
Chapter V
Conditioning and Martingales

Up to this point I have been dealing with random variables which are either
themselves mutually independent or are built out of other random variables
which are. For this reason, it has not been necessary for me to make explicit
use of the concept of conditioning, although, as we will see shortly, this concept
has been lurking silently in the background. In this chapter I will first give the
modern formulation of conditional expectations and then provide an example of
the way in which conditional expectations can be used.

Let (Ω,F ,P) be a probability space, and suppose that A ∈ F is a set having
positive P-measure. For reasons which are most easily understand when Ω is
finite and P is uniform, the ratio

P(B|A) ≡ P(A ∩B)

P(A)
, B ∈ F ,

is called the conditional probability of B given A. As one learns in an
elementary course, the introduction of conditional probabilities makes many
calculations much simpler; in particular, conditional probabilities help to clarify
dependence relations between the events represented by A and B. For example,
B is independent of A precisely when P(B|A) = P (B) or, in words, when the
condition that A occurs does not change the probability that B occurs. Thus, it
is unfortunate that the näıve definition of conditioning as described above does
not cover many important situations. For example, suppose that X and Y are
random variables and that one wants to talk about the conditional probability
that Y ≤ b given that X = a. Unless one is very lucky and P(X = a) > 0,
dividing by P(X = a) is not going to do the job. As this example illustrates,
it is of great importance to generalize the concept of conditional probability to
include situations when the event on which one is conditioning has P-measure
0, and so the next section is devoted to Kolmogorov’s elegant solution to the
problem of doing so.

§ 5.1 Conditioning

In order to appreciate the idea behind Kolmogorov’s solution, imagine someone
told you the conditional probability that the event B occurs given that the
event A occurs. Obviously, since you have no way of saying anything about the
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probability of B when A does not occur, she has provided you with incomplete
information about B. Thus, before you are satisfied, you should demand to
know also what is the conditional probability of B given that A does not occur.
Of course, this second piece of information is relevant only if A is not certain,
in which case P(A) < 1 and therefore P

(
B
∣∣A{) is well defined. More generally,

suppose that P =
{
A1, . . . , AN

}
(N here may be either finite or countably

infinite) is a partition of Ω into elements of F having positive P-measure. Then,
in order to have complete information about the probability of B ∈ F relative to
P, one has to know the entire list of the numbers P

(
B
∣∣An), 1 ≤ n ≤ N . Next,

suppose that one attempts to describe this list in a way which does not depend
explicitly on the positivity of the numbers P(An). For this purpose, consider the
function

ω ∈ Ω 7−→ f(ω) ≡
N∑
n=1

P
(
B
∣∣An)1An

(ω).

Clearly, f is not only F-measurable, it is measurable with respect to the σ-
algebra σ(P) over Ω generated by P. In particular (because the only σ(P)-
measurable set of P-measure 0 is empty), f is uniquely determined by its P-
integrals EP[f, A] over sets A ∈ σ(P). Moreover, because, for each B ∈ σ(P)
and n, either An ⊆ B or B ∩An = ∅, we have that

EP[f, A] =

N∑
n=1

P
(
B ∩An

)
=

∑
{n:An⊆B}

P
(
An ∩B

)
= P

(
A ∩B

)
.

Hence, the function f is uniquely determined by the property that

EP[f, A] = P
(
A ∩B

)
for every A ∈ σ(P).

The beauty of this description is that it makes perfectly good sense even if
some of the An’s have P-measure 0, only in that case the description does not
determine f pointwise but merely up to a σ(P)-measurable P-null set (i.e., a
set of P-measure 0), which is the very least one should expect to pay for dividing
by 0.

§ 5.1.1. Kolmogorov’s Definition. With the preceding discussion in mind,
one ought to find the following formulation reasonable. Namely, given a sub-
σ-algebra Σ ⊆ F and a (−∞,∞]-valued random variable X whose negative
part X−

(
≡ −(X ∧ 0)

)
is P-integrable, I will say that the random variable XΣ

is a conditional expectation of X given Σ if XΣ is (−∞,∞]-valued and

Σ-measurable,
(
XΣ

)−
is P-integrable, and

(5.1.1) EP[XΣ, A
]

= EP[X, A] for every A ∈ Σ.

Obviously, having made this definition, my first duty is to show that such an
XΣ always exists and to discover in what sense it is uniquely determined. The
latter problem is dealt with in the following lemma.
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Lemma 5.1.2. Let Σ be a sub-σ-algebra of F , and suppose that XΣ and YΣ

are a pair of (−∞,∞]-valued Σ-measurable random variables for which X−Σ and

Y −Σ are both P-integrable. Then

EP[XΣ, A
]
≤ EP[YΣ, A

]
for every A ∈ Σ,

if and only if XΣ ≤ YΣ (a.s., P).

Proof: Without loss in generality, I may and will assume that Σ = F and
will therefore drop the subscript Σ; and, since the “if” implication is completely
trivial, I will discuss only the minimally less trivial “only if” assertion. Thus,
suppose that P-integrals of Y dominate those of X and yet that X > Y on
a set of positive P-measure. We could then choose an M ∈ [1,∞) so that
P(A) ∨ P (B) > 0 where

A ≡
{
X ≤M and Y ≤ X − 1

M

}
and B ≡

{
X =∞ and Y ≤M}.

But if P(A) > 0, then

EP[X, A] ≤ EP[Y, A] ≤ EP[X, A]− 1
M P (A),

which, because EP[X, A] is a finite number, is impossible. At the same time, if
P(B) > 0, then

∞ = EP[X, B] ≤ EP[Y, B] ≤M <∞,

which is also impossible. �

Theorem 5.1.3. Let Σ be a sub-σ-algebra of F and X a (−∞,∞]-valued
random variable for which X− is P-integrable. Then there exists a conditional
expectation value XΣ of X. Moreover, if Y is a second (−∞,∞]-valued random
variable and Y ≥ X (a.s., P), then Y − is P-integrable and YΣ ≥ XΣ (a.s., P) for
any YΣ which is a conditional expectation value of Y given Σ. In particular, if
X = Y (a.s., P), then

{
YΣ 6= XΣ

}
is a Σ-measurable, P-null set.∗

Proof: In view of Lemma 5.1.2, it suffices for me to handle the initial existence
statement. To this end, let G denote the class of X satisfying EP[X−] <∞ for
which an XΣ exists, and let G+ denote the non-negative elements of G. If
{Xn : n ≥ 1} ⊆ G+ is non-decreasing and, for each n ∈ Z+,

(
Xn

)
Σ

denotes a

conditional expectation of Xn given Σ, then 0 ≤
(
Xn

)
Σ
≤
(
Xn+1

)
Σ

(a.s., P),

and therefore we can arrange that 0 ≤
(
Xn

)
Σ
≤
(
Xn+1

)
Σ

everywhere. In

particular, if X and XΣ are the pointwise limits of the Xn’s and
(
Xn

)
Σ

’s, re-
spectively, then the Monotone Convergence Theorem guarantees that XΣ is a

∗ Kolmogorov himself, and most authors ever since, have obtained the existence of conditional

expectation values as a consequence of the Radon–Nikodym Theorem. Because I find projec-
tions more intuitively appealing, I prefer the approach given here.
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conditional expectation of X given Σ. Hence, we now know that G+ is closed
under non-decreasing, pointwise limits, and therefore we will know that G+ con-
tains all non-negative random variables X as soon as we show that G contains all
bounded X’s. But if X is bounded (and is therefore an element of L2(P;R)) and
LΣ = L2(Ω,Σ,P;R) is the subspace of L2(P;R) consisting of its Σ-measurable
elements, then the orthogonal projection XΣ of X onto LΣ is a Σ-measurable
random variable which is square P-integrable and satisfies (5.1.1).

So far I have proved that G+ contains all non-negative, F-measurable X’s.
Furthermore, if X is non-negative, then (by Lemma 5.1.2) XΣ ≥ 0 (a.s., P) and
so XΣ is P-integrable precisely when X itself is. In particular, we can arrange
to make XΣ take its values in [0,∞) when X is non-negative and P-integrable.
Finally, to see that X ∈ G for every X with EP[X−] <∞, simply consider X+

and X− separately, apply the preceding to show that
(
X±
)

Σ
≥ 0 (a.s., P) and

that
(
X−
)

Σ
is P-integrable, and check that the random variable

XΣ ≡
{ (

X+
)

Σ
−
(
X−
)

Σ
when

(
X±
)

Σ
≥ 0 and

(
X−
)

Σ
<∞

0 otherwise

is a conditional expectation of X given Σ. �

Convention. Because it is determined only up to a Σ-measurable P-null set,
one cannot, in general, talk about the conditional expectation of X as a function.
Instead, the best that one can do is say that the conditional expectation of
X is the equivalence class of Σ-measurable XΣ’s which satisfy (5.1.1), and I will
adopt the notation EP[X|Σ] to denote this equivalence class. On the other hand,
because one is usually interested only in P-integrals of conditional expectations,
it has become common practice to ignore, for the most part, the distinction
between the equivalence class EP[X|Σ] and the members of that equivalence class.
Thus (just as one would when dealing with the Lebesgue spaces) I will abuse
notation by using EP[X|Σ] to denote a generic element of the equivalence class
EP[X|Σ] and will be more precise only when EP[X|Σ] contains some particularly
distinguished member. For example, recall the random variables Tn entering the
definition of the simple Poisson process {N(t) : t ∈ (0,∞)} in § 4.2.1. It is then
clear that we can take

EP
[
1{n}

(
N(t)

) ∣∣∣σ(T1, . . . , Tn
)]

= 1[0,t]

(
Tn
)
e−(t−Tn),

and one would be foolish to take any other representative. More generally, I
will always take non-negative representatives of EP[X|Σ] when X itself is non-
negative and R-valued representatives whenX is P-integrable. Finally, for histor-
ical reasons, it is usual to distinguish the case when X is the indicator function
1B of a set B ∈ F and to call EP[1B |Σ] the conditional probability of B
given Σ and to write P(B|Σ) instead of EP[1B |Σ]. Of course, representatives of
P(B|Σ) will always be assumed to take their values in [0, 1].
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Once one has established the existence and uniqueness of conditional expecta-
tions, there is a long list of more or less obvious properties which one can easily
verify. The following theorem contains some of the more important items which
ought to appear on such a list.

