12. The advantage of this approach is that it provides a method of coupling
Lévy processes corresponding to different Lévy measures. Indeed, it is this
coupling procedure which underlies K. Itô’s construction of Markov processes
modeled on Lévy processes.∗

LetM0(dy) = |y|−N−1 dy, which is the Lévy measure for a (cf. Corollary 3.3.9)
symmetric 1-stable law. My first goal is to show that every M ∈M∞(RN ) can
be realized as (cf. the notation in Lemma 4.2.6) MF

0 for some Borel measurable
F : RN −→ RN satisfying F (0) = 0.∗

Theorem 9.2.4. For each M ∈M∞(RN ) there exists a Borel measurable map
F : RN −→ RN such that F (0) = 0 and

M(Γ) = MF
0 ≡M0

(
F−1(Γ \ {0})

)
, Γ ∈ BRN .

Proof: I begin with the case when N = 1. Given M ∈M∞(R), define ρ(r,±1)
for r > 0 by

ρ(r, 1) = sup
{
ρ ∈ [0,∞) : M

(
[ρ,∞)

)
≥ r−1

}
ρ(r,−1) = sup

{
ρ ∈ [0,∞) : M

(
(−∞,−ρ]

)
≥ r−1

}
,

where I have taken the supremum over the empty set to be 0. Applying Exercise
9.2.6 with ν(dr) = r−2λ(0,∞)(dr), one sees that M = MF

0 when F (0) = 0 and

F (y) = ρ
(
|y|, y|y|

)
for y ∈ R \ {0}.

Now assume that N ≥ 2, and let M ∈ M∞(RN ). If M = 0, simply take
F ≡ 0. If M 6= 0, choose a non-decreasing function h : (0,∞) −→ (0,∞) so that∫

h
(
|y|
)
M(dy) = 1,

and define µ ∈M1

(
(0,∞)× SN−1) so that

〈ϕ, µ〉 =

∫
RN
h
(
|y|
)
ϕ(y)M(dy).

∗ See K. Itô’s On stochastic differential equations, Memoirs of the A.M.S. #4 (1951) or my

Markov Processes from K. Itô’s Perspective, Annals of Math. Studies #155 (2003).
∗ There is nothing sacrosanct about the choice of M0 as our reference measure. For instance,

it should obvious that one can choose any Lévy measure M with the property that M0 = MF

for some Borel measurable F : RN −→ RN which takes 0 to 0.
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Using µ2 to denote the marginal distribution of µ on SN−1, apply Corollary 9.2.3
to find a Borel measurable f : [0, 1) −→ RN so that µ2 = f∗λ[0,1). Since µ2 lives

on SN−1, I may and will assume that f(u) ∈ SN−1 for all u ∈ [0, 1). Next, use
Theorem 9.2.2 to find a measurable map η ∈ SN−1 7−→ µ(η, · ) ∈ M1

(
(0,∞)

)
so that µ(dr × dη) = µ(η, dr)µ2(dη), and define ρ : (0,∞) × SN−1 −→ [0,∞)
by

ρ(r,η) = sup

{
ρ ∈ [0,∞) :

∫
[ρ,∞)

1

h(r)
µ(η, dr) ≥ ωN−1

r

}
.

Then, again by Exercise 9.2.6, but this time with ν(dr) = ωN−1r
−2λ(0,∞)(dr),

for any continuous ϕ : RN −→ [0,∞) which vanishes in a neighborhood of 0,∫
(0,∞)

ϕ(rη)

h(r)
µ(η, dr) = ωN−1

∫
(0,∞)

ϕ
(
ρ(r,η)η

)
r−2 dr, η ∈ SN−1,

and so∫
RN
ϕ(y)M(dy) = ωN−1

∫
SN−1

(∫
(0,∞)

ϕ
(
ρ(r,η)η

)
r−2 dr

)
µ2(dη)

= ωN−1

∫
[0,1)

(∫
(0,∞)

ϕ
(
ρ(r,η)f(t)

)
r−2 dr

)
λ[0,1)(dt).

