
Chapter VI
Some Extensions and Applications

of Martingale Theory

Many of the results obtained in § 5.2 admit easy extensions to both infinite
measures and Banach space valued random variables. Furthermore, in many ap-
plications, these extensions play a useful, and occasionally essential, role. In the
first section of this chapter, I will develop some of these extensions, and in the
second section I will show how these extensions can be used to derive Birkhoff’s
Individual Ergodic Theorem. The final section is devoted Burkholder’s Inequal-
ity for martingales, an estimate which is second in importance only to Doob’s
Inequality.

§ 6.1 Some Extensions

Throughout the discussion which follows, (Ω,F , µ) will be a measure space and{
Fn : n ∈ N

}
will be a non-decreasing sequence of sub-σ-algebras with the

property that µ � F0 is σ-finite. In particular, this means that the conditional
expectation of a locally µ-integrable random variable given Fn is well-defined (cf.
Theorem 5.1.12) even if the random variable takes values in a separable Banach
space E. Thus, I will say that the sequence

{
Xn; n ∈ N

}
of E-valued random

variables is a µ-martingale with respect to
{
Fn : n ∈ N

}
, or, more briefly,

that the triple
(
Xn,Fn, µ

)
is a martingale, if {Xn : n ∈ N} is

{
Fn : n ∈ N

}
-

progressively measurable, each Xn is locally µ-integrable, and

Xn−1 = Eµ
[
Xn

∣∣Fn−1

]
(a.e., µ) for each n ∈ Z+.

Furthermore, when E = R, I will say that {Xn : n ∈ N} is a µ-submartingale
with respect to

{
Fn : n ∈ N

}
(equivalently, the triple (Xn,Fn, µ) is a sub-

martingale) if {Xn : n ∈ N} is
{
Fn : n ∈ N

}
-progressively measurable, each

Xn is locally µ-integrable, and

Xn−1 ≤ Eµ
[
Xn

∣∣Fn−1

]
(a.e., µ) for each n ∈ Z+.

§ 6.1.1. Martingale Theory for a σ-Finite Measure Space. Without any
real effort, I can now prove the following variants of each of the basic results in
§ 5.2.
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224 VI Some Extensions and Applications

Theorem 6.1.1. Let
(
Xn,Fn, µ

)
be an R-valued µ-submartingale. Then, for

each N ∈ N and A ∈ F0 on which XN is µ-integrable:

(6.1.2) µ

({
max

0≤n≤N
Xn ≥ α

}
∩A

)
≤ 1

α
Eµ
[
XN ,

{
max

0≤n≤N
Xn ≥ α

}
∩A

]
for all α ∈ (0,∞); and so, when all the Xn’s are non-negative, for every p ∈
(1,∞) and A ∈ F0:

Eµ
[

sup
n∈N
|Xn|p, A

] 1
p

≤ p

p− 1
sup
n∈N

Eµ
[
|Xn|p, A

] 1
p .

Furthermore, for each stopping time ζ,
(
Xn∧ζ ,Fn, µ

)
is a submartingale or a

martingale depending on whether
(
Xn,Fn, µ

)
is a submartingale or a martingale.

In addition, for any pair of bounded stopping times ζ ≤ ζ ′,

Xζ ≤ Eµ
[
Xζ′
∣∣Fζ] (a.e.,µ),

and the inequality is an equality in the martingale case. Finally, given a < b
and A ∈ F0,

Eµ
[
U[a,b], A

]
≤ sup
n∈N

Eµ
[
(Xn − a)+, A

]
b− a

,

where U[a,b](ω) denotes the precise number of times that {Xn(ω) : n ≥ 1}
upcrosses [a, b] (cf. the discussion preceding Theorem 5.2.15), and therefore

sup
n∈N

Eµ
[
X+
n , A

]
<∞ for every A ∈ F0 with µ(A) <∞

=⇒ Xn −→ X (a.e.,µ),

where X is
∨∞

0 Fn-measurable and locally µ-integrable. In fact, in the case of
martingales, there is a

∨∞
0 Fn-measurable, locally µ-integrable X such that

Xn = Eµ
[
X
∣∣Fn] (a.e., µ) for all n ∈ N

if and only if {Xn : n ≥ 0} is uniformly µ-integrable on each A ∈ F0 with
µ(A) <∞, in which case X is µ-integrable if and only if Xn −→ X in L1(µ;R).
On the other hand, when p ∈ (1,∞), X ∈ Lp(µ;R) if and only if {Xn : n ≥ 0}
is bounded in Lp(µ;R), in which case, Xn −→ X in Lp(µ;R).

Proof: Obviously, there is no problem unless µ(Ω) =∞. However, even then,
each of these results follows immediately from its counterpart in § 5.2 once one
makes the following trivial observation. Namely, given Ω′ ∈ F0 with µ(Ω′) ∈
(0,∞), set

F ′ = F [Ω′], F ′n = Fn[Ω′], X ′n = Xn � Ω′, and P =
µ � F ′

µ(Ω′)
.
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Then
(
X ′n,F ′n,P′

)
is a submartingale or martingale depending on whether the

original
(
Xn,Fn, µ

)
was a submartingale or martingale. Hence, when µ(Ω) =∞,

simply choose a sequence {Ωk : k ≥ 1} of mutually disjoint, µ-finite elements of
F0 so that Ω =

⋃∞
1 Ωk, work on each Ωk separately, and, at the end, sum the

results. �

I will now spend a little time seeing how Theorem 6.1.1 can be applied to give
a simple proof of the Hardy–Littlewood maximal inequality. To state their
result, define the maximal function Mf for f ∈ L1(RN ;R) by

Mf(x) = sup
Q3x

1

|Q|

∫
Q

|f(y)| dy, x ∈ RN ,

where Q is used to denote a generic cube

(6.1.3) Q =

N∏
j=1

[aj , aj + r) with a ∈ RN and r > 0.

As is easily checked, Mf : RN −→ [0,∞] is lower semicontinuous and therefore
certainly Borel measurable. Furthermore, if we restrict our attention to nicely
meshed families of cubes, then it is easy to relate Mf to martingales. More
precisely, for each n ∈ Z, the nth standard dyadic partition of RN is the
partition Pn of RN into the cubes

(6.1.4) Cn(k) ≡
N∏
i=1

[
ki
2n
,
ki + 1

2n

)
, k ∈ ZN .

These partitions are nicely meshed in the sense that the (n+1)st is a refinement
of the nth. Equivalently, if Fn denotes the σ-algebra over RN generated by the
partition Pn, then Fn ⊆ Fn+1. Moreover, if f ∈ L1(RN ;R) and

Xf
n(x) ≡ 2nN

∫
Cn(k)

∣∣f(y)
∣∣ dy for x ∈ Cn(k) and k ∈ ZN ,

then, for each n ∈ Z,

Xf
n = EλRN

[
|f |
∣∣Fn] (a.e., λRN),

where λRN denotes Lebesgue measure on RN . In particular, for each m ∈ Z,(
Xf
m+n,Fm+n, λRN

)
, n ∈ N,

is a non-negative martingale; and so, by applying (6.1.2) for each m ∈ Z and
then letting m↘ −∞, we see that

(6.1.5)
∣∣∣{x : M(0)f(x) ≥ α

}∣∣∣ ≤ 1

α

∫
{M(0)f≥α}

|f(y)| dy, α ∈ (0,∞),
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where

M(0)f(x) = sup

{
1

|Q|

∫
Q

|f(y)| dy : x ∈ Q ∈
⋃
n∈Z
Pn

}
and I have used |Γ| to denote λRN (Γ), the Lebesgue measure of Γ.

At first sight, one might hope that it should be possible to pass directly from
(6.1.5) to analogous estimates on the level sets of Mf . However, the passage
from (6.1.5) to control on Mf is not so easy as it might appear at first: the
“sup” in the definition of Mf involves many more cubes than the one in the
definition of M(0)f . For this reason I will have to introduce additional families
of meshed partitions. Namely, for each η ∈ {0, 1}N , set

Pn(η) =

{
(−1)nη

3× 2n
+ Cn(k) : k ∈ ZN

}
,

where Cn(k) is the cube described in (6.1.4). It is then an easy matter to check
that, for each η ∈ {0, 1}N ,

{
Pn(η) : n ∈ Z

}
is a family of meshed partitions of

RN . Furthermore, if

[
M(η)f

]
(x) = sup

{
1

|Q|

∫
Q

∣∣f(y)
∣∣ dy : x ∈ Q ∈

⋃
n∈Z
Pn(η)

}
, x ∈ RN ,

then exactly the same argument which (when η = 0) led us to (6.1.5) can now
be used to get

(*)
∣∣∣{x ∈ RN : M(η)f(x) ≥ α

}∣∣∣ ≤ 1

α

∫
{M(η)f≥α}

∣∣f(y)
∣∣ dy,

for each η ∈ {0, 1}N and α ∈ (0,∞). Finally, if Q is given by (6.1.3) and
r ≤ 1

3 2n , then it is possible to find an η ∈ {0, 1}N and a C ∈ Pn(η) for which
Q ⊆ C. (To see this, first reduce to the case when N = 1.) Hence,

max
η∈{0,1}N

M(η)f ≤Mf ≤ 6N max
η∈{0,1}N

M(η)f.

After combining this with the estimate in (*), we arrive at the following version
of the Hardy–Littlewood inequality

(6.1.6)
∣∣∣{x ∈ RN : Mf(x) ≥ α

}∣∣∣ ≤ (12)N

α

∫
RN
|f(y)| dy.

At the same time, (*) implies that

max
η∈{0,1}N

∥∥M(η)f
∥∥
Lp(RN ;R)

≤ p

p− 1
‖f‖Lp(RN ;R), p ∈ (1,∞].
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To check this, first note that it suffices to do so when f vanishes outside of
the ball B(0, R) for some R > 0. Second, assuming that f = 0 off of B(0, R),
observe that (*) implies that∣∣∣{x ∈ B(0, R) : M(η)f(x) ≥ α

}∣∣∣ ≤ 1

α

∫
{M(η)∩B(0,R)f≥α}

∣∣f(y)
∣∣ dy.