Theorem 5.1.4. Let Σ be a sub-σ-algebra of F . If X is a P-integrable random
variable and C ⊆ Σ is a π-system (cf. Exercise 1.1.12) which generates Σ, then

Y = EP[X∣∣Σ] (a.s.,P) ⇐⇒
Y ∈ L1(Ω,Σ,P;R) and EP[Y, A] = EP[X, A] for A ∈ C ∪ {Ω}.

Moreover, if X is any (−∞,∞]-valued random variable which satisfies EP[X−]
<∞, then each of the following relations holds P-almost surely:

(5.1.5)
∣∣EP[X∣∣Σ]∣∣ ≤ EP[|X|∣∣Σ];

(5.1.6) EP[X∣∣T ] = EP
[
EP[X∣∣Σ] ∣∣∣T ]

when T is a sub-σ-algebra of Σ; and, when X is R-valued and P-integrable,

EP[−X∣∣Σ] = −EP[X∣∣Σ].
Next, let Y be a second (−∞,∞]-valued random variable with EP[Y −] < ∞.
Then, P-almost surely:

EP[αX + βY
∣∣Σ] = αEP[X∣∣Σ]+ βEP[Y ∣∣Σ] for each α, β ∈ [0,∞),

and

(5.1.7) EP[Y X∣∣Σ] = Y EP[X∣∣Σ]
if Y is Σ-measurable and (XY )− is P-integrable. Finally, suppose that {Xn :
n ≥ 1} is a sequence of (−∞,∞]-valued random variables. Then, P-almost
surely:

(5.1.8) EP[Xn

∣∣Σ]↗ EP[X∣∣Σ]
if EP[X−1 ] <∞ and Xn ↗ X (a.s., P); and, more generally,

(5.1.9) EP
[

lim
n→∞

Xn

∣∣∣∣Σ ] ≤ lim
n→∞

EP[Xn

∣∣Σ].
if Xn ≥ 0 (a.s.,P) for each n ∈ Z+.
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Proof: To prove the first assertion, note that the set of A ∈ Σ for which
EP[X, A] = EP[Y, A] is (cf. Exercise 1.1.12) a λ-system which contains C and
therefore Σ. Next, clearly (5.1.5) is just an application of Lemma 5.1.2, while
(5.1.6) and the two equations which follow it are all expressions of uniqueness.
As for the next equation, one can first reduce to the case with both X and Y are
non-negative. Then one can use uniqueness to check it when Y is the indicator
function of a element of Σ, use linearity to extend it to simple Σ-measurable
functions, and complete the job by taking monotone limits. Finally, (5.1.8) is an
immediate application of the Monotone Convergence Theorem; whereas (5.1.9)
comes from the conjunction of

EP
[

inf
n≥m

Xn

∣∣∣∣Σ ] ≤ inf
n≥m

EP[Xn

∣∣Σ ] (a.s.,P), m ∈ Z+,

with (5.1.8). �

It probably will have occurred to most readers that the properties discussed
in Theorem 5.1.4 give strong evidence that, for fixed ω ∈ Ω, X 7−→ EP[X|Σ](ω)
behaves like an integral (in the sense of Daniell) and therefore ought to be
expressible in terms of integration with respect to a probability measure Pω.
Indeed, if one could actually talk aboutX 7−→ EP[X|Σ](ω) for a fixed (as opposed
to P-almost every) ω ∈ Ω, then there is no doubt that such a Pω would have to
exist. Thus, it is reasonable to ask whether there are circumstances in which one
can gain sufficient control over all the P-null sets involved to really make sense
out of X 7−→ EP[X|Σ](ω) for fixed ω ∈ Ω. Of course, when Σ is generated by a
countable partition P, we already know what to do. Namely, when ω ∈ A ∈ P,
we can take

EP[X|Σ](ω) =

{
0 if P(A) = 0

EP[X,A]
P(A) if P(A) > 0.

Even when Σ does not arise in this way, one can often find a satisfactory repre-
sentation of conditional expectations as expectations. A quite general statement
of this sort is the content of Theorem 9.2.1 in Chapter IX.

§ 5.1.2. Some Extensions. For various applications it is convenient to have
two extensions of the basic theory developed in § 5.1.1. Specifically, as I will now
show, the theory is not restricted to probability (or even finite) measures and can
be applied to random variables which take their values in a separable Banach
space. Thus, from now on, µ will be an arbitrary (non-negative) measure on
(Ω,F) and

(
E, ‖·‖E

)
will be a separable Banach space; and I begin by reviewing

a few elementary facts about µ-integration for E-valued random variables.∗

∗ The integration which I outline below is what functional analysts call the Bochner integral

for Banach space valued functions. There is a more subtle and intricate theory due to Pettis,
but Bochner’s theory seems adequate for most probabilistic considerations.
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A function X : Ω −→ E is said to be µ-simple if X is F-measurable, X takes
only finitely many values, and µ

(
X 6= 0

)
< ∞, in which case its integral with

respect to µ is the element of E given by:

Eµ[X] =

∫
Ω

X(ω)µ(dω) ≡
∑

x∈E\{0}

xµ(X = x).

Notice that another description of Eµ[X] is as the unique element of E with the
property that 〈

Eµ[X], x∗
〉

= Eµ
[
〈X,x∗〉

]
for all x∗ ∈ E∗

(I use E∗ to denote the dual of E and 〈x, x∗〉 to denote the action of x∗ ∈ E∗ on
x ∈ E), and therefore that the mapping taking µ-simple X to Eµ[X] is linear.
Next, observe that ω ∈ Ω 7−→ ‖X(ω)‖E ∈ R is F-measurable if X : Ω −→ E is
F-measurable. In particular, for F-measurable X : Ω −→ E, we can set

‖X‖Lp(µ;E) =

{
Eµ
[
‖X‖pE

] 1
p if p ∈ [1,∞)

inf
{
M : µ

(
‖X‖E > M

)
= 0
}

if p =∞

and will write X ∈ Lp(µ;E) when ‖X‖Lp(µ;E) < ∞. Also, I will say the X :

Ω −→ E is µ-integrable if X ∈ L1(µ;E); and I will say that X is locally
µ-integrable if 1AX is µ-integrable for every A ∈ F with µ(A) <∞.

The definition of µ-integration for E-valued X is completed in the following
lemma.

Lemma 5.1.10. For each µ-integrable X : Ω −→ E there is a unique element
Eµ[X] ∈ E for which

〈
EP[X], x∗

〉
= EP[〈X,x∗

〉
] for all x∗ ∈ E∗. In particular,

the mapping X ∈ L1(µ;E) 7−→ Eµ[X] ∈ E is linear and satisfies

(5.1.11)
∥∥Eµ[X]

∥∥
E
≤ Eµ

[
‖X‖E

]
.

Finally, if X ∈ Lp(µ;E) where p ∈ [1,∞), then there is a sequence {Xn : n ≥ 1}
of E-valued, µ-simple functions with the property that ‖Xn −X‖Lp(µ;E) −→ 0.

Proof: Clearly uniqueness, linearity, and (5.1.11) all follow immediately from
the given characterization of Eµ[X]. Thus, all that remains is to prove existence
and the final approximation assertion. In fact, once the approximation assertion
is proved, then existence will follow immediately from the observation that, by
(5.1.11), Eµ[X] can be taken equal to limn→∞ Eµ[Xn] if ‖X−Xn‖L1(µ;E) −→ 0.

To prove the approximation assertion, I begin with the case when µ is finite
and M = supω∈Ω ‖X(ω)‖E <∞. Next, choose a dense sequence {x` : ` ≥ 1} in
E, set A0,n = ∅, and

A`,n =
{
ω : ‖X(ω)− x`‖E < 1

n

}
for (`, n) ∈ Z+ × Z+.
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Then, for each n ∈ Z+ there exists an Ln ∈ Z+ with the property that

µ

(
Ω \

Ln⋃
`=1

A`,n

)
<

1

np
.

Hence, if Xn : Ω −→ E is defined so that

Xn(ω) = x` when 1 ≤ ` ≤ Ln and ω ∈ A`,n \
`−1⋃
k=0

Ak,n

and Xn(ω) = 0 when ω /∈
⋃Ln

1 A`,n, then Xn is µ-simple and

‖X −Xn‖Lp(µ;E) ≤
M + µ(E)

n
.

In order to handle the general case, let X ∈ Lp(µ;E) and n ∈ Z+ be given.
We can then find an rn ∈ (0, 1] with the property that∫

Ω(rn){

‖X(ω)‖pE µ(dω) ≤ 1

(2n)p
,

where

Ω(r) ≡
{
ω : r ≤ ‖X(ω)‖E ≤ 1

r

}
for r ∈ (0, 1].

Since, for any r ∈ (0, 1], rpµ
(
Ω(r)

)
≤ ‖X‖pLp(µ;E), we can apply the preceding to

the restrictions of µ and X to Ω(rn) and thereby find a µ-simple Xn : Ω(rn) −→
E with the property(∫

Ω(rn)

‖X(ω)−Xn(ω)‖pE µ(dω)

) 1
p

≤ 1

2n
.