Finally, define g : SN−1 −→ [0, ωN−1) by g(η) = λSN−1

(
{η′ ∈ SN−1 : η′1 ≤ η1}

)
,

note that ωN−1λ[0,1) = g∗λSN−1 , and conclude that M = MF
0 when

F (0) = 0 and F (y) = ρ
(
|y|, y

|y|
)
f ◦ g

(
y
|y|
)

for y ∈ RN \ {0}. �

We can now prove the following theorem, which is the simplest example of
Itô’s procedure.

Theorem 9.2.5. Let {j0(t, · ) : t ≥ 0} be a Poisson jump process associated
with M0. Then for each M ∈ M∞(RN ), there is a Borel measurable map F :
RN −→ RN with F (0) = 0 and a Poisson jump process {j(t, · ) : t ≥ 0}
associated with M such that j(t, · ) = jF0 (t, · ), t ≥ 0, P-almost surely.

Proof: Choose F as in Theorem 9.2.4 so that M = MF
0 . For R > 0, set

FR(y) = 1[R,∞)(y)F (y). By Lemma 4.2.12, we know that {jFR0 (t, · ) : t ≥ 0} is

a Poisson jump process associated with MFR . In particular, for each r > 0,

EP[jF0 (t,RN \B(0, r)
)]

= lim
R↘0

EP[jFR0

(
t,RN \B(0, r)

)]
= M

(
RN \B(0, r)

)
<∞.

Hence, there exists a P-null set N such that t  jF0 (t, · , ω) is a jump function
for all ω /∈ N . Finally, if j(t, · , ω) = jF0 (t, · , ω) when ω /∈ N and j(t, · , ω) = 0
for ω ∈ N , then {j(t, · ) : t ≥ 0} is a jump process associated with M and
j(t, · ) = jF0 (t, · ), t ≥ 0, for P-almost every ω ∈ Ω. �
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Exercises for § 9.2

Exercise 9.2.6. Let ν be an infinite non-negative, non-atomic, Borel measure
on [0,∞) with the property that ν

(
[r2,∞)

)
< ν

(
[r1,∞)

)
< ∞ for all 0 <

r1 < r2 < ∞. Given any other non-negative, Borel measure on [0,∞) with the
properties that µ({0}) = 0 and µ

(
[r,∞)

)
<∞ for all r > 0, define

ρ(r) = sup
{
ρ ∈ (0,∞) : µ

(
[ρ,∞)

)
≥ ν

(
[r,∞)

)}
, r ≥ 0,

where the supremum over the empty set is taken to be 0. Show that µ
(
[t,∞)

)
=

ν
({
r : ρ(r) ≥ t

})
for all t > 0, and therefore that 〈ϕ, µ〉 = 〈ϕ◦ρ, ν〉 for all Borel

measurable ϕ : [0,∞) −→ [0,∞) which vanish at 0.

Hint: Determine g : (0,∞) −→ (0,∞) so that ν
([
g(r),∞

))
= r, and check that

{r : ρ(r) ≥ t} =
[
g
(
µ([t,∞))

)
,∞
)

for all t > 0.

§9.3 Donsker’s Invariance Principle

The content of this section is my main justification for presenting the material
in § 9.1. Namely, as we saw in Chapter VIII, there is good reason to think
that Wiener measure is the infinite dimensional version of the standard Gauss
measure in RN , and as such one might suspect that there is a version of the
Central Limit Theorem which applies to it. In this section I will prove such a
Central Limit Theorem for Wiener measure. The result is due to M. Donsker
and is known as Donsker’s Invariance Principle (cf. Theorem 9.3.1).