Next, even the result in Exercise 1.4.18 was stated for probability measures, it
applies equally well to any finite measure. Thus, we now know that

‖Mf‖Lp(RN ;R) = lim
R→∞

(∫
B(0,R)

Mfp(x) dx

) 1
p

≤ p

p− 1
‖f‖Lp(RN ;R),

and so we can repeat the argument just made to obtain

(6.1.7)
∥∥Mf

∥∥
Lp(RN ;R)

≤ (12)Np

p− 1
‖f‖Lp(RN ;R), p ∈ (1,∞].

In this connection, notice that there is no hope of getting this sort of estimate
when p = 1, since it is clear that

lim
|x|→∞

|x|N Mf(x) > 0

whenever f does not vanish λRN -almost everywhere.
The inequality in (6.1.6) plays the same role in classical analysis as Doob’s

inequality plays in martingale theory. For example, by essentially the same
argument as I used to pass from Doob’s Inequality to Corollary 5.2.4, we obtain
the following famous Lebesgue Differentiation Theorem.

Theorem 6.1.8. For each f ∈ L1
(
RN ;R),

(6.1.9)
lim

B↘{x}

1

|B|

∫
B

∣∣f(y)− f(x)
∣∣ dy = 0

for λRN -almost every x ∈ RN ,

where, for each x ∈ RN , the limit is taken over balls B which contain x and
tend to x in the sense that their radii shrink to 0. In particular,

f(x) = lim
B↘{x}

1

|B|

∫
B

f(y) dy for λRN -almost every x ∈ RN .

Proof: I begin with the observation that, for each f ∈ L1(RN ;R),

M̃f(x) ≡ sup
B3x

1

|B|

∫
B

∣∣f(y)
∣∣ dy ≤ κNMf(x), x ∈ RN



228 VI Some Extensions and Applications

where κn = 2N

ΩN
with ΩN =

∣∣B(0, 1)
∣∣. Second, notice that (6.1.9) for every

x ∈ RN is trivial when f ∈ Cc(RN ;R). Hence, all that remains is to check that
if fn −→ f in L1(RN ;R) and if (6.1.9) holds for each fn, then it holds for f . To
this end, let ε > 0 be given and check that, because of the preceding and (6.1.6),∣∣∣∣{x : lim

B↘{x}

1

|B|

∫
B

∣∣f(y)− f(x)
∣∣ dy ≥ ε}∣∣∣∣

≤
∣∣∣{x : M̃(f − fn)(x) ≥ ε

3

}∣∣∣
+

∣∣∣∣{x : lim
B↘{x}

1

|B|

∫
B

∣∣fn(y)− fn(x)
∣∣ dy ≥ ε

3

}∣∣∣∣
+
∣∣∣{x :

∣∣fn(x)− f(x)
∣∣ ≥ ε

3

}∣∣∣
≤ 3

ε

(
1 + (12)NκN

)
‖f − fn‖L1(RN )

for every n ∈ Z+. Hence, after letting n→∞, we see that (6.1.9) also holds for
f . �

Although applications like Lebesgue’s Differentiation Theorem might make
one think that (6.1.6) is most interesting because of what it says about averages
over small cubes, its implications for large cubes are also significant. In fact, as I
will show in § 6.2, it allows one to prove Birkhoff’s Individual Ergodic Theorem
(cf. Theorem 6.2.8), which may be viewed as a result about differentiation at
infinity. The link between ergodic theory and the Hardy–Littlewood Inequality
is provided by the following deterministic version of the Maximal Ergodic Lemma
(cf. Lemma 6.2.2). Namely, let

{
ak : k ∈ ZN

}
be a summable subset of [0,∞),

and set

Sn(k) =
1

(2n)N

∑
j∈Qn

aj+k, n ∈ N and k ∈ ZN ,

where Qn =
{
j ∈ ZN : −n ≤ ji < n for 1 ≤ i ≤ N

}
. By applying (6.1.6) and

(6.1.7) to the function f given by (cf. (6.1.4)) f(x) = ak when x ∈ C0(k), we
see that

(6.1.10) card

{
k ∈ ZN : sup

n∈Z+

Sn(k) ≥ α
}
≤ (12)N

α

∑
k∈ZN

ak, α ∈ (0,∞)

and

(6.1.11)

( ∑
k∈ZN

sup
n∈Z+

|Sn(k)|p
) 1
p

≤ (12)Np

p− 1

( ∑
k∈ZN

|ak|p
) 1
p
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for each p ∈ (1,∞].
The inequality in (6.1.10) is called Hardy’s Inequality. Actually, Hardy

worked in one dimension and was drawn to this line of research by his passion
for the game of cricket. What Hardy wanted to find is the optimal order in
which to arrange batters to maximize the average score per inning. Thus, he
worked with a non-negative sequence {ak : k ≥ 0} in which ak represented the
expected number of runs scored by player k, and what he showed is that, for
each α ∈ (0,∞), ∣∣∣∣{k ∈ N : sup

n∈Z+

Sn(k) ≥ α
}∣∣∣∣

is maximized when {ak}∞0 is non-increasing; from which it is an easy application
of Markov’s inequality to prove that∣∣∣∣{k ∈ N : sup

n∈Z+

Sn(k) ≥ α
}∣∣∣∣ ≤ 1

α

∞∑
0

ak, α ∈ (0,∞).

Although this sharpened result can also be obtained as a corollary the Sunrise
Lemma,∗ Hardy’s approach remains the most appealing.

§ 6.1.2. Banach Space Valued Martingales. I turn next to Banach space
valued martingales. Actually, everything except the easiest aspects of this topic
becomes extremely complicated and technical very quickly, and, for this reason,
I will restrict my attention to those results which do not involve any deep prop-
erties of the geometry of Banach spaces. In fact, the only general theory with
which I will deal is contained in the following.

Theorem 6.1.12. Let E be a separable Banach space and
(
Xn,Fn, µ

)
an E-

valued martingale. Then
(
‖Xn‖E ,Fn, µ

)
is a non-negative submartingale and

therefore, for each N ∈ Z+ and all α ∈ (0,∞),

(6.1.13) µ

(
sup

0≤n≤N
‖Xn‖E ≥ α

)
≤ 1

α
Eµ
[
‖XN‖E , sup

0≤n≤N
‖Xn‖E ≥ α

]
.

In particular, for each p ∈ (1,∞],

(6.1.14)

∥∥∥∥sup
n∈N
‖Xn‖E

∥∥∥∥
Lp(µ;E)

≤ p

p− 1
sup
n∈N
‖Xn‖Lp(µ;E).

Finally, if Xn = Eµ[X | Fn] where X ∈ Lp(µ;E) for some p ∈ [1,∞), then

Xn −→ Eµ
[
X

∣∣∣∣ ∞∨
0

Fn

]
both (a.e.,µ) and in Lp(µ;E).

∗ See Lemma 3.4.5 in my A Concise Introduction to the Theory of Integration, 3rd edition,
published by Birkhauser in 1998.
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Proof: The fact
(
‖Xn‖E ,Fn, µ

)
is a submartingale is an easy application of

the inequality in (5.1.14); and, given this fact, the inequalities in (6.1.13) and
(6.1.14) follow from the corresponding inequalities in Theorem 6.1.1.

While proving the convergence statement, I may and will assume that F =∨∞
0 Fn. Now let X ∈ Lp(µ;E) be given, and set Xn = Eµ[X|Fn], n ∈ N.

Because of (6.1.13) and (6.1.14), we know (cf. the proofs of Corollary 5.2.4 and
Theorem 6.1.8) that the set of X for which Xn −→ X (a.e.,µ) is a closed
subset of Lp(µ;E). Moreover, if X is µ-simple, then the µ-almost everywhere
convergence of Xn to X follows easily from the R-valued result. Hence, we
now know that Xn −→ X (a.s,µ) for each X ∈ L1(µ;E). In addition, because
of (6.1.14), when p ∈ (1,∞), the convergence in Lp(µ;E) follows by Lebesgue’s
Dominated Convergence Theorem. Finally, to prove the convergence in L1(µ;E)
when X ∈ L1(µ;E), note that, by Fatou’s Lemma,

‖X‖L1(µ;E) ≤ lim
n→∞

‖Xn‖L1(µ;E);

whereas (5.1.14) guarantees that

‖X‖L1(µ;E) ≥ lim
n→∞

‖Xn‖L1(µ;E).

Hence, because ∣∣∣ ‖Xn‖E − ‖X‖E − ‖Xn −X‖E
∣∣∣ ≤ 2‖X‖E ,

the convergence in L1(µ;E) is again an application of Lebesgue’s Dominated
Convergence Theorem. �

Going beyond the convergence result in Theorem 6.1.12 to get an analog of
Doob’s Martingale Convergence Theorem is hard. For one thing, a näıve analog
is not even true for general separable Banach spaces, and a rather deep analysis
of the geometry of Banach spaces is required in order to determine exactly when
it is true. (See Exercise 6.1.18 for a case in which it is.)

Exercises for § 6.1

Exercise 6.1.15. In this exercise we will develop Jensen’s inequality in the
Banach space setting. Thus, (Ω,F ,P) will be a probability space, C will be a
closed, convex subset of the separable Banach space E, and X will be a C-valued
element of L1(P;E).

(i) Show that there exists a sequence {Xn : n ≥ 1} of C-valued, simple functions
which tend to X both P-almost surely and in L1(P;E).

(ii) Show that EP[X] ∈ C and that

EP[g(X)
]
≤ g
(
EP[X]

)
for every continuous, concave g : C −→ [0,∞).
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(iii) Given a sub-σ-algebra Σ of F , follow the argument in Corollary 5.2.8 to
show that there exists a sequence {Pn}∞0 of finite, Σ-measurable partitions with
the property that

∑
A∈Pn

EP[X, A]

P(A)
1A −→ EP[X|Σ] both P-almost surely and in L1(P;E).

In particular, conclude that there is a representative XΣ of EP[X|Σ] which is
C-valued and that

EP[g(X)
∣∣Σ] ≤ g(XΣ

)
(a.s.,P)

for each continuous, convex g : C −→ [0,∞).

Exercise 6.1.16. Again let (Ω,F ,P) be a probability space and E a separable
Banach space. Further, suppose that {Fn : n ≥ 0} is a non-increasing sequence
of sub-σ-algebras of F , and set F∞ =

⋂∞
0 Fn. Finally, let X ∈ L1(P;E).

(i) Show that

EP[X∣∣Fn] −→ EP[X|F∞] both P-almost surely and in Lp(P;E)

for any p ∈ [1,∞) with X ∈ Lp(P;E).