Hence, after extending Xn to Ω by taking it to be 0 off of Ω(rn), we arrive at a
µ-simple Xn for which ‖X −Xn‖Lp(µ;E) ≤ 1

n . �

Given an F-measurable X : Ω −→ E and a B ∈ F for which 1B X ∈ L1(µ;E),
I will use the notation

Eµ
[
X, B

]
or

∫
B

X dµ or

∫
B

X(ω)µ(dω)

all to denote the quantity Eµ[1B X]. Also, when discussing the spaces Lp(µ;E), I
will adopt the usual convention of blurring the distinction between a particular
F-measurable X : Ω −→ E belonging to Lp(µ;E) and the equivalence class
of those F-measurable Y ’s which differ from X on a µ-null set. Thus, with
this convention, ‖ · ‖Lp(µ;E) becomes a bona fide norm (not just a seminorm)
on Lp(µ;E) with respect to which Lp(µ;E) becomes a normed vector space.
Finally, by the same procedure with which one proves the Lp(µ;R) spaces are
complete, one can prove that the spaces Lp(µ;E) are complete for any separable
Banach space.



198 V Conditioning and Martingales

Theorem 5.1.12. Let (Ω,F , µ) be a σ-finite measure space and X : Ω −→ E
a locally µ-integrable function. Then

µ
(
X 6= 0

)
= 0 ⇐⇒ Eµ

[
X, A

]
= 0 for A ∈ F with µ(A) <∞.

Next, assume that Σ is a sub-σ-algebra for which µ � Σ is σ-finite. Then for each
locally µ-integrable X : Ω −→ E there is a µ-almost everywhere unique locally
µ-integrable, Σ-measurable XΣ : Ω −→ E such that

(5.1.13) Eµ
[
XΣ, A

]
= Eµ

[
X, A

]
for every A ∈ Σ with µ(A) <∞.

In particular, if Y : Ω −→ E is a second locally µ-integrable function, then, for
all α, β ∈ R, (

αX + βY
)

Σ
= αXΣ + βYΣ (a.e., µ).

Finally,

(5.1.14)
∥∥XΣ

∥∥
E
≤
(
‖X‖E

)
Σ

(a.e., µ).

Hence, not only does (5.1.13) continue to hold for any A ∈ Σ with 1AX ∈
L1(µ;E); but also, for each p ∈ [1,∞], the mapping X ∈ Lp(µ;E) 7−→ XΣ ∈
Lp(µ;E) is a linear contraction.

Proof: Clearly, it is only necessary to prove the “⇐=” part of the first assertion.
Thus, suppose that µ(X 6= 0) > 0. Then, because E is separable and therefore
(cf. Exercise 5.1.19) E∗ with the weak* topology is also separable, there exists
an ε > 0 and a x∗ ∈ E∗ with the property that µ

(〈
X,x∗

〉
≥ ε
)
> 0; from which

it follows (by σ-finiteness) that there is an A ∈ F for which µ(A) <∞ and〈
Eµ
[
X, A

]
, x∗
〉

= Eµ
[〈
X,x∗

〉
, A
]
6= 0.

I turn next to the uniqueness and other properties ofXΣ. But it is obvious that
uniqueness is an immediate consequence of the first assertion and that linearity
follows from uniqueness. As for (5.1.14), notice that if x∗ ∈ E∗ and ‖x∗‖E∗ ≤ 1,
then

Eµ
[〈
XΣ, x

∗〉, A] = Eµ
[〈
X,x∗

〉
, A
]
≤ Eµ

[
‖X‖E , A

]
= Eµ

[(
‖X‖E

)
Σ
, A
]

for every A ∈ Σ with µ(A) <∞. Hence, at least when µ is a probability measure,
Theorem 5.1.3 implies that

〈
XΣ, x

∗〉 ≤ (
‖X‖E

)
Σ

(a.e., µ) for each element

x∗ from the unit ball in E∗; and so, because E∗ with the weak* topology is
separable, (5.1.14) follows in this case. To handle µ’s which are not probability
measures, note that either µ(Ω) = 0, in which case everything is trivial, or
µ(Ω) ∈ (0,∞), in which case we can renormalize µ to make it a probability
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measure, or µ(Ω) = ∞, in which case we can use the σ-finiteness of µ � Σ to
reduce ourselves to the countable, disjoint union of the preceding cases.

Finally, to prove the existence of XΣ, I proceed as in the last part of the
preceding paragraph to reduce myself to the case when µ is a probability measure
P. Next, suppose that X is simple, let R denote its range, and note that

XΣ ≡
∑
x∈R

xP
(
X = x

∣∣Σ)
has the required properties. In order to handle general X ∈ L1(P;E), I use the
approximation result in Lemma 5.1.10 to find a sequence {Xn : n ≥ 1} of simple
functions which tend to X in L1(P;E). Then, since

(Xn)Σ − (Xm)Σ =
(
Xn −Xm

)
Σ

(a.s.,P)

and therefore, by (5.1.14),∥∥(Xn)Σ − (Xm)Σ

∥∥
L1(P;E)

≤ ‖Xn −Xm

∥∥
L1(P;E)

,

we know that there exists a Σ-measurable XΣ ∈ L1(P;E) to which the sequence{
(Xn)Σ : n ≥ 1

}
converges; and clearly XΣ has the required properties. �

Referring to the setting in the second part of Theorem 5.1.12, I will extend
the convention introduced following Theorem 5.1.3 and call the µ-equivalence
class of XΣ’s satisfying (5.1.13) the µ-conditional expectation of X given
Σ, will use Eµ[X|Σ] to denote this µ-equivalence class, and will, in general,
ignore the distinction between the equivalence class and a generic representative
of that class. In addition, if X : Ω −→ E is locally µ-integrable, then, just
as in Theorem 5.1.4, the following are essentially immediate consequences of
uniqueness:

Eµ
[
Y X

∣∣Σ] = Y Eµ
[
X
∣∣Σ] (a.e., µ) for Y ∈ L∞(Ω,Σ, µ;R),

and

Eµ
[
X
∣∣T ] = Eµ

[
Eµ
[
X
∣∣Σ]∣∣∣T ] (a.e., µ)

whenever T is a sub-σ-algebra of Σ for which µ � T is σ-finite.

Exercises for § 5.1

Exercise 5.1.15. As the proof of existence in Theorem 5.1.4 makes clear, the
operation X ∈ L2(P;R) 7−→ EP[X|Σ] is just the operation of orthogonal pro-
jection from L2(P;R) onto the space L2(Ω,Σ,P;R) of Σ-measurable elements of
L2(P;R). For this reason, one might be inclined to think that the concept of con-
ditional expectation is basically a Hilbert space notion. However, as this exercise
shows, that inclination should be resisted. The point is that, although condi-
tional expectation is definitely an orthogonal projection, not every orthogonal
projection is a conditional expectation!
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(i) Let L be a closed linear subspace of L2(P;R), and let ΣL = σ
(
{X : X ∈ L}

)
be the σ-algebra over Ω generated by X ∈ L. Show that L = L2

(
Ω,ΣL,P;R

)
if

and only if 1 ∈ L and X+ ∈ L whenever X ∈ L.

Hint: To prove the “if” assertion, let X ∈ L be given, and show that

Xn ≡
[
n
(
X − α1

)+ ∧ 1
]
∈ L for every α ∈ R and n ∈ Z+.

Conclude that Xn ↗ 1(α,∞) ◦X must be an element of L.

(ii) Let Π be an orthogonal projection operator on L2(P;R), set L = Range(Π),
and let Σ = ΣL, where ΣL is defined as in part (i). Show that ΠX = EP[X|Σ]
(a.s.,P) for all X ∈ L2(P;R) if and only if Π1 = 1 and

(*) Π
(
X ΠY

)
= (ΠX)(ΠY ) for all X, Y ∈ L∞(P;R).

Hint: Assume that Π1 = 1 and that (*) holds. Given X ∈ L∞(P;R), use
induction to show that

‖ΠX‖nL2n(P) ≤ ‖X‖
n−1
L∞(P)‖X‖L2(P) and

(
ΠX

)n
= Π

(
X(ΠX)n−1

)
for all n ∈ Z+. Conclude that ‖ΠX‖L∞(P) ≤ ‖X‖L∞(P) and that

(
ΠX

)n ∈
L, n ∈ Z+, for every X ∈ L∞(P;R). Next, using the preceding together with
Weierstrass’s Approximation Theorem, show that (ΠX)+ ∈ L, first for X ∈
L∞(P;R) and then for all X ∈ L2(P;R). Finally, apply (i) to arrive at L =
L2
(
Ω,Σ,P;R

)
.

(iii) Just in case the situation is not completely clarified by part (ii), consider
once again a closed linear subspace L of L2(P;R) and let ΠL be orthogonal
projection onto L. Given X ∈ L2(P;R), recall that ΠLX is characterized as the
unique element of L for which X − ΠLX ⊥ L, and show that EP[X|ΣL] is the
unique element of L2(Ω,ΣL,P;R) with the property that

X − EP[X∣∣ΣL] ⊥ f(Y1, . . . , Yn
)

for all n ∈ Z+, f ∈ Cb

(
Rn;R

)
, and Y1, . . . , Yn ∈ L. In particular, ΠLX =

EP[X|ΣL] if and only if X−ΠLX is perpendicular not only to all linear functions
of the Y ’s in L but even to all nonlinear ones.