Before getting started, I need to make a couple of simple preparatory re-
marks. In the first place, I will be thinking of Wiener measure W (N) as a Borel
probability measure on C(RN ) = C

(
[0,∞);RN

)
with the topology of uniform

convergence on compact intervals. Equivalently, C(RN ) is given the topology for
which

ρ(ψ,ψ′) =

∞∑
n=1

1

2n
‖ψ −ψ′‖[0,n]

1 + ‖ψ −ψ′‖[0,n]

is a metric, which, just as in the case of D(RN ) (cf. 4.1.1), is complete on
C(RN ) and, as distinguished from D(RN ), is separable there. One way to check
separability is to note that the set of paths ψ which, for some n ∈ N, are
linear on [(m − 1)2−n,m2−n] and satisfy ψ(m2−n) ∈ QN for all m ∈ Z+ is a
countable, dense subset. In particular, this means that C(RN ) is a Polish space,
and so the theory developed in § 9.1 applies to it. In addition, the Borel field
BC(RN ) coincides with σ

(
{ψ(t) : t ≥ 0}

)
, the σ-algebra which C(RN ) inherits

as a subset of (RN )[0,∞) (cf. § 4.1). Indeed, since ψ  ψ(t) is continuous for
every t ≥ 0, it is obvious that σ

(
{ψ(t) : t ≥ 0}

)
⊆ BC(RN ). At the same

time, since ‖ψ‖[0,t] = sup{|ψ(τ) : τ ∈ [0, t] ∩ Q}, it is easy to check that

open balls are σ
(
{ψ(t) : t ≥ 0}

)
-measurable. Hence, since every open set

is the countable union of open balls, BC(RN ) is contained in σ
(
{ψ(t) : t ≥
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0}
)
. Knowing that these σ-algebras coincide, we know that two probability

measures µ, ν ∈M1

(
C(RN )

)
are equal if they determine the same distribution

on (RN )[0,∞). That is, if, for each n ∈ Z+ and 0 = t0 < t1 < tn, the distribution
of ψ ∈ C(RN ) 7−→

(
ψ(t0, . . . ,ψ(tn)

)
∈ (RN )n is the same under µ and ν.

§9.3.1. Donsker’s Theorem. Let (Ω,F ,P) be a probability space, and uppose
that {Xn : n ≥ 1} is a sequence of independent, P-uniformly square integrable
random variables (i.e., as R → ∞, EP[|Xn|2, |Xn| ≥ R

]
−→ 0 uniformly in n)

with mean value 0 and covariance I. Given n ≥ 1, define ω ∈ Ω 7−→ Sn( · , ω) ∈
C(RN ) so that Sn(0) = 0, Sn

(
m
n

)
= n−

1
2

∑m
k=1 Xk, and Sn( · , ω) is linear on

each interval
[
m−1
n , mn

]
for all m ∈ Z+. Donsker’s theorem is the following.

Theorem 9.3.1 (Donsker’s Invariance Principle). If µn = (Sn)∗P ∈
M1

(
C(RN )

)
is the distribution of ω ∈ Ω 7−→ Sn( · , ω) ∈ C(RN ) under P, then

µn=⇒W (N). Equivalently, for any bounded, continuous Φ : C(RN ) −→ C,

lim
n→∞

EP[Φ ◦ Sn
]

= 〈Φ,W(N)〉.

Proving this result comes down to showing that {µn : n ≥ 1} is tight and
that every limit point is W(N). The second of these is a rather elementary
application of the Central Limit Theorem, and, at least when the Xn’s have
uniformly bounded fourth moments, the first is an application of Kolmogorov’s
Continuity Criterion. Finally, to remove the fourth moment assumption, I will
use the Principle of Accompanying Laws. It should be noticed that, at no point
in the proof, do I make use of the a priori existence of Wiener measure. Thus,
Theorem 9.3.1 provides another derivation of its existence, a derivation which
includes an an extremely ubiquitous approximation procedure.

Lemma 9.3.2. Any limit point of {µn : n ≥ 1} is W(N).