Hint: Use (6.1.13) and the approximation result in Theorem 5.1.10 to reduce to
the case when X is simple. When X is simple, get the result as an application of
the convergence theorem for R-valued, reversed martingales in Theorem 5.2.21.

(ii) Using part (i) and following the line of reasoning suggested at the end of
§ 5.2.4, give a proof of The Strong Law of Large Numbers for Banach space-valued
random variables.∗ (See Exercises 6.2.19 and 9.1.18 for an entirely different
approaches.)

Exercise 6.1.17. As we saw in the proof of Theorem 6.1.8, the Hardy–
Littlewood maximal function can be used to dominate other quantities of in-
terest. As further indication of its importance, I will use it in this exercise to
prove the analogue of Theorem 6.1.8 for a large class of approximate identities.
That is, let ψ ∈ L1(RN ;R) with

∫
RN ψ(x) dx = 1 be given, and set

ψt(x) = t−Nψ
(

x
t

)
, t ∈ (0,∞) and x ∈ RN .

Then {ψt : t > 0} forms an approximate identity in the sense that, as
tempered distributions, ψt −→ δ0 as t↘ 0. In fact, because

‖ψt ? f‖Lp(RN ;R) ≤ ‖ψ‖L1(RN ;R) ‖f‖Lp(RN ;R), t ∈ (0,∞) and p ∈ [1,∞],

∗ This proof, which seems to have been the first, of the Strong Law for Banach space was given
by E. Mourier in “Eléments aléatoires dans un espace de Banach,” Ann. Inst. Poincaré.
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and

ψt ? f(x) =

∫
RN

ψ(y) f(x− ty) dy,

it is easy to see that, for each p ∈ [1,∞),

lim
t↘0

∥∥ψt ? f − f∥∥Lp(RN ;R)
= 0

first for f ∈ Cc(RN ;R) and then for all f ∈ Lp(RN ;R).
The purpose of this exercise is to sharpen the preceding under the assumption

that

ψ(x) = α
(
|x|
)
, x ∈ RN \ {0} for some α ∈ C1

(
(0,∞);R

)
with

A ≡
∫

(0,∞)

rN |α′(r)| dr <∞.

Notice that when α is non-negative and non-increasing, integration by parts
shows that A = N .

(i) Let f ∈ Cc(RN ;R) be given, and set

f̃(r,x) =
1

|B(x, r)|

∫
B(x,r)

f(y) dy for r ∈ (0,∞) and x ∈ RN .

Using integration by parts and the given hypotheses, show that

ψt ? f(x) = − 1
N

∫
(0,∞)

rNα′(r) f̃(tr,x) dr,

and conclude that ∣∣ψt ? f(x)
∣∣ ≤ A

N M̃f(x),

where M̃f is the quantity introduced at the beginning of the proof of Theorem
6.1.8. In particular, conclude that there is a constant KN ∈ (0,∞), depending
only on N ∈ Z+, such that

Mψf(x) ≡ sup
t∈(0,∞)

∣∣ψt ? f(x)
∣∣ ≤ KNAMf(x), x ∈ RN .

(ii) Starting from the conclusion in (i), show that

∣∣{x : Mψf(x) ≥ R}
∣∣ ≤ (12)NKNA‖f‖L1(RN )

R
, f ∈ L1(RN ;R),
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and that for p ∈ (1,∞],∥∥Mψf
∥∥
Lp(RN ;R)

≤ (12)NKNAp

p− 1
‖f‖Lp(RN ;R), f ∈ Lp(RN ;R).

Finally, proceeding as in the proof of Theorem 6.1.8, use the first of these to
prove that, for f ∈ L1(RN ;R) and Lebesgue almost every x ∈ RN :

lim
t↘0

∣∣ψt ? f(x)− f(x)
∣∣

≤ lim
t↘0

∫
RN

∣∣ψt(y)
(
f(x− y)− f(x)

)∣∣ dy = 0.

Two of the most familiar examples to which the preceding applies are the

Gauss kernel gt(x) = (2πt)−
N
2 exp

(
− |x|

2

2

)
and the Poisson kernel (cf. (3.2.45))

ΠRN
t . In both these cases, A = N .

Exercise 6.1.18. Let E be a separable Hilbert space and (Xn,F ,P) an E-
valued martingale on some probability space (Ω,F ,P) satisfying the condition

sup
n∈Z+

EP[‖Xn‖2E
]
<∞.

Proceeding as in (i) of Exercise 5.2.28, first prove that there is a
∨∞

1 Fn-measur-
able X ∈ L2(P;E) to which {Xn : n ≥ 1} converges in L2(P;E), next check
that

Xn = EP[X∣∣Fn] (a.s.,P) for each n ∈ Z+,

and finally apply the last part of Theorem 6.1.12 to see that Xn −→ X P-almost
surely.

§ 6.2 Elements of Ergodic Theory

Among the two or three most important general results about dynamical systems
is D. Birkhoff’s Individual Ergodic Theorem. In this section, I will present a
generalization, due to Wiener, of Birkhoff’s basic theorem.

The setting in which I will prove the Ergodic Theorem will be the following.
(Ω,F , µ) will be a σ-finite measure space on which there exits a semigroup{
Σk : k ∈ NN

}
of measurable, µ-measure preserving transformations.

That is, for each k ∈ NN , Σk is an F-measurable map from Ω into itself, Σ0 is
the identity map, Σk+` = Σk ◦Σ` for all k, ` ∈ NN , and

µ(Γ) = µ
(
(Σk)−1(Γ)

)
for all k ∈ N and Γ ∈ F .

Further, E will be a separable Banach space with norm ‖ · ‖E ; and, given a
function F : Ω −→ E, I will be considering the averages

(6.2.1)6.1.1 AnF (ω) ≡ 1

nN

∑
k∈Q+

n

F ◦Σk(ω), n ∈ Z+,



234 VI Some Extensions and Applications

where Q+
n is the cube

{
k ∈ NN : ‖k‖∞ < n

}
and ‖k‖∞ ≡ max1≤j≤N kj .

My goal (cf. Theorem 6.2.8 below) is to show that for each p ∈ [1,∞) and
F ∈ Lp(µ;E), {AnF : n ≥ 1} converges µ-almost everywhere. In fact, when
either µ is finite or p ∈ (1,∞), I will show that the convergence is also in
Lp(µ;E).

§ 6.2.1. The Maximal Ergodic Lemma. Because he was thinking in terms
of dynamical systems and therefore did not take full advantage of measure the-
ory, Birkhoff’s own proof of his theorem is rather cumbersome. Later, F. Riesz
discovered a proof which has become the model for all later proofs. Specifically,
he introduced what is now called the Maximal Ergodic Inequality, which is an
inequality that plays the same role here that Doob’s Inequality played in the
derivation of Corollary 5.2.4. In order to cover Wiener’s extension of Birkhoff’s
theorem, I will derive a multi-parameter version of the Maximal Ergodic In-
equality, which, as the proof shows, is really just a clever application of Hardy’s
Inequality.∗

Lemma 6.2.2 (Maximal Ergodic Lemma). For each n ∈ Z+ and p ∈ [1,∞],
An is a contraction on Lp(µ;E). Moreover, for each F ∈ Lp(µ;E):

(6.2.3) µ

(
sup
n≥1
‖AnF‖E ≥ λ

)
≤ (24)N

λ
‖F‖L1(µ;E), λ ∈ (0,∞),

or

(6.2.4)

∥∥∥∥sup
n≥1
‖AnF‖E

∥∥∥∥
Lp(µ)

≤ (24)Np

p− 1
‖F‖Lp(µ;E),

depending on whether p = 1 or p ∈ (1,∞).

Proof: First observe that, because ‖AnF‖E ≤ An‖F‖E , it suffices to prove
all of these assertions in the case when E = R and F is non-negative. Thus, I
will restrict myself to this case. Since F ◦ Σk has the same distribution as F
itself, the first assertion is trivial. To prove (6.2.3) and (6.2.4), let n ∈ Z+ be
given, apply (6.1.10) and (6.1.11) to

ak(ω) ≡
{
F ◦Σk(ω) if k ∈ Q+

2n

0 if k /∈ Q+
2n,

and conclude that

Cn(ω) ≡
∣∣∣∣{k ∈ Q+

n : max
1≤m≤n

Am

(
F ◦Σk

)
(ω) ≥ λ

}∣∣∣∣ ≤ (12)N

λ

∑
k∈Q+

2n

F ◦Σk(ω)

∗ The idea of using Hardy’s Inequality was suggested to P. Hartman by J. von Neumann and

appears for the first time in Hartman’s “On the ergodic theorem,” Am. J. Math. 69: 193–199
(1947).
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and

∑
k∈Q+

n

max
1≤m≤n

(
Am

(
F ◦Σk

)
(ω)
)p
≤
(

(12)Np

p− 1

)p ∑
k∈Q+

2n

(
F ◦Σk(ω)

)p
.

Hence, by Tonelli’s Theorem,

∑
k∈Q+

n

µ

(
max

1≤m≤n
Am

(
F ◦Σk

)
≥ λ

)
=

∫
Cn(ω)µ(dω)

≤ (12)N

λ

∑
k∈Q+

2n

∫
F ◦Σkf dµ

and, similarly,

∑
k∈Q+

n

∫
max

1≤m≤n

(
Am

(
F ◦Σk

))p
dµ ≤

(
(12)Np

p− 1

)p ∑
k∈Q+

2n

∫ (
F ◦Σk

)p
dµ.

Finally, since the distributions of max1≤m≤n Am

(
F ◦ Σk

)
and F ◦ Σk do not

depend on k ∈ NN , the preceding lead immediately to

µ

(
max

1≤m≤n
AmF ≥ λ

)
≤ (24)N

λ
‖F‖L1(µ)

and ∥∥∥∥ max
1≤m≤n

AmF

∥∥∥∥
Lp(µ)

≤ 2
N
p (12)Np

p− 1
‖F‖Lp(µ)

for all n ∈ Z+. Thus, (6.2.3) and (6.2.4) follow after one lets n→∞. �

Given (6.2.3) and (6.2.4), I adopt again the strategy used in the proof of
Corollary 5.2.4. That is, we must begin by finding a dense subset of each Lp-
space on which the desired convergence results can be checked by hand, and for
this purpose I will have to introduce the notion of invariance.