Exercise 5.1.16. In spite of the preceding, there is a situation in which or-
thogonal projection coincides with conditioning. Namely, suppose that G is a
closed Gaussian family in L2(P;R), and let L be a closed, linear subspace of G.
As an application of Lemma 4.3.1, show that, for any X ∈ G, the orthogonal
projection ΠLX of X onto L is a conditional expectation value of X given the
σ-algebra ΣL generated by the elements of L.
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Exercise 5.1.17. Because most projections are not conditional expectations,
it is an unfortunate fact of life that, for the most part, partial sums of Fourier
series cannot be interpreted as conditional expectations. Be that as it may, there
are special cases in which such an interpretation is possible. To see this, take
Ω = [0, 1), F = B[0,1), and P to be the restriction of Lebesgue measure to [0, 1).
Next, for n ∈ N, take Fn to be the σ-algebra generated by those f ∈ C([0, 1);C)
which are periodic with period 2−n. Finally, set ek(x) = exp

[√
−1k2πx

]
for

k ∈ Z, and use elementary Fourier analysis to show that, for each n ∈ N,{
ek2n : k ∈ Z

}
is an orthonormal basis for L2(Ω,Fn,P;C). In particular,

conclude that, for every f ∈ L2(P;C):

EP[f ∣∣Fn] = EP[f ] +
∑
k∈Z

(
f, ek2n

)
L2([0,1);C)

ek2n ,

where the convergence is in L2([0, 1];C). (Also see Exercise 5.2.37.)

Exercise 5.1.18. Let (Ω,F , µ) be a measure space and Σ a sub-σ-algebra of
F with the property that µ � Σ is σ-finite. Next, let E be a separable Hilbert
space, p ∈ [1,∞], X ∈ Lp(µ;E), and Y a Σ-measurable element of Lp

′
(µ;E) (p′

is the Hölder conjugate of p). Show that

Eµ
[(
Y,X

)
E

∣∣∣Σ] =
(
Y,Eµ

[
X
∣∣Σ])

E
µ-almost surely.

Hint: First observe that it suffices to check that

Eµ
[(
Y,X

)
E

]
= Eµ

[(
Y,Eµ

[
X
∣∣Σ])

E

]
.

Next, choose an orthonormal basis {en : n ≥ 0} for E, and justify the steps in

Eµ
[(
Y,X

)
E

]
=

∞∑
1

Eµ
[(
Y, en

)
E

(
en, X

)
E

]
=

∞∑
1

Eµ
[(
Y, en

)
E
Eµ
[(

en, X
)
E

∣∣Σ]] = Eµ
[(
Y,Eµ[X|Σ]

)
E

]
.

Exercise 5.1.19. Let E be a separable Banach space, and show that, for each
R > 0, the closed ball BE∗(0, R) with the weak* topology is a compact metric
space. Conclude from this that the weak* topology on E∗ is second countable
and therefore separable.

Hint: Choose a countable, dense subset {xn : n ≥ 1} in the unit ball BE(0, 1),
and define

ρ(x∗, y∗) =

∞∑
n=1

2−n
∣∣〈xn, x∗ − y∗〉∣∣ for x∗, y∗ ∈ BE∗(0, R).
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Show that ρ is a metric for the weak* topology on BE∗(0, R). Next, choose
{xnm : m ≥ 1} so that xn1 = x1 and xnm+1 = xn if n is the first n > nm such
that xn is linearly independent of {x1, . . . , xn−1}. Given a sequence {x∗` : ` ≥ 1}
in BE∗(0, R), use a diagnalization argument to find a subsequence {x∗`k : k ≥ 1}
such that am = limk→∞〈xnm

, x∗`k〉 exists for each m ≥ 1. Now define f on the

span S of {xnm
: m ≥ 1} so that f(x) =

∑M
m=1 αmam if x =

∑M
m=1 αmxnm

,
note that f(x) = limk→∞〈x, x∗`k〉 for x ∈ S, and conclude that f is linear on
S and satisfies the estimate |f(x)| ≤ R‖x‖E there. Since S is dense in E,
there is a unique extension of f as a bounded linear functional on E satisfying
the same estimate, and so there exists an x∗ ∈ BE∗(0, R) such that 〈x, x∗〉 =
limk→∞〈x, x∗`k〉 for all x ∈ S. Finally, check that this convergence continues to
hold for all x ∈ E, and conclude that x∗`k −→ x∗ in the weak* topology.

§ 5.2 Discrete Parameter Martingales

In this section I will introduce an interesting and useful class of stochastic pro-
cesses which unifies and simplifies several branches of probability theory as well
as other branches of analysis. From the analytic point of view, what I will be
doing is developing an abstract version of differentiation theory (cf. Theorem
6.1.8).

Although I will want to make some extensions in § 5.3, I start in the fol-
lowing setting. (Ω,F ,P) is a probability space and

{
Fn : n ∈ N

}
is a non-

decreasing sequence of sub-σ-algebra’s of F . Given a measurable space (E,B),
say that the family

{
Xn : n ∈ N

}
of E-valued random variables is

{
Fn :

n ∈ N
}
-progressively measurable if Xn is Fn-measurable for each n ∈ N.

Next, a family
{
Xn : n ∈ N

}
of (−∞,∞]-valued random variables is said

to be a P-submartingale with respect to
{
Fn : n ∈ N

}
if it is

{
Fn :

n ∈ N
}

-progressively measurable, EP[X−n ] < ∞, and, for each n ∈ N, Xn ≤
EP[Xn+1|Fn] (a.s.,P). It is said to be a P-martingale with respect to

{
Fn :

n ∈ N
}

if {Xn : n ∈ N} is an
{
Fn : n ∈ N

}
-progressively measurable family of

R-valued, P-integrable random variables satisfying Xn = EP[Xn+1|Fn] (a.s.,P )
for each n ∈ N. In the future, I will abbreviate these statements by saying that
the triple

(
Xn,Fn,P

)
is a submartingale or martingale.

Examples. The most trivial example of a submartingale is provided by a non-
decreasing sequence {an : n ≥ 0}. That is, if Xn ≡ an, n ∈ N, then

(
Xn,Fn,P

)
is a submartingale on any probability space

(
Ω,F ,P

)
relative to any non-decreas-

ing
{
Fn : n ∈ N

}
. More interesting examples are those given below.∗

(i) Let {Yn : n ≥ 1} be a sequence of mutually independent (−∞,∞]-valued ran-
dom variables with EP[Y −n ] <∞, n ∈ N, set F0 = {∅,Ω}, Fn = σ

(
{Y1, . . . , Yn}

)
∗ For a much more interesting and complete list of examples, the reader might want to consult
J. Neveu’s Discrete-parameter Martingales, publ. in 1975 by North–Holland.
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for n ∈ Z+, and define Xn =
∑

1≤m≤n Ym, where summation over the empty set

is taken to be 0. Then, because EP[Yn+1|Fn] = EP[Yn+1] (a.s.,P) and therefore

EP[Xn+1

∣∣Fn] = Xn + EP[Yn+1

]
(a.s.,P)

for every n ∈ N, we see that
(
Xn,Fn,P

)
is a submartingale if and only if EP[Yn] ≥

0 for all n ∈ Z+. In fact, if the Yn’s are R-valued and P-integrable, then the same
line of reasoning shows that

(
Xn,Fn,P

)
is a martingale if and only if EP[Yn] = 0

for all n ∈ Z+. Finally, if {Yn : n ≥ 0} ⊆ L2(P;R) and EP[Yn] = 0 for each
n ∈ Z+, then

EP[X2
n+1

∣∣Fn] = X2
n + EP[Y 2

n+1

∣∣Fn] ≥ X2
n (a.s.,P),

and so
(
X2
n,Fn,P

)
is a submartingale.

(ii) If X is an R-valued, P-integrable random variable and
{
Fn : n ∈ N

}
is a non-

decreasing sequence of sub-σ-algebras of F , then, by (5.1.6),
(
EP[X|Fn],Fn,P

)
is a martingale.

(iii) If
(
Xn,Fn,P

)
is a martingale, then, by (5.1.5),

(
|Xn|,Fn,P

)
is a submartin-

gale.

§ 5.2.1. Doob’s Inequality and Marcinkewitz’s Theorem. In view of Ex-
ample (i) above, we see that partial sums of independent random variables with
mean-value 0 are a source of martingales and that their squares are a source of
submartingales. Hence, it is reasonable to ask whether some of the important
facts about such partial sums will continue to be true for all martingales; and
perhaps the single most important indication that the answer may be “yes” is
contained in the following generalization of Kolmogorov’s Inequality (cf. Theo-
rem 1.4.5). Like most of the foundational results in martingale theory, this one
is due to J.L. Doob.

Theorem 5.2.1 (Doob’s Inequality). Assume that
(
Xn,Fn,P

)
is a sub-

martingale. Then, for every N ∈ Z+ and α ∈ (0,∞):

(5.2.2) P
(

max
0≤n≤N

Xn ≥ α
)
≤ 1

α
EP
[
XN , max

0≤n≤N
Xn ≥ α

]
.

In particular, if the Xn’s are non-negative, then, for each p ∈ (1,∞),

(5.2.3) EP
[

sup
n∈N

Xp
n

] 1
p

≤ p

p− 1
sup
n∈N

EP[Xp
n

] 1
p .

Proof: To prove (5.2.2), set A0 =
{
X0 ≥ α

}
and

An =

{
Xn ≥ α but max

0≤m<n
Xm < α

}
for n ∈ Z+.
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Then the An’s are mutually disjoint and An ∈ Fn for each n ∈ N. Thus,

P

(
max

0≤n≤N
Xn ≥ α

)
=

N∑
n=0

P
(
An
)
≤

N∑
n=0

EP[Xn, An
]

α

≤
N∑
n=0

EP[XN , An
]

α
=

1

α
EP
[
XN , max

0≤n≤N
Xn ≥ α

]
.