Proof: Since a probability on C(RN ) is uniquely determined by its finite di-
mensional time marginals, and because ψ(0) = 0 with probability 1 under
all the µn’s as well as W (N), it suffices to show that, for each ` ∈ Z+ and
0 = t0 < t1 < · · · < t`,(

Sn(t1),Sn(t2)− Sn(t1), . . . ,Sn(t`)− Sn(t`−1)
)
∗P =⇒ γ0,τ1I × · · · × γ0,τ`I,

where τk = tk − tk−1, 1 ≤ k ≤ `. To this end, for 1 ≤ k ≤ ` and n > 1
τk

, set

∆n(k) = n−
1
2

[ntk]∑
j=[ntk−1]+1

Xj ,
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where, as usual, I use the notation [t] to denote the integer part of t. Noting
that ∣∣∣Sn(tk)− Sn

(
tk−1

)
−∆n(k)

∣∣∣
≤
∣∣∣∣Sn(tk)− Sn

(
[ntk]

n

)∣∣∣∣+

∣∣∣∣Sn(tk−1

)
− Sn

(
[ntk−1]

n

)∣∣∣∣
≤
∣∣X[ntk]+1

∣∣+
∣∣X[ntk−1]+1

∣∣
n

1
2

,

one sees that, for any ε > 0,

P

(∑̀
k=1

∣∣∣Sn(tk)− Sn
(
tk−1

)
−∆n(k)

∣∣∣2 ≥ ε2) ≤ P

(∑̀
k=0

∣∣∣X[ntk]+1

∣∣∣2 ≥ nε2

4

)

≤ 4

nε2

∑̀
k=0

EP
[∣∣X[ntk]+1

∣∣2] =
4(`+ 1)N

nε2
−→ 0

as n→∞. Hence, by the Principle of Accompanying Laws (cf. Theorem 9.1.13),
we need only check that(

∆n(1), . . . ,∆n(`)
)
∗P =⇒ γ Nτ1 × · · · × γ

N
τ`
.

Moreover, since(
∆n(1), . . . ,∆n(`)

)
∗P =

(
∆n(1)

)
∗P× · · · ×

(
∆n(`)

)
∗P

for all sufficiently large n’s, this reduces to checking
(
∆n(k)

)
∗P =⇒ γ0,τkI for

each 1 ≤ k ≤ `. Finally, given 1 ≤ k ≤ `, set Mn(k) = [ntk] − [ntk−1], and use
Theorem 2.3.8 to see that, as n→∞,

EP

exp

 √
−1

Mn(k)
1
2

Mn(k)∑
j=1

(
ξ,X[ntk]+j

)
RN

 −→ exp

[
−|ξ|

2

2

]

uniformly for ξ in compact subsets of RN . Hence, since Mn(k)
n −→ τk, we now

see that, for any fixed ξ ∈ RN ,

EP
[
exp
(√
−1
(
ξ,∆n(k)

)
RN

)]
−→ exp

[
−τk|ξ|

2

2

]
= γ̂0,τkI(ξ),

and therefore
(
∆n(k)

)
∗P =⇒ γ0,τkI. �
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I turn next to the problem of showing that {µn : n ≥ 1} is tight. By the
Ascoli–Arzelá Theorem, any subset K ⊆ C(RN ) of the form

∞⋂
`=1

{
ψ : |ψ(0)| ∨ sup

0≤s<t≤`

|ψ(t)−ψ(s)|
(t− s)α

≤ R`
}

is compact for any α > 0 and {R` : ` ≥ 1} ⊆ [0,∞). Thus, since µn
(
ψ(0) =

0
)

= 1, all that we have to do is show that, for each T > 0

sup
n≥1

EP
[

sup
1≤s<t≤T

|Sn(t)− Sn(s)|
(t− s) 1

8

]
<∞,

and, by Theorem 4.3.2, this would follow if we knew that

(*) sup
n≥1

EP[|Sn(t)− Sn(s)|4
]
≤ C(t− s)2, s, t ∈ [0,∞),

for some C <∞.
I will prove (*) under the assumption that, for some M < ∞ and all n ≥ 1,

EP[|Xn|4
]
≤M . To do this, note that when k − 1 ≤ ns < nt ≤ k,

EP
[∣∣Sn(t)− Sn(s)

∣∣4] = n2(t− s)4EP
[∣∣Xk

∣∣4] ≤M(t− s)2.