A set Γ ∈ F is said to be invariant, and I write Γ ∈ I, if Γ = (Σk)−1(Γ) for
every k ∈ NN . As is easily checked, I is a sub-σ-algebra of F . In addition, it
is clear that Γ ∈ F is invariant if Γ = (Σej )−1(Γ) for each 1 ≤ j ≤ N , where
{ei : 1 ≤ i ≤ N} is the standard orthonormal basis in RN . Finally, if I is the
µ-completion of I relative to F in the sense that Γ ∈ I if and only if Γ ∈ F and
there is Γ̃ ∈ I such that µ(Γ∆Γ̃) = 0 (A∆B ≡ (A\B)∪(B\A) is the symmetric
difference between the sets A and B), then an F-measurable F : Ω −→ E is
I-measurable if and only if F = F ◦Σk (a.e., µ) for each k ∈ NN . Indeed, one
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need only check this equivalence for indicator functions of sets. But if Γ ∈ F
and µ(Γ∆Γ̃) = 0 for some Γ̃ ∈ I, then

µ
(

Γ∆(Σk)−1(Γ)
)
≤ µ

(
(Σk)−1(Γ∆Γ̃)

)
+ µ(Γ∆Γ̃) = 0,

and so Γ ∈ I. Conversely, if Γ ∈ I, set

Γ̃ =
⋃

k∈NN
(Σk)−1(Γ),

and check that Γ̃ ∈ I and µ(Γ∆Γ̃) = 0.

Lemma 6.2.5. Let I(E) be the subspace of I-measurable elements of L2(µ;E).
Then, I(E) is a closed linear subspace of L2(µ;E). Moreover, if ΠI(R) denotes

orthogonal projection from L2(µ;R) onto I(R), then there exists a unique linear
contraction ΠI(E) : L2(µ;E) −→ I(E) with the property that ΠI(E)(af) =

aΠI(R)f for a ∈ E and f ∈ L2(µ;R). Finally, for each F ∈ L2(µ;E),

(6.2.6) AnF −→ ΠI(E)F (a.e., µ) and in L2(µ;E).

Proof: I begin with the case when E = R. The first step is to identify the
orthogonal complement I(R)⊥ of I(R). To this end, let N denote the subspace
of L2(µ;R) consisting of elements having the form g − g ◦ Σej for some g ∈
L2(µ;R) ∩ L∞(µ;R) and 1 ≤ j ≤ N . Given f ∈ I(R), observe that(

f, g − g ◦Σej
)
L2(µ;R)

=
(
f, g
)
L2(µ;R)

−
(
f ◦Σej , g ◦Σej

)
L2(µ;R)

= 0.

Hence, N ⊆ I(R)⊥. On the other hand, if f ∈ L2(µ;R) and f ⊥ N , then it is
clear that f ⊥ f − f ◦Σej for each 1 ≤ j ≤ N and therefore that∥∥f − f ◦Σej

∥∥2

L2(µ;R)

= ‖f‖2L2(µ;R) − 2
(
f, f ◦Σej

)
L2(µ;R)

+
∥∥f ◦Σej

∥∥2

L2(µ;R)

= 2
(
‖f‖2L2(µ;R) −

(
f, f ◦Σej

)
L2(µ;R)

)
= 2
(
f, f − f ◦Σej

)
L2(µ;R)

= 0.

Thus, for each 1 ≤ j ≤ N , f = f ◦Σej µ-almost everywhere; and, by induction
on ‖k‖∞, one concludes that f = f ◦Σk µ-almost everywhere for all k ∈ NN .
In other words, we have now shown that I(R) = N⊥, or, equivalently, that
N = I(R)⊥.

Continuing with E = R, next note that if f ∈ I(R) then Anf = f (a.e., µ)
for each n ∈ Z+. Hence, (6.2.6) is completely trivial in this case. On the other
hand, if g ∈ L2(µ;R) ∩ L∞(µ;R) and f = g − g ◦Σej , then

nNAnf =
∑

{k∈Q+
n :kj=0}

g ◦Σk −
∑

{k∈Q+
n :kj=n−1}

g ◦Σk+ej ,
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and so, with p ∈ {2,∞},∥∥Anf
∥∥
Lp(µ;R)

≤
2‖g‖Lp(µ;R)

n
−→ 0 as n→∞.

Hence, in this case also, (6.2.6) is easy. Finally, to complete the proof for E = R,
simply note that, by (6.2.4) with p = 2 and E = R, the set of f ∈ L2(µ;R) for
which (6.2.6) holds is a closed linear subspace of L2(µ;R) and that we have
already verified (6.2.6) for f ∈ I(R) and f from a dense subspace of I(R)⊥.

Turning to general E’s, first note ΠI(E)F is well-defined for µ-simple F ’s.

Indeed, if F =
∑`

1 ai1Γi for some {ai}`1 ⊆ E and {Γi}`1 of mutually disjoint
elements of F with finite µ-measure, then

ΠI(E)F =
∑̀

1

aiΠI(R)1Γi

and so

∥∥ΠI(E)F
∥∥2

L2(µ;E)
≤
∫ (∑̀

1

‖ai‖EΠI(R)1Γi

)2

dµ

=

∥∥∥∥∥ΠI(R)

(∑̀
1

‖ai‖E1Γi

)∥∥∥∥∥
2

L2(µ;R)

≤
∑̀

1

‖ai‖2Eµ(Γi) = ‖F‖2L2(µ;E).

Thus, since the space of µ-simple functions is dense in L2(µ;E), it is clear that
ΠI(E) not only exists but is also unique.

Finally, to check (6.2.6) for general E’s, note that (6.2.6) for E-valued, µ-
simple F ’s is an immediate consequence of (6.2.6) for E = R. Thus, we already
know (6.2.6) for a dense subspace of L2(µ;E); and so the rest is another elemen-
tary application of (6.2.4). �

§ 6.2.2. Birkhoff’s Ergodic Theorem. For general p ∈ [1,∞), let Ip(E)
denote the subspace of I-measurable elements of Lp(µ;E). Clearly Ip(E) is
closed for every p ∈ [1,∞). Moreover, since

(6.2.7) µ(Ω) <∞ =⇒ ΠI(E)F = Eµ
[
F
∣∣I],

whenever µ is finite ΠI(E) extends automatically as a linear contraction from
Lp(µ;E) onto Ip(E) for each p ∈ [1,∞), the extension being given by the right-
hand side of (6.2.7). However, when µ(E) = ∞, there is a problem. Namely,
because µ � I will seldom be σ-finite, it will not be possible to condition µ with
respect to I. Be that as it may, (6.2.6) provides an extension of ΠI(E). Namely,
from (6.2.6) and Fatou’s Lemma, it is clear that, for each p ∈ [1,∞),∥∥ΠI(E)F

∥∥
Lp(µ;E)

≤ ‖F‖Lp(µ;E), F ∈ Lp(µ;E) ∩ L2(µ;E);

and therefore the desired existence of the extension follows by continuity.
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Theorem 6.2.8 (The Individual Ergodic Theorem). For each p ∈ [1,∞)
and F ∈ Lp(µ;E):

(6.2.9) AnF −→ ΠI(E)F (a.e., µ).

Moreover, if either p ∈ (1,∞) or p = 1 and µ(Ω) <∞, then the convergence in
(6.2.9) is also in Lp(µ;E). Finally, if µ(Γ) ∧ µ(Γ{) = 0 for every Γ ∈ I, then
(6.2.9) can be replaced by

lim
n→∞

AnF =


Eµ[F ]

µ(Ω)
if µ(Ω) ∈ (0,∞)

0 if µ(Ω) =∞
(a.e., µ),

and the convergence is in Lp(µ;E) when either p ∈ (1,∞) or p = 1 and µ(Ω) <
∞.

Proof: As I said above, the proof is now an easy application of the strategy
used to prove Corollary 5.2.4. Namely, by (6.2.3), the set of F ∈ L1(µ;E) for
which (6.2.9) holds is closed and, by (6.2.6), it includes L1(µ;E) ∩ L∞(µ;E).
Hence, (6.2.9) is proved for p = 1. On the other hand, when p ∈ (1,∞),
(6.2.4) applies and shows first that the set of F ∈ Lp(µ;E) for which (6.2.9)
holds is closed in Lp(µ;E) and second that µ-almost everywhere convergence
already implies convergence in Lp(µ;E). Hence, we have proved that (6.2.9)
holds and that the convergence is in Lp(µ;E) when p ∈ (1,∞). In addition,
when µ(Γ) ∧ µ(Γ{) = 0 for all Γ ∈ I, it is clear that the only elements of Ip(E)
are µ-almost everywhere constant, which, in the case when µ(Ω) <∞ means (cf.

(6.2.7)) that ΠI(E)F = Eµ[F ]
µ(Ω) , and, when µ(Ω) = ∞, means that Ip(E) = {0}

for all p ∈ [1,∞).

In view of the preceding, all that remains is to discuss the L1(µ;E)-conver-
gence in the case when p = 1 and µ(Ω) < ∞. To this end, observe that,
because the An’s are all contractions in L1(µ;E), it suffices to prove L1(µ;E)-
convergence for E-valued, µ-simple F ’s. But L1(µ;E)-convergence for such F ’s
reduces to showing that Anf −→ ΠI(R)f in L1(µ;R) for non-negative f ∈
L∞(µ;R). Finally, if f ∈ L1

(
µ; [0,∞)

)
, then

∥∥Anf‖L1(µ) = ‖f‖L1(µ) =
∥∥ΠI(R)f‖L1(µ;R), n ∈ Z+,

where, in the last equality I used (6.2.7); and this, together with (6.2.9), implies
(cf. the final step in the proof of Theorem 6.1.12) convergence in L1(µ). �

I will say that semigroup
{
Σk : k ∈ NN

}
is ergodic on (Ω,F , µ) if, in addition

to being µ-measure preserving, µ(Γ) ∧ µ(Γ{) = 0 for every invariant Γ ∈ I.
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Classic Example. In order to get a feeling for what the Ergodic Theorem is
saying, take µ to be Lebesgue measure on the interval [0, 1) and, for a given
α ∈ (0, 1), define Σα : [0, 1) −→ [0, 1) so that

Σα(ω) ≡ ω + α− [ω + α] = ω + α mod 1.