Now assume that the Xn’s are non-negative. Given (5.2.2), (5.2.3) becomes
an easy application of Exercise 1.4.18. �

Doob’s inequality is an example of what analysts call a weak-type inequal-
ity. To be more precise, it is a weak-type 1–1 inequality. The terminology derives
from the fact that such an inequality follows immediately from an L1-norm, or
strong-type 1–1, inequality between the objects under consideration; but, in gen-
eral, it is strictly weaker. In order to demonstrate how powerful such a result
can be, I will now apply Doob’s Inequality to prove a theorem of Marcinkewitz.
Because it is an argument to which we will return again, the reader would do
well to become comfortable with the line of reasoning which allows one to pass
from a weak-type inequality, like Doob’s, to almost sure convergence results.

Corollary 5.2.4. Let X be an R-valued random variable and p ∈ [1,∞). If
X ∈ Lp(P;R), then for any non-decreasing sequence

{
Fn : n ∈ N

}
of sub-σ-

algebras of F :

EP[X∣∣Fn] −→ EP

[
X

∣∣∣∣ ∞∨
0

Fn

]
(a.s.,P) and in Lp(P;R)

as n → ∞. In particular, if X is
∨∞

0 Fn-measurable, then EP[X|Fn] −→ X
(a.s.,P) and in Lp(P;R).

Proof: Without loss in generality, assume that F =
∨∞

0 Fn.
Given X ∈ L1(P;R), set Xn = EP[X|Fn] for n ∈ N. The key to my proof will

be the inequality

(5.2.5) P
(

sup
n∈N
|Xn| ≥ α

)
≤ 1

α
EP
[
|X|, sup

n∈N
|Xn| ≥ α

]
, α ∈ (0,∞);

and, since, by (5.1.5), |Xn| ≤ EP[|X| |Fn] (a.s.,P), while proving (5.2.5) I may
and will assume that X and all the Xn’s are non-negative. But then, by (5.2.2),

P

(
sup

0≤n≤N
Xn > α

)
≤ 1

α
EP
[
XN , sup

0≤n≤N
Xn > α

]
=

1

α
EP
[
X, sup

0≤n≤N
Xn > α

]
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for all N ∈ Z+; and therefore (5.2.5) follows when N → ∞ and one takes right
limits in α.

As my first application of (5.2.5), note that {Xn : n ≥ 0} is uniformly P-
integrable. Indeed, because |Xn| ≤ EP[|X| |Fn], we have from (5.2.5) that

sup
n∈N

EP
[
|Xn|, |Xn| ≥ α

]
≤ sup
n∈N

EP
[
|X|, |Xn| ≥ α

]
≤ EP

[
|X|, sup

n∈N
|Xn| ≥ α

]
−→ 0

as α → ∞. Thus, we will know that the asserted convergence takes place in
L1(P;R) as soon as we show that it happens P-almost surely. In addition, if
X ∈ Lp(P;R) for some p ∈ (1,∞), then, by (5.2.5) and Exercise 1.4.18, we see
that

{
|Xn|p : n ∈ N

}
is uniformly P-integrable and, therefore, that Xn −→ X

in Lp(µ;R) as soon as it does (a.s.,P). In other words, everything comes down
to checking the P-almost sure convergence.

To prove the P-almost sure convergence, let G be the set of X ∈ L1(P;R) for
which Xn −→ X (a.s.,P). Clearly, X ∈ G if X ∈ L1(P;R) is Fn-measurable for
some n ∈ N; and, therefore, G is dense in L1(P;R). Thus, all that remains is to
prove that G is closed in L1(P;R). But if {X(k) : k ≥ 1} ⊆ G and X(k) −→ X
in L1(P;R), then, by (5.2.5),

P
(

sup
n≥N

∣∣Xn −X
∣∣ ≥ 3α

)
≤P
(

sup
n≥N

∣∣Xn −X(k)
n

∣∣ ≥ α)+ P
(

sup
n≥N

∣∣X(k)
n −X(k)

∣∣ ≥ α)
+ P

(∣∣X(k) −X
∣∣ ≥ α)

≤ 2

α

∥∥X −X(k)
∥∥
L1(P)

+ P
(

sup
n≥N

∣∣X(k)
n −X(k)

∣∣ ≥ α)
for every N ∈ Z+, α ∈ (0,∞), and k ∈ Z+. Hence, by first letting N →∞ and
then k →∞, we see that

lim
N→∞

P
(

sup
n≥N

∣∣Xn −X
∣∣ ≥ 3α

)
= 0 for every α ∈ (0,∞);

and this proves that X ∈ G. �

Before moving on to more sophisticated convergence results, I will spend a
little time showing that Corollary 5.2.4 is already interesting. In order to in-
troduce my main application, recall my preliminary discussion of conditioning
when I was attempting to explain Kolmogorov’s idea at the beginning of this
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chapter. As I said there, the most easily understood situation occurs when one
conditions with respect to a sub-σ-algebra Σ which is generated by a countable
partition P. Indeed, in that case one can easily verify that

(5.2.6) EP[X∣∣Σ] =
∑
A∈P

EP[X, A]
P(A)

1A,

where it is understood that

EP[X, A]
P(A)

≡ 0 when P(A) = 0.

Unfortunately, even when F is countably generated, Σ need not be (cf. Exercise
1.1.18). Furthermore, just because Σ is countably generated, it will be seldom
true that its generators can be chosen to form a countable partition. (For ex-
ample, as soon as Σ contains an uncountable number of atoms, such a partition
cannot exist.) Nonetheless, if Σ is any countably generated σ-algebra, then we
can find a sequence {Pn : n ≥ 0} of finite partitions with the properties that

Σ = σ

(∞⋃
0

Pn

)
and σ

(
Pn−1

)
⊆ σ

(
Pn
)
, n ∈ Z+.

In fact, simply choose a countable generating sequence {An : n ≥ 0} for Σ and
take Pn to be the collection of distinct sets of the form B0 ∩ · · · ∩ Bn, where
Bm ∈

{
Am, Am{

}
for each 0 ≤ m ≤ n.

Theorem 5.2.7. Let Σ be a countably generated sub-σ-algebra of F , and
choose {Pn : n ≥ 0} to be a sequence of finite partitions as above. Next, given
p ∈ [1,∞) and a random variable X ∈ Lp(P;R), define Xn for n ∈ N by the
right-hand side of (5.2.6) with P = Pn. Then Xn −→ EP[X|Σ] both P-almost
surely and in Lp(P;R). Moreover, even if Σ is not countably generated, for
each separable, closed subspace L of Lp(P;R) there exists a sequence of finite
partitions Pn, n ∈ N, such that∑

A∈Pn

EP[X, A]
P(A)

1A −→ EP[X∣∣Σ] (a.s.,P) and in Lp(P;R)

for every X ∈ L.

Proof: To prove the first part, simply set Fn = σ
(
Pn
)
, then identify Xn as

EP[X|Fn], and finally apply Corollary 5.2.4. As for the second part, let Σ(L)
be the σ-algebra generated by

{
EP[X|Σ] : X ∈ L

}
, note that Σ(L) is countably

generated and that

EP[X∣∣Σ] = EP[X∣∣Σ(L)
]

(a.s.,P) for each X ∈ L,
and apply the first part with Σ replaced by Σ(L). �

Theorem 5.2.7 makes it easy to transfer the usual Jensen’s Inequality to con-
ditional expectations.
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Corollary 5.2.8 (Jensen’s Inequality). Let C be a closed, convex subset
of RN , X a C-valued, P-integrable random variable, and Σ a sub-σ-algebra of
F . Then there is a C-valued representative XΣ of

EP[X∣∣Σ] ≡
 EP[X1

∣∣Σ]
...

EP[XN

∣∣Σ]
 .

In addition, if g : C −→ [0,∞) is continuous and concave, then

EP[g(X)
∣∣Σ] ≤ g(XΣ

)
(a.s.,P).

Proof: By the classical Jensen’s Inequality, Y ≡ g(X) is P-integrable. Hence,
by the second part of Theorem 5.2.7, we can find finite partitions Pn, n ∈ N, so
that

Xn ≡
∑
A∈Pn

EP[X, A]

P(A)
1A −→ EP[X|Σ]

and

Yn ≡
∑
A∈Pn

EP[g(X), A
]

P(A)
1A −→ EP[g(X)

∣∣Σ]
P-almost surely. Furthermore, again by the classical Jensen’s Inequality,

EP[X, A]

P(A)
∈ C and

EP[g(X), A
]

P(A)
≤ g

(
EP[X, A]

P(A)

)
for all A ∈ F with P(A) > 0. Hence, if Λ ∈ Σ denotes the set of ω for which

lim
n→∞

[
Xn(ω)
Yn(ω)

]
∈ RN+1

exists, v is a fixed element of C,

XΣ(ω) ≡
{

limn→∞Xn(ω) if ω ∈ Λ

v if ω /∈ Λ,

and

Y (ω) ≡
{

limn→∞ Yn(ω) if ω ∈ Λ

v if ω /∈ Λ,

then XΣ is a C-valued representative of EP[X|Σ], Y is a representative of
EP[g(X)|Σ], and Y (ω) ≤ g

(
XΣ(ω)

)
for every ω ∈ Ω. �
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Corollary 5.2.9. Let I be a non-trivial, closed interval in R ∪ {+∞} (i.e.,
either I ⊂ R is bounded on the right or I∩R is unbounded on the right and I in-
cludes the point +∞). Then every I-valued random variable X with P-integrable
negative part admits an I-valued representative of EP[X|Σ]. Furthermore, given
a continuous, convex function f : I −→ R ∪ {+∞},

(5.2.10) f
(
EP[X∣∣Σ]) ≤ EP[f(X)

∣∣Σ] (a.s.,P)

if either f is bounded above and X is P-integrable or f is bounded below and
to the left (i.e., f is bounded on each interval of the form I ∩ (−∞, a] with
a ∈ I ∩ R). In particular, for each p ∈ [1,∞),∥∥∥EP[X ∣∣Σ]∥∥∥

Lp(P;R)
≤ ‖X‖Lp(P;R).