On the other hand, when k − 1 ≤ ns ≤ k ≤ ` ≤ nt ≤ `+ 1,

EP
[∣∣Sn(t)− Sn(s)

∣∣4]
≤ 27EP

[∣∣Sn(t)− Sn
(
`
n

)∣∣4]+ 27EP
[∣∣Sn( `n)− Sn

(
k
n

)∣∣4]
+ 27EP

[∣∣Sn( kn)− Sn(s)
∣∣4]

≤ 27Mn2

(
t− `

n

)4

+
27

n2
EP


∣∣∣∣∣∣
`−k∑
j=1

Xk+j

∣∣∣∣∣∣
4
+ 27Mn2

(
k

n
− s
)4

≤ 54M(t− s)2 +
81N2M(`− k)2

n2
≤ 135N2M(t− s)2,

where, in the passage to the final line, I have chosen an orthonormal basis {ei :
1 ≤ i ≤ N} for RN and used the estimate

EP


∣∣∣∣∣∣
`−k∑
j=1

Xk+j

∣∣∣∣∣∣
4
 = EP


 N∑
i=1

`−k∑
j=1

(
ei,Xk+j

)
RN

2


2

≤ N
N∑
i=1

EP


`−k∑
j=1

(
ei,Xk+j

)
RN

4
 ≤ 3N2M(`− k)2
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coming from the second inequality in (1.3.2).
In order to complete the proof, I will apply the Principle of Accompanying

Laws. Namely, because the Xn’s are uniformly square P-integrable, we can
use a truncation procedure to find functions

{
fn,δ : n ∈ Z+ and δ > 0

}
⊆

Cb

(
RN ,RN

)
with the properties that, for each δ > 0, supn∈Z+

∥∥fn,δ∥∥u
<∞,

sup
n∈Z+

EP
[∣∣Xn − fn,δ ◦Xn

∣∣2] < δ,

and, for every n ∈ Z+, the random variable Xn,δ ≡ fn,δ ◦Xn has mean-value 0
and covariance I. Next, for each δ > 0, define the maps ω ∈ Ω 7−→ Sn,δ( · , ω) ∈
C(RN ) relative to {Xn,δ : n ≥ 1}, and set µn,δ =

(
Sn,δ

)
∗P. Then, by the

preceding, we know that µn,δ =⇒ W (N) for each δ > 0. Hence, by Theorem

9.1.13, we will have proved that µn =⇒W (N) as soon as we show that

lim
δ↘0

sup
n∈Z+

P

(
sup

0≤t≤T

∣∣Sn(t)− Sn,δ(t)
∣∣ ≥ ε) = 0

for every T ∈ Z+ and ε > 0. To this end, first observe that, because Sn( · ) and
Sn,δ( · ) are linear on each interval [(m− 1)2−n,m2−n],

sup
t∈[0,T ]

∣∣Sn(t)− Sn,δ(t)
∣∣ = max

1≤m≤nT

1

n
1
2

∣∣∣∣∣
m∑
k=1

Yk,δ

∣∣∣∣∣ ,
where Yk,δ ≡ Xk −Xk,δ. Next, note that

P

(
max

1≤m≤nT

1

n
1
2

∣∣∣∣∣
m∑
k=1

Yk,δ

∣∣∣∣∣ ≥ ε
)

≤ N max
e∈SN−1

P

(
max

1≤m≤nT

∣∣∣∣∣
m∑
k=1

(
e,Yk,δ

)
RN

∣∣∣∣∣ ≥ n
1
2 ε

N
1
2

)
.

Finally, by Kolmogorov’s Inequality,

P

(
max

1≤m≤nT

∣∣∣∣∣
m∑
k=1

(
e,Yk,δ

)
RN

∣∣∣∣∣ ≥ n
1
2 ε

N
1
2

)
≤ NTδ

ε2

for every e ∈ SN−1.