If α is rational and m is the smallest element of Z+ with the property that
mα ∈ Z+, then it is clear that, for any F on [0, 1), F ◦Σα = F if and only if F
has period 1

m . Hence, if F ∈ L2
(
[0, 1);C

)
and

c`(F ) ≡
∫

[0,1)

F (ω)e−
√
−1 2π`ω dω, ` ∈ Z,

then elementary Fourier analysis leads to the conclusion that, in this case:

lim
n→∞

AnF (ω) =
∑
`∈Z

cm`(F )e
√
−1 2m`πω for Lebesgue-almost every ω ∈ [0, 1).

On the other hand, if α is irrational, then
{
Σk
α : k ∈ N} is µ-ergodic on [0, 1).

To see this, suppose that F ∈ I(C). Then (cf. the preceding and use Parseval’s
identity)

0 =
∥∥F − F ◦Σα

∥∥2

L2([0,1);C)
=
∑
`∈Z

∣∣c`(F )− c`(F ◦Σα)
∣∣2.

But, clearly,

c`(F ◦Σα) = e
√
−1 2π`αc`(F ), ` ∈ Z,

and so (because α is irrational) c`(F ) = 0 for each ` 6= 0. In other words, the only
elements of I(C) are µ-almost everywhere constant. Thus, for each irrational
α ∈ (0, 1), p ∈ [1,∞), separable Banach space E, and F ∈ Lp

(
[0, 1);E

)
:

lim
n→∞

AnF =

∫
[0,1)

F (ω) dω Lebesgue-almost everywhere and in Lp(µ;E).

Finally, notice that the situation changes radically when one moves from [0, 1)
to [0,∞) and again takes µ to be Lebesgue measure and α ∈ (0, 1) to be irra-
tional. If I extend the definition of Σα by taking Σα(ω) = [ω] + Σα(ω − [ω])
for ω ∈ [0,∞), then it is clear that invariant functions are those which are con-
stant on each interval [m,m+ 1) and that, Lebesgue almost surely, Anf(ω) −→∫ [ω]+1

[ω]
f(η) dη. On the other hand, if one defines Σα(ω) = ω + α, then every

invariant set which has nonzero measure will have infinite measure, and so, now,
every choice of α ∈ (0, 1) (not just irrational ones) will give rise to an ergodic
system. In particular, one will have, for each p ∈ [1,∞) and F ∈ Lp(µ;E),

lim
n→∞

AnF = 0 Lebesgue-almost everywhere;

and the convergence will be in Lp(µ;E) when p ∈ (1,∞).
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§ 6.2.3. Stationary Sequences. For applications to probability theory, it is
useful to reformulate these considerations in terms of stationary families of ran-
dom variables. Thus, let (Ω,F ,P) be a probability space and (E,B) a measurable
space (E need not be a Banach space). Given a family F = {Xk : k ∈ NN} of
E-valued random variables on (Ω,F ,P), I will say that F is P-stationary (or
simply stationary) if, for each ` ∈ NN , the family

F` ≡
{
Xk+` : k ∈ NN

}
has the same (joint) distribution under P as F itself. Clearly, one can test for
stationarity by checking that distribution of Fej is the same as that of F for
each 1 ≤ j ≤ N . In order to apply the considerations of § 6.2.1 to stationary
families, note that all questions about the properties of F can be phrased in

terms of the following canonical setting . Namely, set E = ENN and define µ

on
(
E,BNN

)
to be the image measure F∗P. In other words, for each Γ ∈ BNN ,

µ(Γ) = P
(
F ∈ Γ

)
. Next, for each ` ∈ NN , define Σ` : E −→ E to be the natural

shift transformation on E given by Σ`(x)k = xk+` for all k ∈ NN . Obviously,
stationarity of F is equivalent to the statement that {Σk : k ∈ NN} is µ-measure

preserving. Moreover, if I is the σ-algebra of shift invariant elements Γ ∈ BNN

(i.e., Γ =
(
Σk
)−1

(Γ) for all k ∈ NN ), then, by Theorem 6.2.8, for any separable
Banach space B, any p ∈ [1,∞), and any F ∈ Lp(P;B):

lim
n→∞

1

nN

∑
k∈Q+

n

F ◦ Fk = EP
[
F ◦ F

∣∣∣F−1(I)
]

(a.s.,P) and in Lp(P;B).

In particular, when
{
Σk : k ∈ NN

}
is ergodic on

(
E,BNNµ

)
, I will say that the

family F is ergodic and conclude that the preceding can be replaced by

(6.2.10) lim
n→∞

1

nN

∑
k∈Q+

n

F ◦ Fk = EP[F ◦ F] (a.s.,P) and in Lp(P;B).

So far I have discussed one-sided stationary families, that is families indexed
by NN . However, for various reasons (cf. Theorem 6.2.12 below) it is useful
to know that one can usually embed a one-sided stationary family into a two-
sided one. In terms of the semigroup of shifts, this corresponds to the trivial

observation that the semigroup
{
Σk : k ∈ NN

}
on E = ENN can be viewed as

a sub-semigroup of the group of shifts
{
Σk : k ∈ ZN

}
on Ê = EZN . With these

comments in mind, I will prove the following.

Lemma 6.2.11. Assume that E is a complete, separable, metric space and that
F = {Xk : k ∈ NN} is a stationary family of E-valued random variables on the

probability space (Ω,F ,P). Then there exists a probability space (Ω̂, F̂ , P̂) and

a family F̂ =
{
X̂k : k ∈ ZN

}
with the property that, for each ` ∈ ZN ,

F̂` ≡
{
X̂k+` : k ∈ NN

}
has the same distribution under P̂ as F has under P.
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Proof: When formulated correctly, this theorem is an essentially trivial ap-
plication of Kolmogorov’s Extension Theorem (cf. part (iii) of Exercise 9.1.17).
Namely, for n ∈ N, set

Λn =
{
k ∈ ZN : kj ≥ −n for 1 ≤ j ≤ N

}
and n = (n, . . . , n)

and define Φn : EΛ0 −→ EΛn so that

Φn(x)k = xn+k for x ∈ EΛ0 and k ∈ Λn.

Next, take µ0 on EΛ0 to be the P-distribution of F and, for n ≥ 1, µn on EΛn

to be (Φn)∗µ0. Using stationarity, one can easily check that, for each n ≥ 0
and k ∈ NN , µn is invariant under the obvious extension of Σk to EΛn . In
particular, if one identifies EΛn+1 with EΛn+1\Λn × EΛn , then

µn+1

(
EΛn+1\Λn × Γ

)
= µn(Γ) for all Γ ∈ BEΛn .

Hence the µn’s are consistently defined of the spaces EΛn , and therefore Kol-
mogorov’s Extension Theorem applies and guarantees the existence of a unique

Borel probaility measure µ on EZN with the property that

µ
(
EZN\Λn × Γ

)
= µn(Γ) for all n ≥ 0 and Γ ∈ BEΛn .

Moreover, since each µn is Σk-invariant for all k ∈ NN , it is clear that µ is also.

Thus, because Σk is invertible on EZN and Σ−k is its inverse, it follows that µ
is invariant under Σk for all k ∈ ZN .

To complete the proof at this point, simply take Ω̂ = EZN , F̂ = BΩ̂, P̂ = µ,

and X̂k(ω̂) = ω̂k for k ∈ ZN . �

As an example of the advantage which Lemma 6.2.11 affords, I present the
following beautiful observation made by M. Kac.

Theorem 6.2.12. Let (E,B) be a measurable space and {Xk : k ∈ N}
a stationary sequence of E-valued random variables on the probability space
(Ω,F ,P). Given Γ ∈ B, define the return time ρΓ(ω) = inf{k ≥ 1 : Xk(ω) ∈ Γ}.
Then, EP[ρΓ, X0 ∈ Γ

]
= P

(
Xk ∈ Γ for some k ∈ N

)
. In particular, if {Xk : k ∈

N} is ergodic, then

P
(
X0 ∈ Γ

)
> 0 =⇒ EP[ρΓ, X0 ∈ Γ

]
= 1.

Proof: Set Uk = 1Γ◦Xk for k ∈ N. Then {Uk : k ∈ N} is a stationary sequence
of {0, 1}-valued random variables. Hence, by Lemma 6.2.11, we can find a prob-

ability space
(
Ω̂, F̂ , P̂

)
on which there is a family {Ûk : k ∈ Z} of {0, 1}-valued
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random variables with the property that, for every n ∈ Z,
(
Ûn, . . . , Ûn+k, . . .

)
has the same distribution under P̂ as (U0, . . . , Uk, . . . ) has under P. In particular,

P
(
ρΓ ≥ 1, X0 ∈ Γ

)
= P̂

(
Û0 = 1

)
P
(
ρΓ ≥ n+ 1, X0 ∈ Γ

)
= P̂

(
Û−n = 1, Û−n+1 = 0, . . . , Û0 = 0

)
, n ∈ Z+.

Thus, if
λΓ(ω̂) ≡ inf

{
k ∈ N : U−k(ω̂) = 1

}
,

then
P
(
ρΓ ≥ n, X0 ∈ Γ

)
= P̂

(
λΓ = n− 1

)
, n ∈ Z+;

and so
EP[ρΓ, X0 ∈ Γ

]
= P̂

(
λΓ <∞

)
.

Now observe that

P̂
(
λΓ > n

)
= P̂

(
Û−n = 0, . . . , Û0 = 0

)
= P

(
X0 /∈ Γ, . . . , Xn /∈ Γ

)
,

from which it is clear that

P̂
(
λΓ <∞

)
= P

(
∃k ∈ N Xk ∈ Γ

)
.

Finally, assume that {Xk : k ∈ N} is ergodic and that P(X0 ∈ Γ) > 0.
Because, by (6.2.10),

∑∞
0 1Γ

(
Xk

)
=∞ P-almost surely, it follows that, P-almost

surely, Xk ∈ Γ for some k ∈ N. �

When {Xn : n ≥ 0} is an irreducible, ergodic Markov chain on a countable
state space E, then Kac’s theorem proves that the stationary measure at the
state x ∈ E is the reciprocal of the expected time that the chain takes to return
to x when it starts at x.