Finally, if either
(
Xn,Fn,P

)
is an I-valued martingale and f is as above or if

(
Xn,

Fn, P
)

is an I-valued submartingale and f is bounded below and non-decreasing

(as well as continuous and convex), then
(
f(Xn),Fn,P

)
is a submartingale.

Proof: In view of Corollary 5.2.8, we know that an I-valued representative
of EP[X|Σ] exists when X is P-integrable, and the general case follows after a
trivial truncation procedure. In order to prove (5.2.10), first assume that f is
bounded above by some M < ∞ and that X ∈ L1(P;R). Then (5.2.10) is an
immediate consequence of the last part of Corollary 5.2.8 with g = M − f . To
handle the case when f is bounded below and to the left, first observe that either
f is non-increasing everywhere, or there is an a ∈ I ∩ R with the property that
f is non-increasing to the left of a and non-decreasing to the right of a. Next,
let an I-valued X with X− ∈ L1(P) be given, and set Xn = X ∧ n. Then there
exists an m ∈ Z+ such that Xn is I-valued for all n ≥ m; and clearly, by the
preceding, we know that

(*) f
(
EP[Xn

∣∣Σ]) ≤ EP[f(Xn)
∣∣Σ] (a.s.,P) for all n ≥ m.

Moreover, in the case when f is non-increasing,
{
f(Xn) : n ≥ m

}
is bounded

below and non-increasing; and, in the other case,
{
f(Xn) : n ≥ m ∨ a

}
is

bounded below and non-decreasing. Hence, in both cases, (5.2.10) follows (*)
after an application of the version of the Monotone Convergence Theorem in
(5.1.8).

To complete the proof, simply note that in either of the two cases given, the
results just proved justify:

EP[f(Xn)
∣∣Fn−1

]
≥ f

(
EP[Xn

∣∣Fn−1

])
≥ f

(
Xn−1

)
P-almost surely. �
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§ 5.2.2. Doob’s Stopping Time Theorem. Perhaps the most far-reaching
contribution that Doob made to martingale theory is his observation that one
can “stop” a martingale without destroying the martingale property. Later, L.
Snell showed that the analogous result is true for submartingales.

In order to state their results here, I need to introduce the notion of a stopping
time in this setting. Namely, I will say that the function ζ : Ω −→ N ∪ {∞} is
an stopping time relative to {Fn : n ≥ 0} if

{
ω : ζ(ω) = n

}
∈ Fn for each

n ∈ N. In addition, given a stopping time ζ, I use Fζ to denote the σ-algebra of
A ∈ F such that A ∩ {ζ = n} ∈ Fn, n ∈ Z+. Notice that Fζ1 ⊆ Fζ2 if ζ1 ≤ ζ2.
In addition, if

{
Xn : n ∈ N

}
is
{
Fn : n ∈ N

}
-progressively measurable, check

that the random variable Xζ given by Xζ(ω) = Xζ(ω)(ω) is Fζ-measurable on
{ζ <∞}.

Doob used stopping times to give a mathematically rigorous formulation of the
W.C. Field’s assertion that “you can’t cheat an honest man.” That is, consider
a gambler who is trying to beat the system. Assuming that he is playing a fair
game, it is reasonable to say his gain Xn after n plays will evolve as a martingale.
More precisely, if Fn contains the history of the game up to and including the
nth play, then

(
Xn,Fn,P

)
will be a martingale. In the context of this model, a

stopping time can be thought of as a feasible (i.e., one which does not require the
gift of prophesy) strategy that the gambler can use to determine when he should
stop playing in order to maximize his gains. When couched in these terms, the
next result predicts that there is no strategy with which the gambler can alter
his expected gain.

Theorem 5.2.11 (Doob’s Stopping Time Theorem). For any submartin-
gale (martingale)

(
Xn,Fn,P

)
which is P-integrable and any stopping time ζ,(

Xn∧ζ ,Fn, P
)

is again a P-integrable submartingale (martingale).

Proof: Let A ∈ Fn−1. Then, since A ∩ {ζ > n− 1} ∈ Fn−1,

EP[Xn∧ζ , A
]

= EP[Xζ , A ∩ {ζ ≤ n− 1}
]

+ EP[Xn, A ∩ {ζ > n− 1}
]

≥ EP[Xζ , A ∩ {ζ ≤ n− 1}
]

+ EP[Xn−1, A ∩ {ζ > n− 1}
]

= EP[X(n−1)∧ζ , A
]
;

and, in the case of martingales, the inequality in the preceding can be replaced
by an equality. �

Closely related to Doob’s Stopping Time Theorem is an important variant
due to G. Hunt. In order to facilitate the proof of Hunt’s result, I begin with an
easy but seminal observation of Doob’s.

Lemma 5.2.12 (Doob’s Decomposition). For each n ∈ N let Xn be an
Fn-measurable, P-integrable random variable. Then, up to a P-null set, there is
at most one sequence {An : n ≥ 0} ⊆ L1(P;R) such that A0 = 0, An is Fn−1-
measurable for each n ∈ Z+, and

(
Xn−An,Fn,P

)
is a martingale. Moreover, if

(Xn,Fn,P) is an integrable submartingale, then such a sequence {An : n ≥ 0}
exists, and An−1 ≤ An P-almost surely for all n ∈ Z+.
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Proof: To prove the uniqueness assertion, suppose that {An : n ≥ 0} and
{Bn : n ≥ 0} are two such sequences, and set ∆n = Bn − An. Then ∆0 = 0,
∆n is Fn−1-measurable for each n ∈ Z+, and (∆n,Fn,P) is a martingale. But
this means that ∆n = EP[∆n | Fn−1] = ∆n−1 for all n ∈ Z+, and so ∆n = 0 for
all n ∈ N.

Now suppose that (Xn,Fn,P) is an integrable submartingale. To prove the
asserted existence result, set A0 ≡ 0 and

An = An−1 + EP[Xn −Xn−1

∣∣Fn−1

]
∨ 0 for n ∈ Z+. �

Theorem 5.2.13 (Hunt). Let
(
Xn,Fn,P

)
be a P-integrable submartingale.

Given bounded stopping times ζ and ζ ′ satisfying ζ ≤ ζ ′,

(5.2.14) Xζ ≤ EP[Xζ′
∣∣Fζ] (a.s.,P),

and the inequality can be replaced by equality when
(
Xn,Fn,P

)
is a martingale.

(Cf. Exercise 5.2.31 for unbounded stopping times.)

Proof: Choose
{
An : n ∈ N

}
as in Lemma 5.2.12, and set Yn = Xn−An, n ∈

N. Then, because Aζ ≤ Aζ′ and Aζ is Fζ-measurable,

EP[Xζ′
∣∣Fζ] ≥ EP[Yζ′ +Aζ

∣∣Fζ] = EP[Yζ′ ∣∣Fζ]+Aζ ,

it suffices to prove that equality holds in (5.2.14) when
(
Xn,Fn,P

)
is a martin-

gale. To this end, choose N ∈ Z+ to be an upper bound for ζ ′, let Γ ∈ Fζ be
given, and note that

EP[XN , Γ
]

=

N∑
n=0

EP[XN , Γ ∩ {ζ = n}
]

=

N∑
n=0

EP[Xn, Γ ∩ {ζ = n}
]

= EP[Xζ , Γ
]
;

and similarly (since Γ ∈ Fζ ⊆ Fζ′), EP[XN , Γ] = EP[Xζ′ , Γ]. �

§ 5.2.3. Martingale Convergence Theorem. My next goal is to show that,
even when they are not given in the form covered by Corollary 5.2.4, martingales
want to converge. If for no other reason, such a result has got to be more difficult
because one does not know ahead of time what, if it exists, the limit ought to
be. Thus, the reasoning will have to be more subtle than that used in the proof
of Corollary 5.2.4. I will follow Doob and base my argument on the idea that, in
some sense, a martingale has got to be nearly constant and that a submartingale
is the sum of a martingale and a non-decreasing process. In order to make
mathematics out of this idea, I need to introduce a somewhat novel criterion for
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convergence of real numbers. Namely, given a sequence {xn : n ≥ 0} ⊆ R and
−∞ < a < b < ∞, say that {xn : n ≥ 0} upcrosses the interval [a, b] at
least N times if there exist integers 0 ≤ m1 < n1 < · · · < mN < nN such that
xmi
≤ a and xni

≥ b for each 1 ≤ i ≤ N and that it upcrosses [a, b] precisely
N times if it upcrosses [a, b] at least N but does not upcross [a, b] at least N+1
times. Notice that limn→∞ xn < limn→∞ xn if and only if there exist rational
numbers a < b such that {xn : n ≥ 0} upcrosses [a, b] at least N times for every
N ∈ Z+. Hence, {xn : n ≥ 0} converges in [−∞,∞] if and only if it upcrosses
[a, b] at most finitely often for each pair of rational numbers a < b.

Theorem 5.2.15 (Doob’s Martingale Convergence Theorem). ∗ Let(
Xn,Fn,P

)
be a P-integrable submartingale, and, for −∞ < a < b < ∞, let

U[a,b](ω) denote the precise number of times that {Xn(ω) : n ≥ 0} upcrosses
[a, b]. Then

(5.2.16) EP[U[a,b]

]
≤ sup
n∈N

EP[(Xn − a)+
]

b− a
.

In particular, if

(5.2.17) sup
n∈N

EP[X+
n

]
<∞,

then there exists a P-integrable random variable X to which {Xn : n ≥ 0} con-
verges P-almost surely. (See Exercises 5.2.28 and 5.2.30 for other derivations.)