§9.3.2. Rayleigh’s Random Flights Model. Here is a more picturesque
scheme for approximating Brownian motion. Imagine the path t  R(t) of a
bird which starts at the origin, flies in a randomly chosen direction at unit speed
for a unit exponential random time, then switches to a new randomly chosen
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direction for a second unit exponential time, etc. Next, given ε > 0, rescale time
and space so that the path becomes t  Rε(t), where Rε(t) ≡ ε

1
2 R(ε−1t). I

will show that, as ε↘ 0, the distribution of {Rε(t) : t ≥ 0} becomes Brownian
motion. This model was introduced by Rayleigh and is called his random flights
model.

In the following, {τm : m ≥ 1} is a sequence of independent, unit exponential
random variables from which their partial sums {Tn : n ≥ 0} and the associated
simple Poisson process {N(t) : t ≥ 0} are defined as in § 4.2.1. Finally, given
ε > 0, Nε(t) = N(ε−1t).

Lemma 9.3.3. Let {Xn : n ≥ 1} a sequence of mutually independent RN -
valued, uniformly square P-integrable random variables with mean-value 0 and
covariance I, and define {Sn(t) : t ≥ 0} accordingly, as in Theorem 9.3.1. (Note
that the Xn’s are not assumed to be independent of the τn’s.) Next, define

Xε(t, ω) =
√
ε

Nε(t,ω)∑
m=1

Xm, (t, ω) ∈ [0,∞)× Ω,

Then, for all r ∈ (0,∞) and T ∈ [0,∞),

lim
ε↘0

P

(
sup
t∈[0,T ]

∣∣Xε(t)− Snε(t)
∣∣ ≥ r) = 0 where nε ≡ [ε−1].

Proof: Note that

Xε(t, ω)− Snε(t, ω) = (
√
εnε − 1) Snε

(
Nε(t, ω)

nε
, ω

)
+

(
Snε

(
Nε(t, ω)

nε
, ω

)
− Snε(t, ω)

)
.

Hence, for every δ ∈ (0, 1],

P

(
sup
t∈[0,T ]

∣∣Xε(t)− Snε(t)
∣∣ ≥ r)

≤ P

(
sup

t∈[0,T+δ]

∣∣Snε(t)∣∣ ≥ r

2ε

)
+ P

(
sup
t∈[0,T ]

∣∣∣∣Nε(t)nε
− t
∣∣∣∣ ≥ δ

)

+ P

(
sup

s∈[0,T ]

sup
|t−s|≤δ

∣∣Snε(t)− Snε(s)
∣∣ ≥ r

2

)
.

But, by Theorem 9.3.1 and the converse statement in Theorem 9.1.9, we know
that the first term tends to 0 as ε↘ 0 uniformly in δ ∈ (0, 1] and that the third
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term tends to 0 as δ ↘ 0 uniformly in ε ∈ (0, 1]. Thus, all that remains is to
note that, by Exercise 4.2.19,

(9.3.4) lim
ε↘0

P

(
sup
t∈[0,T ]

∣∣εNε(t)− t∣∣ ≥ δ) = 0. �

Now suppose that {θn : n ≥ 1} is a sequence of mutually independent RN -
valued random variables which satisfy the conditions that

M ≡ sup
n∈Z+

EP
[
|τnθn|4

]
<∞,

EP[τnθn] = 0, and EP
[
(τnθn)⊗ (τnθn)

]
= I, n ∈ Z+.

Finally, define ω ∈ Ω 7−→ R( · , ω) ∈ C(RN ) by

R(t, ω) =
(
t− TN(t,ω)(ω)

)
θN(t,ω)+1(ω) +

N(t,ω)∑
m=1

τm(ω)θm(ω).

The process {R(t) : t ≥ 0} is our interpretation of Rayleigh’s random flight
model. A typical choice of the θn’s would be to make them independent of the
holding times (i.e., the τn’s) and to choose them to be uniformly distributed over

the sphere SN−1
(√

N
)

.