§ 6.2.4. Continuous Parameter Ergodic Theory. I turn now to the set-
ting of continuously parametrized semigroups of transformations. Thus, again
(Ω,F , µ) is a σ-finite measure space and

{
Σt : t ∈ [0,∞)N

}
is a measurable

semigroup of µ-measure preserving transformations on Ω. That is, Σ0 is the
identity, Σs+t = Σs ◦Σt,

(t, ω) ∈ [0,∞)N × Ω 7−→ Σt(ω) ∈ Ω is B[0,∞)N ×F-measurable,

and
(
Σt
)
∗µ = µ for every t ∈ [0,∞)N . Next, given an F-measurable F with

values in some separable Banach space E, let G(F ) be the set of ω ∈ Ω with the
property that ∫

[0,T )N

∥∥F ◦Σt(ω)
∥∥
E
dt <∞ for all T ∈ (0,∞).
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Clearly,
ω ∈ G(F ) =⇒ Σt(ω) ∈ G(F ) for every t ∈ [0,∞)N .

In addition, if F ∈ Lp(µ;E) for some p ∈ [1,∞), then∫
Ω

(∫
[0,T )N

∥∥F ◦Σt(ω)
∥∥p
E
dt

)
µ(dω) = TN‖F‖pLp(µ;E) <∞,

and so

F ∈
⋃

p∈[1,∞)

Lp(µ;E) =⇒ µ
(
G(F ){

)
= 0.

Next, for each T ∈ (0,∞), define

ATF (ω) =

{
T−N

∫
[0,T )N

F ◦Σt(ω) dt if ω ∈ G(F )

0 if ω /∈ G(F ).

Note that, as a consequence of the invariance of G(F ),(
ATF

)
◦Σt = AT

(
F ◦Σt

)
for all t ∈ [0,∞)N .

Finally, use Î to denote the σ-algebra of Γ ∈ F with the property that Γ =
(Σt)−1(Γ) for each t ∈ [0,∞)N , and say that

{
Σt : t ∈ [0,∞)N

}
is ergodic if

µ(Γ) ∧ µ(Γ{) = 0 for every Γ ∈ Î.

Theorem 6.2.13. Let (Ω,F , µ) be a σ-finite measure space and
{
Σt : t ∈

[0,∞)N
}

be a measurable semigroup of µ-measure preserving transformations
on Ω. Then, for each separable Banach space E, p ∈ [1,∞), and T ∈ (0,∞),
AT is a contraction on Lp(µ;E). Next, set ΠÎ(E) = ΠI(E) ◦ A1, where ΠI(E)

is defined in terms of
{
Σk : k ∈ NN

}
as in Theorem 6.2.8. Then, for each

p ∈ [1,∞) and F ∈ Lp(µ;E):

(6.2.14) lim
T→∞

ATF = ΠÎ(E)F (a.e., µ).

Moreover, if p ∈ (1,∞) or p = 1 and µ(Ω) <∞, then the convergence is also in
Lp(µ;E). In fact, if µ(Ω) <∞, then

lim
T→∞

ATF = Eµ
[
F
∣∣ Î] (a.e., µ) and in Lp(µ : E).

Finally, if
{
Σt : t ∈ [0,∞)N

}
is ergodic, then (6.2.14) can be replaced by

lim
T→∞

ATF =
Eµ[F ]

µ(Ω)
(a.e., µ),

where it is understood that the ratio is 0 when the denominator is infinite.
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Proof: The first step is the observation that

(6.2.15) µ

(
sup
T>0

∥∥ATF∥∥E ≥ λ) ≤ (24)N

λ
‖F‖L1(µ;E), λ ∈ (0,∞),

and

(6.2.16)

∥∥∥∥ sup
T>0

∥∥ATF∥∥E ∥∥∥∥
Lp(µ;E)

≤ (24)Np

p− 1
‖F‖Lp(µ;E) for p ∈ (1,∞).

Indeed, because of (ATF ) ◦ Σt = AT (F ◦ Σt), (6.2.15) is derived from (6.1.6)
in precisely the same way as I derived (6.2.3) from (6.1.10), and (6.2.16) comes
from (6.1.7) just as (6.2.4) came from (6.1.7).

Given (6.2.15) and (6.2.16), we know that it suffices to prove (6.2.14) in the
case when F is a uniformly bounded element of L1(µ;E). But in that case, set

F̂ = A1F and observe that∥∥TNATF (ω)− nNAnF̂ (ω)
∥∥
E
≤

∫
[0,n+1)N\[0,n)N

∥∥F ◦Σt(ω)‖E dt

for n ≤ T ≤ n+ 1, and conclude that

lim
n→∞

∥∥∥∥ sup
n≤T≤n+1

∥∥ATF −AnF̂
∥∥
E

∥∥∥∥
Lp(µ;E)

= 0 for every p ∈ [1,∞].

Hence, (6.2.14) follows from (6.2.9). As for case when µ(Ω) < ∞, all that we

have to do is check that ΠÎ(E)F = Eµ
[
F
∣∣Î] (a.e., µ). However, from (6.2.14), it

is easy to see that ΠÎ(E)F is measurable with respect to the µ-completion of Î;

and so it suffices to show that

Eµ
[
F, Γ

]
= Eµ

[
A1F, Γ

]
for all Γ ∈ Î.

But, if Γ ∈ Î, then

Eµ
[
A1F, Γ

]
=

∫
[0,1)N

Eµ
[
F ◦Σt, Γ

]
dt

=

∫
[0,1)N

Eµ
[
F ◦Σt,

(
Σt
)−1

(Γ)
]
dt = Eµ[F, Γ].

Finally, assume that
{
Σt : t ∈ [0,∞)N

}
is µ-ergodic. When µ(Ω) < ∞, the

asserted result follows immediately from the preceding; and when µ(Ω) =∞, it
follows from the fact that ΠÎ(E)F is measurable with respect to the µ-completion

of Î. �
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Exercises for § 6.2

Exercise 6.2.17. Given an irrational α ∈ (0, 1) and an ε ∈ (0, 1), let Nn(α, ε)
be the number of 1 ≤ m ≤ n with the property that∣∣∣∣α− `

m

∣∣∣∣ ≤ ε

2m
for some ` ∈ Z.

As an application of the considerations in the Classic Example given at the end
of § 6.1, show that

lim
n→∞

Nn(α, ε)

n
≥ ε.

Hint: Let δ ∈
(
0, ε2
)

be given, take f equal to the indicator function of [0, δ) ∪
(1−δ, 1), and observe that Nn(α, ε) ≥

∑n
k=1 f ◦Σk

α(ω) so long as 0 ≤ ω ≤ ε
2 −δ.

Exercise 6.2.18. Assume that µ(Ω) <∞ and that
{
Σk : k ∈ NN

}
is ergodic.

Given a non-negative F-measurable function f , show that

lim
n→∞

Anf <∞ on a set of positive µ-measure =⇒ f ∈ L1(µ;R)

=⇒ lim
n→∞

Anf =
Eµ[f ]

µ(Ω)
(a.e., µ).

Exercise 6.2.19. Let F =
{
Xk : k ∈ NN

}
be a stationary family of random

variables on the probability space (Ω,F ,P) with values in the measurable space

(E,B); and let I denote the σ-algebra of shift invariant Γ ∈ BNNE .

(i) Take

T ≡
⋂
n≥0

σ
(
Xk : kj ≥ n for all 1 ≤ j ≤ N

)
,

the tail σ-algebra determined by
{
Xk : k ∈ NN

}
. Show that F−1(I) ⊆ T , and

conclude that
{
Xk : k ∈ NN

}
is ergodic if T is P-trivial (i.e., P(Γ) ∈ {0, 1} for

all Γ ∈ T .)

(ii) By combining (i), Kolmogorov’s 0–1 Law, and the Individual Ergodic The-
orem, give another derivation of the Strong Law of Large Numbers for inde-
pendent, identically distributed, integrable random variables with values in a
separable Banach space.

Exercise 6.2.20. Let
{
Xk : k ∈ N

}
be a stationary, ergodic sequence of R-

valued, integrable random variables on (Ω,F ,P). Using the reasoning suggested
in Exercise 1.4.28, prove Guivarc’h’s lemma:

EP[X1

]
= 0 =⇒ lim

n→∞

∣∣∣∣∣
n−1∑
k=0

Xk

∣∣∣∣∣ <∞.
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§ 6.3 Burkholder’s Inequality

Given a martingale
(
Xn,Fn,P

)
with X0 = 0 and a sequence {σn : n ≥ 0}

of bounded functions with the property that σn is Fn-measurable for n ≥ 0,
determine {Yn : n ≥ 0} by Y0 = 0 and Yn−Yn−1 = σn−1(Xn−Xn−1) for n ≥ 1.
It is clear that

(
Yn,Fn,P

)
is again a martingale. In addition, if the absolute

value of all the σn’s are bounded by some constant σ < ∞ and Xn is square
P-integrable, then one can easily check that

EP[Y 2
n

]
=

n∑
m=1

EP[σ2
n(Xn −Xn−1)2

]
≤ σ2

n∑
m=1

EP[(Xn −Xn−1)2
]

= σ2EP[X2
n

]
.

On the other hand, it is not at all clear how to compare the size of Yn to that
of Xn in any of the Lp spaces other than p = 2.

The problem of finding such a comparison was given a definitive solution by D.
Burkholder, and I will present his solution in this section. Actually, Burkholder
solved the problem twice. His first solution was a beautiful adaptation of general
ideas and results which had been developed over the years to solve related prob-
lems in probability theory and analysis, and, as such, did not yield the optimal
solution. His second approach is designed specifically to address the problem at
hand and bears little or no resemblance to familiar techniques. It is entirely orig-
inal, remarkably elementary and effective, but somewhat opaque. The approach
is the outgrowth of many years of deep thinking which Burkholder devoted to
the topic, and the reader who wants to understand the path which led him to it
should consult the explanation which he wrote.†

§ 6.3.1. Burkholder’s Comparison Theorem. Burkholder’s basic result is
the following comparison theorem.

Theorem 6.3.1 (Burkholder). Let
(
Ω,F ,P

)
be a probability space,

{
Fn :

n ∈ N
}

a non-decreasing sequence of sub-σ-algebras of F , and E and F a pair

of (real or complex) separable Hilbert spaces. Next, suppose that
(
Xn,Fn,P

)
and

(
Yn,Fn,P

)
are, respectively, E- and F -valued martingales. If

‖Y0‖F ≤ ‖X0‖E and ‖Yn − Yn−1‖F ≤ ‖Xn −Xn−1‖E , n ∈ Z+,

P-almost surely, then, for each p ∈ (1,∞) and n ∈ N,

(6.3.2)
∥∥Yn∥∥Lp(P;F )

≤ Bp
∥∥Xn

∥∥
Lp(P;E)

where Bp ≡ (p− 1) ∨ 1

p− 1
.