Proof: Set Yn = (Xn−a)+

b−a , and note that (by Corollary 5.2.9)
(
Yn,Fn,P

)
is a

P-integrable submartingale. Next, let N ∈ Z+ be given, and set ζ ′0 = 0, and, for
k ∈ Z+, define

ζk = inf
{
n ≥ ζ ′k−1 : Xn ≤ a

}
∧N and ζ ′k = inf

{
n ≥ ζk : Xn ≥ b

}
∧N.

Proceeding by induction, it is an easy matter to check that all the ζk’s and

ζ ′k’s are stopping times. Moreover, if U
(N)
[a,b](ω) is the precise number of times{

Xn∧N (ω) : n ≥ 0
}

upcrosses [a, b], then

U
(N)
[a,b] ≤

N∑
k=1

(
Yζ′

k
− Yζk

)
= YN − Y0 −

N∑
k=1

(
Yζk − Yζ′k−1

)
≤ YN −

N∑
k=1

(
Yζk − Yζ′k−1

)
.

∗ In the notes to Chapter VII of his Stochastic Processes, publ. by J. Wiley in 1953, Doob gives
a thorough account of the relationship between his convergence result and earlier attempts in

the same direction. In particular, he points out that, in 1946, S. Anderson and B. Jessen
formulated and proved a closely related convergence theorem.
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Hence, since ζ ′k−1 ≤ ζk and therefore, by (5.2.14), EP[Yζk − Yζ′k−1

]
≥ 0 for all

k ∈ Z+, we see that EP[U
(N)
[a,b]] ≤ EP[YN ]; and, clearly (5.2.16) follows from this

after one lets N →∞.
Given (5.2.16), the convergence result is easy. Namely, if (5.2.17) is satisfied,

then (5.2.16) implies that there is a set Λ of full P-measure such that U[a,b](ω) <
∞ for all rational a < b and ω ∈ Λ; and so, by the remark preceding the
statement of this theorem, for each ω ∈ Λ, {Xn(ω) : n ≥ 0} converges to some
X(ω) ∈ [−∞,∞]. Hence, we will be done as soon as we know that EP[|X|, Λ] <
∞. But

EP[|Xn|
]

= 2EP[X+
n

]
− EP[Xn

]
≤ 2EP[X+

n

]
− EP[X0

]
, n ∈ N,

and therefore Fatou’s Lemma plus (5.2.17) shows that X is P-integrable. �

The inequality in (5.2.16) is quite famous and is known as Doob’s upcrossing
inequality.

Remark 5.2.18. The argument in the proof of Theorem 5.2.15 is so smooth
that it is easy to miss the point which makes it work. Namely, the whole proof
turns on the inequality EP[Yζk − Yζ′k−1

] ≥ 0. At first sight, this inequality seems

to be wrong, since one is inclined to think that Yζk < Yζ′
k−1

. However, Yζk need

be less than Yζ′
k−1

only if ζk < N , which is precisely what, with high probability,

the submartingale property is preventing from happening.

Corollary 5.2.19. Let
(
Xn,Fn,P

)
be a martingale. Then there exists an

X ∈ L1(P;R) such that Xn = EP[X|Fn] (a.s.,P) for each n ∈ N if and only if
the sequence {Xn : n ≥ 0} is uniformly P-integrable. In addition, if p ∈ (1,∞],
then there is an X ∈ Lp(P;R) such that Xn = EP[X|Fn] (a.s.,P) for each n ∈ N
if and only if {Xn : n ≥ 0} is a bounded subset of Lp(P;R).

Proof: Because of Corollary 5.2.4 and (5.2.3), we need only check the “if”
statement in the first assertion. But, if {Xn : n ≥ 0} is uniformly P-integrable,
then (5.2.17) holds and therefore Xn −→ X (a.s.,P) for some P-integrable X.
Moreover, uniform integrability together with almost sure convergence implies
convergence in L1(P;R), and therefore, by (5.1.5), for each m ∈ N,

Xm = lim
n→∞

EP[Xn

∣∣Fm] = EP[X∣∣Fm] (a.s.,P). �

Just as Corollary 5.2.4 led us to an intuitively appealing way to construct con-
ditional expectations, so Doob’s Theorem gives us an appealing approximation
procedure for Radon–Nikodym derivatives.

Theorem 5.2.20 (Jessen). Let P and Q be a pair of probability measures on
the measurable space (Ω,F) and

{
Fn : n ∈ N

}
a non-decreasing sequence of sub-

σ-algebras whose union generates F . For each n ∈ N, let Qn,a and Qn,s denote,
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respectively, the absolutely continuous and singular parts of Qn ≡ Q � Fn
with respect to Pn ≡ P � Fn, and set Xn =

dQn,a

dPn
. Also, let Qa and Qs be the

absolutely and singular continuous parts of Q with respect to P, and set Y = dQa

dP .
Then Xn −→ Y (a.s.,P). In particular, Q ⊥ P if and only if Xn −→ 0 (a.s.,P).
Moreover, if Qn � Pn for each n ∈ N, then Q� P if and only if {Xn : n ≥ 0} is
uniformly P-integrable, in which case Xn −→ Y in L1(P;R) as well as P-almost
surely. Finally, if Qn ∼ Pn (i.e., Pn � Qn as well as Qn � Pn) for each n ∈ N
and G ≡

{
limn→∞Xn ∈ (0,∞)

}
, then Qa(A) = Q(A ∩ G) for all A ∈ F , and

therefore Q(G) = 1 ⇐⇒ Q� P and Q(G) = 0 ⇐⇒ Q ⊥ P.

Proof: Without loss in generality, I will assume throughout that all the Xn’s
as well as Y ≡ dQa

dP take values in [0,∞); and clearly, EP[Xn], n ∈ N, and EP[Y ]
are all dominated by 1.

First note that

Qn,s(A) = sup
{
Q(A ∩B) : B ∈ Fn and P(B) = 0

}
for A ∈ Fn.

Hence, Qn,s � Fn−1 ≥ Qn−1,s for each n ∈ Z+, and so

EP[Xn, A
]

= Qn,a(A) ≤ Qn−1,a(A) = EP[Xn−1, A
]

for all n ∈ Z+ and A ∈ Fn−1. In other words,
(
−Xn,Fn,P

)
is a non-positive

submartingale. Moreover, in the case when Qn � Pn, n ∈ N, the same argument
shows that

(
Xn,Fn,P

)
is a non-negative martingale. Thus, in any case, there is

a non-negative, P-integrable random variable X with the property that Xn −→
X (a.s.,P). In order to identify X as Y , use Fatou’s Lemma to see that, for any
m ∈ N and A ∈ Fm:

EP[X, A] ≤ lim
n→∞

EP[Xn, A
]

= lim
n→∞

Qn,a(A) ≤ Q(A);

and therefore EP[X, A] ≤ Q(A), first for A ∈
⋃∞

0 Fm and then for every A ∈ F .

In particular, by choosing B ∈ F so that Qs(B) = 0 = P
(
B{
)
, we have that

EP[X, A] = EP[X, A ∩B] ≤ Q(A ∩B) = Qa(A) = EP[Y, A] for all A ∈ F ;

which means that X ≤ Y (a.s.,P). On the other hand, if Yn = EP[Y |Fn] for
n ∈ N, then

EP[Yn, A] = Qa(A) ≤ Qn,a(A) = EP[Xn, A
]

for all A ∈ Fn,

and therefore Yn ≤ Xn (a.s.,P) for each n ∈ N. Thus, since Yn −→ Y and
Xn −→ X P-almost surely, this means that Y ≤ X (a.s.,P).
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Next, assume that Qn � Pn for each n ∈ N and therefore that
(
Xn,Fn,P

)
is a non-negative martingale. If {Xn : n ≥ 0} is uniformly P-integrable, then
Xn −→ Y in L1(P;R) and therefore Qs(Ω) = 1 − EP[Y ] = 0. Hence, Q � P
when {Xn : n ≥ 0} is uniformly P-integrable. Conversely, if Q � P , then it
is easy to see that Xn = EP[Y |Fn] for each n ∈ N, and therefore, by Corollary
5.2.4, that {Xn : n ≥ 0} is uniformly P-integrable.

Finally, assume that Qn ∼ Pn for each n ∈ N. Then, the Xn’s can be chosen
to take their values in (0,∞) and Yn ≡ 1

Xn
= dPn

dQn
. Hence, if Pa and Ps are

the absolutely continuous and singular parts of P relative to Q and if Y ≡
limn→∞ Yn, then Y = dPa

dQ and so Pa(A) = EQ[Y, A] for all A ∈ F . Thus, when

B ∈ F is chosen so that Ps(B) = 0 = Q(B{), then, since Y = 1
X on G and

EP[X, C ∩G] = EP[X, C] for all C ∈ F , it is becomes clear that

Q(A ∩G
)

= EQ[XY, A ∩G] = EPa
[
X, A ∩G

]
= EP[X, A ∩G ∩B] = EP[X, A ∩B] = Qa(A ∩B) = Qa(A)

for all A ∈ F . �

§ 5.2.4. Reversed Martingales & Exchangeable Random Variables. For
some applications it is important to know what happens if one runs a submartin-
gale or martingale backwards. Thus, again let (Ω,F ,P) be a probability space,
only this time suppose that

{
Fn : n ∈ N

}
is a sequence of sub-σ-algebras which

is non-increasing. Given a sequence {Xn : n ≥ 0} of (−∞,∞]-valued ran-
dom variables, I will say that the triple

(
Xn,Fn,P

)
is either a reversed sub-

martingale or a reversed martingale if, for each n ∈ N, Xn is Fn-measurable
and either X−n ∈ L1(P;R) and Xn+1 ≤ EP[Xn | Fn+1] or Xn ∈ L1(P;R) and
Xn+1 = EP[Xn | Fn+1].