Theorem 9.3.5. Referring to the preceding, set

Rε(t, ω) =
√
εR

(
t
ε , ω
)
, (t, ω) ∈ [0,∞)× Ω.

Then
(
Rε

)
∗P =⇒W (N) as ε↘ 0.

Proof: Set Xn = τnθn, and, using the same notation as in Lemma 9.3.3,
observe that ∣∣Rε(t)−Xε(t)

∣∣ ≤ √ε ∣∣XNε(t)+1

∣∣.
Hence, by Lemma 9.3.3 and Theorems 9.3.1 and 9.1.13, all that we have to do
is check that

lim
ε↘0

P

(
sup
t∈[0,T ]

∣∣√εXNε(t)+1

∣∣ ≥ r) = 0

for every r ∈ (0,∞) and T ∈ [0,∞). To this end, set Tε = 1+T
ε . Then, by

(9.3.4), we have that

lim
ε↘0

P

(
sup
t∈[0,T ]

∣∣√εXNε(t)+1

∣∣ ≥ r) = lim
ε↘0

P
(

max
0≤n≤Tε

|Xn+1| ≥
r√
ε

)

≤ lim
ε↘0

√
ε

r
EP


 ∑

0≤n≤Tε

|Xn+1|4
 1

4

 ≤ lim
ε↘0

(
Mε(2 + T )

) 1
4

r
= 0. �
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Exercise for § 9.3

Exercise 9.3.6. Let {µn : n ≥ 1} ⊆ M1

(
C(RN )

)
, and, for each T ∈ (0,∞),

let µTn ∈M1

(
C
(
[0, T ];E)

)
denote the distribution of

ψ ∈ C(RN ) 7−→ ψ � [0, T ] ∈ C
(
[0, T ];RN

)
under µn.

Show that there is a µ ∈ M1

(
C(RN )

)
to which {µn : n ≥ 1} converges in

M1

(
C(RN )

)
if and only if, for each T ∈ (0,∞), there is a µT ∈M1

(
C([0, T ];RN )

)
with the property that

µTn =⇒ µT in M1

(
C([0, T ];RN )

)
;

in which case, µT is the distribution of

ψ ∈ C(RN ) 7−→ ψ � [0, T ] ∈ C([0, T ];RN ) under µ.

In particular, weak convergence of measures on C(RN ) is really a local property.

Exercise 9.3.7. Erdös–Kac Theorem Donsker’s own proof of Theorem 9.3.1
was entirely different from the one given here. Instead it was based on a special
case of his result, a case which had been proved already (with a very difficulty
argument) by P. Erdös and M. Kac. The result of Erdös and Kac was that if
{Xn : n ≥ 1} is a sequence of independent, uniformly square integrable random
variables with mean value 0 and variance 1, then, for all a ≥ 0,

lim
n→∞

P

(
max

1≤m≤n
n−

1
2

m∑
k=1

Xk ≥ a

)
=

√
2

π

∫ ∞
a

e−
x2

2 dx.

Prove their result as an application of Donsker’s Theorem and part (iii) of Ex-
ercise 4.3.11. According to Kac, it was G. Uhlenbeck who first suggested that
their result might be a consequence of a more general “invariance” principle.

Exercise 9.3.8. Here is another version of Rayleigh’s random flight model.
Again let {τk : k ≥ 1},

{
Tm : m ≥ 0

}
, and

{
N(t) : t ≥ 0

}
be as in § 4.2.2; and

set

R(t) =

∫ t

0

(−1)N(s) ds and Rε(t) =
√
εR
(
t
ε

)
.

Show that
(
Rε
)
∗P =⇒W(1) as ε↘ 0.

Hint: Set βk = 0 or 1 according to whether k ∈ N is even or odd, and note that

n∑
k=1

(−1)kτk =

n∑
k=1

βk
(
τk+1 − τk

)
− βnτn =

∑
1≤k≤n2

(
τ2k − τ2k−1

)
− βnτn+1;

and now proceed as in the derivations of Lemma 9.3.3 and Theorem 9.3.5.