As I said before, the derivation of Theorem 6.3.1 is both elementary and
mysterious. I begin with the trivial observation that, without loss in generality,

† For those who want to know the secret behind this proof, Burkholder has revealed it in his

article “Explorations in martingale theory and its applications” for the 1989 Saint-Flour Ecole
d’Eté lectures published by Springer–Verlag, LNM 1464 (1991).



§ 6.3 Burkholder’s Inequality 247

I may assume that both E and F are complex Hilbert spaces, since we can always
complexify them, and, in addition, that E = F , since, if that is not already the
case, we can embed them in E ⊕ F . Thus, I will be making these assumptions
throughout.

The heart of the proof lies in the computations contained in the following two
lemmas.

Lemma 6.3.3. Let p ∈ (1,∞) be given, set

αp =

{
p2−p (p− 1)p−1 if p ∈ [2,∞)

p2−p if p ∈ (1, 2],

and define u : E2 −→ R by (cf. (6.3.2))

u(x, y) =
(
‖y‖E −Bp‖x‖E

)(
‖y‖E + ‖x‖E

)p−1
.

Then
‖y‖pE −

(
Bp‖x‖E

)p ≤ αp u(x, y), (x, y) ∈ E2.

Proof: When p = 2, there is nothing to do. Thus, I will assume that p ∈
(1,∞) \ {2}.

Observe that it suffices to show that for all (x, y) ∈ E2 satisfying ‖x‖E +
‖y‖E = 1:

(*) ‖y‖pE −
(
(p− 1)‖x‖E

)p{ ≤ p2−p (p− 1)p−1
(
‖y‖E − (p− 1)‖x‖E

)
≥ p2−p (p− 1)p−1

(
‖y‖E − (p− 1)‖x‖E

)
.

depending on whether p ∈ (2,∞) or p ∈ (1, 2). Indeed, when p ∈ (2,∞), (*)
is precisely the result desired, and, when p ∈ (1, 2), (*) gives the desired result
after one divides through by (p− 1)p and reverses the roles of x and y.

I begin the verification of (*) by checking that

(**) p2−p (p− 1)p−1

{
> 1 if p ∈ (2,∞)

< 1 if p ∈ (1, 2).

To this end, set f(p) = (p− 1) log(p− 1)− (p− 2) log p for p ∈ (1,∞). Then f is
strictly convex on (1, 2) and strictly concave on (2,∞). Thus, f � (1, 2) cannot
achieve a maximum and therefore, since limp↘1 f(p) = 0 = f(2), f < 0 on (1, 2).
Similarly, f � (2,∞) cannot achieve a minimum, and therefore, since f(2) = 0
while limp↗∞ f(p) =∞, we have that f > 0 on (2,∞).

Next, observe that proving (*) comes down to checking that

Φ(s) ≡ p2−p (p− 1)p−1 (1− ps)− (1− s)p + (p− 1)p sp
{ ≥ 0 if p ∈ (2,∞)

≤ 0 if p ∈ (1, 2),
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for s ∈ [0, 1]. To this end, note that, by (**), Φ(0) > 0 when p ∈ (2,∞) and
Φ(0) < 0 when p ∈ (1, 2). Also, for s ∈ (0, 1),

Φ′(s) = p
[
(p− 1)p sp−1 + (1− s)p−1 − p2−p (p− 1)p−1

]
and

Φ′′(s) = p(p− 1)
[
(p− 1)p sp−2 − (1− s)p−2

]
.

In particular, we see that Φ
(

1
p

)
= Φ′

(
1
p

)
= 0. In addition, depending on whether

p ∈ (2,∞) or p ∈ (1, 2): lims↘0 Φ′′(s) is negative or positive, Φ′′ is strictly in-
creasing or decreasing on (0, 1), and lims↗1 Φ′′(1) is positive or negative. Hence,
there exists a unique t = tp ∈ (0, 1) with the property that

Φ′′ � (0, t)

{
< 0 if p ∈ (2,∞)

> 0 if p ∈ (1, 2)
and Φ′′ � (t, 1)

{
> 0 if p ∈ (2,∞)

< 0 if p ∈ (1, 2)
.

Moreover, from the equation Φ′′(t) = 0, it is easy to see that t ∈
(

0, 1
p

)
.

Now suppose that p ∈ (2,∞) and consider Φ on each of the intervals
[

1
p , 1
]
,[

t, 1
p

]
, and

[
0, t
]

separately. Because both Φ and Φ′ vanish at 1
p while Φ′′ > 0

on
(

1
p , 1
)
, it is clear that Φ > 0 on

(
1
p , 1
]
. Next, because Φ′

(
1
p

)
= 0 and

Φ′′ �
(
t, 1
p

)
> 0, we know that Φ is strictly decreasing on

(
t, 1
p

)
and therefore that

Φ �
[
t, 1
p

)
> Φ

(
1
p

)
= 0. Finally, because Φ′′ � (0, t) < 0 while Φ(0) ∧ Φ(t) ≥ 0,

we also know that Φ � (0, t) > 0. The argument when p ∈ (1, 2) is similar; only
this time all the signs are reversed. �

Lemma 6.3.4. Again let p ∈ (1,∞) be given, and define u : E×F −→ R as in
Lemma 6.3.3. In addition, define the functions v and w on E2 \ {0, 0} by

v(x, y) = p
(
‖y‖E + ‖x‖E

)p−2(‖y‖E + (2− p)‖x‖E
)

and
w(x, y) = p(1− p)

(
‖y‖E + ‖x‖E

)p−2‖x‖E .

Then, for (x, y) ∈ E2 and (k, h) ∈ E2 satisfying

min
t∈[0,1]

(
‖y + th‖E ∧ ‖x+ tk‖E

)
> 0 and ‖h‖E ≤ ‖k‖E ,

one has

u(x+ k, y + h)− u(x, y) ≤ v(x, y)Re
(

y
‖y‖F , h

)
F

+ w(x, y)Re
(

x
‖x‖E , k

)
E

when p ∈ [2,∞) and

(p−1)
[
u(x+k, y+h)−u(x, y)

]
≤ −w(y, x)Re

(
y
‖y‖E , h

)
E
−v(y, x)Re

(
x
‖x‖E , k

)
E

when p ∈ (1, 2].
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Proof: Set

Φ(t) = Φ
(
t; (x, k), (y, h)

)
≡
(
‖y + th‖E − (p− 1)‖x+ tk‖E

)(
‖x+ tk‖E + ‖y + th‖E

)p−1
,

and observe that

u
(
x+ tk, y + th

)
=

{
Φ
(
t; (x, k), (y, h)

)
if p ∈ [2,∞)

−(p− 1)−1 Φ
(
t; (y, h), (x, k)

)
if p ∈ (1, 2).

Hence, it suffices for us to check that

Φ′(t) = v(x+ tk, y + th)Re
(

y+th
‖y+th‖E , h

)
E

+ w(x+ tk, y + th)Re
(

x+tk
‖x+tk‖E , k

)
E

and prove that

Φ′′
(
t; (x, k), (y, h)

){ ≤ 0 if p ∈ [2,∞) and ‖h‖E ≤ ‖k‖E
≥ 0 if p ∈ (1, 2] and ‖h‖E ≥ ‖k‖E .

To prove the preceding, set x(t) = x + tk, y(t) = y + th, Ψ(t) = ‖x(t)‖E +

‖y(t)‖E , a(t) =
Re
(
x(t),k

)
E

‖x(t)‖E , and b(t) =
Re
(
y(t),h

)
E

‖y(t)‖E . One then has that

Φ′(t) = pΨ(t)p−2
[
(1− p)‖x(t)‖E a(t) +

(
‖y(t)‖E + (2− p)‖x(t)‖E

)
b(t)
]

= p
[
(1− p)Ψ(t)p−2 ‖x(t)‖E

(
a(t) + b(t)

)
+ Ψ(t)p−1 b(t)

]
.

In particular, the first expression establishes the required form for Φ′(t). In
addition, from the second expression, we see that

−Φ′′(t)

p
= (p− 1)(p− 2) Ψ(t)p−3 ‖x(t)‖E

(
a(t) + b(t)

)2
+ (p− 1)Ψ(t)p−2

[
a(t)

(
a(t) + b(t)

)
+ ‖x(t)‖E
‖y(t)‖E b⊥(t)2 + a⊥(t)2

]
−Ψ(t)p−2

[
(p− 1)

(
a(t) + b(t)

)
b(t) + Ψ(t) b⊥(t)2

‖y(t)‖E

]
= (p− 1)(p− 2) Ψ(t)p−3 ‖x(t)‖E

(
a(t) + b(t)

)2
+ (p− 1)Ψ(t)p−2

(
‖k‖2E − ‖h‖2E

)
+ (p− 2)Ψ(t)p−1 b⊥(t)2

‖y(t)‖E ,

where a⊥(t) =
√
‖k‖2E − a(t)2 and b⊥(t) =

√
‖h‖2E − b(t)2. Hence the required

properties of Φ′′(t) have also been established. �
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Proof of Theorem 6.3.1: Set Kn = Xn − Xn−1 and Hn = Yn − Yn−1 for
n ∈ Z+. I will assume that there is an ε > 0 with the property that∥∥X0(ω)− span{Kn(ω) : n ∈ Z+}

∥∥
E
≥ ε

and ∥∥Y0(ω)− span{Hn(ω) : n ∈ Z+}
∥∥
E
≥ ε

for all ω ∈ Ω. Indeed, if this is not already the case, then we can replace E by
R× E (or, when E is complex, C× E) and Xn(ω) and Yn(ω), respectively, by

X(ε)
n (ω) ≡

(
ε,Xn(ω)

)
and Y (ε)

n (ω) ≡
(
ε, Yn(ω)

)
,

for each n ∈ N. Clearly, (6.3.2) for each X
(ε)
n and Y

(ε)
n implies (6.3.2) for Xn

and Yn after one lets ε ↘ 0. Finally, because there is nothing to do when the
right-hand side of (6.3.2) is infinite, let p ∈ (1,∞) be given, and assume that
Xn ∈ Lp(P;E) for each n ∈ N. In particular, if u is the function defined in
Lemma 6.3.3 and v and w are those defined in Lemma 6.3.4, then

u(Xn, Yn) ∈ L1(P;R) and v(Xn, Yn), w(Xn, Yn) ∈ Lp
′
(P;R)

for all n ∈ N, where p′ = p
p−1 is the Hölder conjugate of p.

Note that, by Lemma 6.3.3, it suffices for us to show that An ≡ EP[u(Xn, Yn
)]

≤ 0, n ∈ N. Since u
(
X0, Y0) ≤ 0 P-almost surely, there is no question that

A0 ≤ 0. Next, assume that An ≤ 0, and, depending on whether p ∈ [2,∞) or
p ∈ (1, 2], use the appropriate part of Lemma 6.3.4 to see that

An+1 ≤EP
[
v(Xn, Yn)Re

(
Yn
‖Yn‖E , Hn+1

)
E

]
+ EP

[
w(Xn, Yn)Re

(
Xn
‖Xn‖E ,Kn+1

)
E

]
or

An+1 ≤− EP
[
w(Yn, Xn)Re

(
Yn
‖Yn‖E , Hn+1

)
E

]
− EP

[
v(Yn, Xn)Re

(
Xn
‖Xn‖E ,Kn+1

)
E

]
.

But, since v(Xn, Yn) Yn
‖Yn‖E is Fn-measurable, EP[Hn+1|Fn] = 0, and therefore

(cf. Exercise 5.1.18)

EP
[
v(Xn, Yn)Re

(
Yn
‖Yn‖E , Hn+1

)
E

]
= 0.

Since the same reasoning shows that each of the other terms on the right-hand
side vanishes, we have now proved that An+1 ≤ 0. �

As an immediate consequence of Theorem (6.3.2), we have the following answer
to the question raised at the beginning of this section.
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Corollary 6.3.5. Suppose that (Xn,Fn,P) is a martingale with values in
a separable (real or complex) Hilbert space E. Further, let F be a second
separable, complex Hilbert space, and suppose that {σn : n ≥ 0} is a sequence
of Hom(E;F )-valued random variables with the properties that σ0 is constant,
σn is Fn-measurable for n ≥ 1, and ‖σn‖op ≤ σ <∞ (a.s.,P) for some constant
σ <∞ and all n ∈ N. If ‖Y0‖F ≤ σ‖X0‖E and Yn − Yn−1 = σn−1(Xn −Xn−1)
for n ≥ 1, then (Yn,Fn,P) is an F -valued martingale and, for each p ∈ (1,∞),
(cf. (6.3.2))

‖Yn‖Lp(P;F ) ≤ σBp‖Xn‖Lp(P;E), n ∈ N.

§ 6.3.2. Burkholder’s Inequality. In many applications, the most useful
form of Burkholder’s result is as a generalization to p 6= 2 of the obvious equality

EP[|Xn −X0|2
]

= EP

[
n∑

m=1

|Xm −Xm−1|2
]
.

This is the form of his inequality which is best known, as such, is called Burk-
holder’s inequality. Notice that his inequality can be viewed as a vast gen-
eralization of Khinchine’s Inequality (2.3.27), although it applies only when
p ∈ (1,∞).

Theorem 6.3.6 (Burkholder’s Inequality). Let
(
Ω,F ,P

)
and

{
Fn : n ∈

N
}

be as in Theorem 6.3.1, and let
(
Xn,Fn,P

)
be a martingale with values in

the separable Hilbert space E. Then, for each p ∈ (1,∞),

1

Bp
sup
n∈N

∥∥Xn −X0

∥∥
Lp(P;E)

≤ EP

( ∞∑
1

∥∥Xn −Xn−1

∥∥2

E

) p
2

 1
p

(6.3.7)

≤ Bp sup
n∈N

∥∥Xn −X0

∥∥
Lp(P;E)

,

with Bp as in (6.3.2).

Proof: Let F = `2(N;E) be the separable Hilbert space of sequences

y =
(
x0, . . . , xn, . . .

)
∈ EN

satisfying

‖y‖F ≡

( ∞∑
0

‖xn‖2E

) 1
2

<∞;
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and define

Yn(ω) = (X0(ω), X1(ω)−X0(ω), . . . , Xn(ω)−Xn−1(ω), 0, 0, . . . ) ∈ F

for ω ∈ Ω and n ∈ N. Obviously,
(
Yn,Fn,P

)
is an F -valued martingale. More-

over,

‖X0‖E = ‖Y0‖F and ‖Xn −Xn−1‖E = ‖Yn − Yn−1‖F , n ∈ N;

and therefore the right hand side of (6.3.7) is implied by (6.3.2) while the left
hand side also follows from (6.3.2) when the roles of the Xn and Yn’s are re-
versed. �

Exercises for § 6.3

Exercise 6.3.8. Because it arises repeatedly in the theory of stochastic inte-
gration, one of the most frequent applications of Burkholder’s inequality is to
situations in which E is a separable Hilbert space and (Xn,Fn,P) is an E-valued
martingale for which one has an estimate of the form

Kp ≡ sup
n∈Z+

∥∥∥∥EP
[
‖Xn −Xn−1‖2pE

∣∣Fm−1

] 1
2p

∥∥∥∥
L∞(P;R)

<∞

for some p ∈ [1,∞). To see how such an estimate gets used, let F be a sec-
ond separable Hilbert space and suppose that {σn : n ∈ N} is a sequence of
Hom(E;F )-valued random variables with the properties that, for each n ∈ N,

σn is Fn-measurable and an ≡ EP[‖σn‖2pop

] 1
2p <∞. Set Y0 = 0 and

Yn =

n∑
m=1

σm−1

(
Xm −Xm−1

)
for n ∈ Z+,

and show that

∥∥Yn∥∥L2p(P;F )
≤ (2p− 1)n

1
2Kp

(
1

n

n−1∑
m=0

a2p
m

) 1
2p

.

Exercise 6.3.9. Return to the setting in Exercise 5.2.37, and let λ[0,1) denote

Lebesgue measure on [0, 1). Given f ∈ L2(λ[0,1);C), show that, for each p ∈
(1,∞),

(p− 1)∧ 1

p− 1

∥∥f − (f,1)L2(λ[0,1);C)

∥∥
Lp([0,1);C)

≤

∫
[0,1)

( ∞∑
m=0

∣∣∆m(f)
∣∣2) p

2

dt

 1
p

≤ (p− 1) ∨ 1

p− 1

∥∥f − (f,1)L2(λ[0,1);C)

∥∥
Lp(λ[0,1);C)

.
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For functions f with (f, e`)L2(λ[0,1);C) = 0 unless ` = ±2m for some m ∈ N, this
estimate is a case of a famous theorem proved by Littlewood and Paley in order
to generalize Parseval’s identity to cover p 6= 2. Unfortunately, the argument
here is far too weak to give their inequality for general f ’s.

Exercise 6.3.10. In connection with the preceding exercise, it is interesting to
note that there is an orthonormal basis for L2

(
λ[0,1);R

)
which, as distinguished

from the trigonometric functions, can be nearly completely understood in terms
of martingale analysis. Namely, recall the Rademacher functions {Rn : n ∈ Z+}
introduced in § 1.1.2. Next, use F to denote the set of all finite subsets F of Z+,
and define the Walsh function WF for F ∈ F by

WF =

{
1 if F = ∅∏
m∈F Rm if F 6= ∅.

Finally, set A0 = ∅ and An = {1, . . . , n} for n ∈ Z+.

(i) For each n ∈ N, let Fn be the σ-algebra generated by the partition{[
k
2n ,

k+1
2n

)
: 0 ≤ k < 2n

}
,

show that, for each n ∈ Z+,
{
WF : F ⊆ An

}
is an orthonormal basis for the

subspace L2
(
[0, 1),Fn, λ[0,1);R

)
, and conclude from this that

{
WF : F ∈ F

}
forms an orthonormal basis for L2

(
λ[0,1);R

)
.

(ii) Let f ∈ L1
(
[0, 1);R

)
be given, and set

Xf
n =

∑
F⊆An

(∫
[0,1)

f(t)WF (t) dt

)
WF for n ∈ N.

Using the result in (i), show that Xf
n = Eλ[0,1) [f |Fn] and therefore that

(
Xf
n ,Fn,

λ[0,1)

)
is a martingale. In particular, Xf

n −→ f both (a.e., λ[0,1)) as well as in

L1
(
λ[0,1);R

)
.

(iii) Show that for each p ∈ (1,∞) and f ∈ L1
(
λ[0,1);R

)
with mean value 0:

(p− 1) ∧ (p− 1)−1‖f‖Lp([0,1);R)

≤

∫
[0,1)

 ∞∑
n=1

 ∑
F⊆An\An−1

(∫
[0,1)

f(s)WF (s) ds

)
WF (t)

2


p
2

dt


1
p

≤ (p− 1) ∨ (p− 1)−1‖f‖Lp([0,1);R).

Exercise 6.3.11. Although Burkholder’s inequality is extremely useful, it does
not give particularly good estimates in the case of martingales with bounded
increments. For such martingales, the following line of reasoning, which was
introduced by J. Azema in his thesis, is useful.
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(i) For any a ∈ R and x ∈ [−1, 1], show that

eax ≤ 1 + x

2
ea +

1− x
2

e−a = cosh a+ x sinh a.

(ii) Suppose that {Y1, . . . , Yn} are [−1, 1]-valued random variables on the prob-
ability space (Ω,F ,P) with the property that, for each 1 ≤ m ≤ n,

EP[Yj1 · · ·Yjm] = 0 for all 1 ≤ j1 < · · · < jm ≤ n.

Show that, for any {aj}n1 ⊆ R,

EP

exp

 n∑
j=1

ajYj

 ≤ n∏
j=1

cosh aj ≤ exp

1

2

n∑
j=1

a2
j

 ,

and conclude that

P

 n∑
j=1

ajYj ≥ R

 ≤ exp

(
− R2

2
∑n
j=1 a

2
j

)
, R ∈ [0,∞).

(iii) Suppose that (Xn,F ,P) is a bounded martingale with X0 ≡ 0, and set
Dn ≡ ‖Xn −Xn−1‖L∞(P). Show that

P (Xn ≥ R) ≤ exp

(
− R2

2
∑n
j=1D

2
j

)
, R ∈ [0,∞).