Theorem 5.2.21. If (Xn,Fn,P) is a reversed submartingale, then

(5.2.22) P
(

sup
n∈N

Xn ≥ R
)
≤ 1

R
EP
[
X0, sup

n∈N
Xn ≥ R

]
, R ∈ (0,∞).

Moreover, if (Xn,Fn,P) is a reversed martingale, then (|Xn|,Fn,P
)

is a re-
versed submartingale. In particular, if (Xn,Fn,P) is a non-negative reversed
submartingale and X0 ∈ L1(P;R), then {Xn : n ≥ 0} is uniformly P-integrable
and

(5.2.23)

∥∥∥∥sup
n∈N

Xn

∥∥∥∥
Lp(P;R)

≤ p

p− 1

∥∥X0

∥∥
Lp(P;R)

when p ∈ (1,∞).

Finally, if (Xn,Fn,P) is a reversed submartingale and X0 ∈ L1(P;R), then there
is a F∞ ≡

⋂∞
n=0 Fn-measurable X : Ω −→ [−∞,∞] to which Xn converges P-

almost surely. In fact, X will be P-integrable if infn≥0 EP[|Xn|] < ∞; and if
(Xn,Fn,P) is either a non-negative reversed submartingale or a reversed mar-
tingale with X0 ∈ Lp(P;R) for some p ∈ [1,∞), then Xn −→ X in Lp(P;R).
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Proof: More or less everything here follows immediately from the observation
that (Xn,Fn,P) is a reversed submartingale or a reversed martingale if and only
if, for each N ∈ Z+, (XN−n∧N ,FN−n∧N ,P) is a submartingale or a martingale.
Indeed, by this observation and (5.2.2) applied to (XN−n∧N ,FN−n∧N ,P),

P
(

max
0≤n≤N

Xn > R

)
≤ 1

R
EP
[
X0, max

0≤n≤N
Xn > R

]
for every N ≥ 1. When N → ∞, the left hand side of the preceding tends to
left hand side of P (supn∈NXn > R) and

EP
[
X0, max

0≤n≤N
Xn > R

]
= EP

[
X+

0 , max
0≤n≤N

Xn > R

]
− EP

[
X−0 , max

0≤n≤N
Xn > R

]
−→ EP

[
X+

0 , sup
n∈N

Xn > R

]
− EP

[
X−0 , sup

n∈N
Xn > R

]
= EP

[
X0, sup

n∈N
Xn > R

]
,

since X+
0 is non-negative, and therefore the Monotone Convergence Theorems

applies, and X−0 is integrable, and therefore Lebesgue’s Dominated Convergence
Theorem applies. Thus (5.2.22) follows after one takes right limits in R.

Another application of the same observation shows that (|Xn|,Fn,P) is a
reversed submartingale when (Xn,Fn,P) is a reversed martingale, and once
one knows this, (5.2.23) follows from (5.2.22) and Exercise 1.4.18. In addition,
when (Xn,Fn,P) is either a non-negative reversed submartingale or a reversed
martingale,

sup
n∈N

EP[|Xn|, |Xn| ≥ R
]
≤ sup
n∈N

EP[|X0|, |Xn| ≥ R
]
≤ EP

[
|X0|, sup

n∈N
|Xn| ≥ R

]
,

which, by the (5.2.22), tends to 0 as R →∞. Thus, {Xn : n ≥ 0} is uniformly
P-integrable.

It remains to prove the convergence assertions, and again the key is the same
observation. Before seeing how it applies, first say that {xn : n ≥ 0} downcrosses
[a, b] at least N times if there exist 0 ≤ m1 < n1 < · · · < mN < nN such that
xmi

≥ b and xni
≤ a for each 1 ≤ i ≤ N . Clearly, the same argument which

I used for upcrossings applies to downcrossings and shows that {xn : n ≥ 0}
converges in [−∞,∞] if and only if it downcrosses [a, b] finitely often for each
rational pair a < b. In addition, {xn : 0 ≤ n ≤ N} downcrosses [a, b] the same

number of times as {xN−n : 0 ≤ n ≤ N} upcrosses it. Hence, if D
(N)
[a,b](ω) is

the number of times {Xn∧N : n ≥ 0} downcrosses [a, b], then this observation

together with the estimate in the proof of Theorem 5.2.15 for EP[U
(N)
[a,b]] show

that

EP[D(N)
[a,b]

]
≤

EP[(X0 − a)+
]

b− a
.
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Starting from here, the argument used to prove Theorem 5.2.15 shows that there
exits a F∞-measurable X : Ω −→ [−∞,∞] to which {Xn : n ≥ 0} converges
P-almost surely. Once one has this almost sure convergence result, the rest of
the theorem is an easy application of standard measure theory and the uniform
integrability estimates proved above. �

An important application of reversed martingales is provided by De Finetti’s
theory of exchangeable random variables. To describe his theory, let Σ denote
the group of all finite permutations of Z+. That is, an element π of Σ is an
isomorphism of Z+ which moves only a finite number of integers. Alternatively,
Σ =

⋃∞
m=1 Σm, where Σm is the group of isomorphisms π of Z+ with the property

that n = π(n) for all n > m. Next, let (E,B) be a measurable space, and, for

each π ∈ Σ, define Sπ : EZ+ −→ EZ+

so that

Sπx =
(
xπ(1), . . . , xπ(n), . . .

)
if x =

(
x1, . . . , xn, . . .

)
.

Obviously, each Sπ is a BZ+

-measurable isomorphism from EZ+

onto itself. Also,
if

Am ≡
{
B ∈ BZ

+

: B = SπB for all π ∈ Σm
}

for m ∈ Z+,

then the Am’s form a non-increasing sequence of sub π-algebras of BZ+

, and

∞⋂
m=1

Am = A∞ ≡
{
B ∈ BZ

+

: B = SπB for all π ∈ Σ
}
.

Now suppose that {Xn : n ≥ 1} is a sequence of E-valued random variables on

the probability space (Ω,F ,P), and set X(ω) =
(
X1(ω), . . . , Xn(ω), . . . ) ∈ EZ+

.
The Xn’s are said to be exchangeable random variables if X has the same
P-distribution as Sπ for every π ∈ Σ. The central result of De Finetti’s theory
is De Finetti’s Strong Law, which states that for any g : E −→ R satisfying
g ◦X1 ∈ L1(P;R),

(5.2.24)
EP[g ◦X1

∣∣X−1(A∞)
]

= lim
n→∞

1

n

n∑
1

g ◦Xm

where the convergence is P-almost sure and in L1(P;R).

To prove (5.2.24), observe that, for any 1 ≤ m ≤ n, EP[g ◦ Xm |X−1(An)] =
EP[g ◦X1 |X−1(An)], which leads immediately to

EP[g ◦X1

∣∣X−1(An)
]

= EP

[
1

n

n∑
m=1

g ◦Xm

∣∣∣∣X−1(An)

]
=

1

n

n∑
m=1

g ◦Xm.

Hence, (5.2.24) follows as an application of Theorem 5.2.21.
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De Finetti’s Strong Law makes it important to get a handle on the σ-algebra
X−1(A∞). In particular, one would like to know when X−1(A∞) is trivial in
the sense that each of its elements has probability 0 or 1, in which case (5.2.24)
self-improves to the statement that

(5.2.25) lim
n→∞

1

n

n∑
1

g ◦Xm = EP[g ◦X1] P-almost surely and in L1(P;R).

The following lemma is the crucial step toward gaining an understanding of
X−1(A∞).

Lemma 5.2.26. Refer to the preceding, and let T =
⋂∞
m=1 σ

(
{Xn : n ≥ m}

)
be the tail σ-algebra determined by {Xn : n ≥ 1}. Then T ⊆ X−1(A∞) and
X−1(A∞) is contained in the completion of T with respect to P. In particular,
for each F ∈ L1(P;R),

(5.2.27) EP[F ∣∣X−1(A∞)
]

= EP[F ∣∣ T ] (a.s.,P).

Proof: The inclusion T ⊆ X−1(A∞) is obvious. Thus, what remains to be
proved is that, for any F ∈ L1(P;R), EP[F |X−1(A∞)] is, up to a P-null set,
T -measurable. To this end, begin by observing that it suffices to check this for
F ’s which are σ

(
{Xn : 1 ≤ m ≤ N}

)
-measurable for some N ∈ Z+. Indeed,

since X−1(A∞) ⊆ σ
(
{Xn : n ≥ 1}

)
, we know that

EP
[
F
∣∣X−1(A∞)

]
= EP

[
EP[F ∣∣σ({Xn : n ≥ 1}

)] ∣∣∣X−1(A∞)
]

= lim
N→∞

EP
[
EP[F ∣∣σ({Xm : 1 ≤ m ≤ N}

)] ∣∣∣X−1(A∞)
]
.

Now suppose that F is σ
(
{Xm : 1 ≤ m ≤ N}

)
-measurable. Then there

exists a g : EN −→ R such that F = g
(
X1, . . . , XN ). If N = 1, then, because

limn→∞
1
n

∑n
m=1 g ◦Xm is T -measurable, (5.2.24) says EP[F |X−1(A∞)] is T -

measurable. To get the same conclusion when N ≥ 2, I want to apply the same
reasoning, only now with E replaced by EN . To be precise, define

A(N)
∞ =

{
B ∈ BZ

+

: B = SσB for all π ∈ Σ(N)
}

where

Σ(N) =
{
π ∈ Σ : π(`N +m) = π(`N + 1) +m− 1 for all ` ∈ N and 1 ≤ m < N

}
is the group of finite permutations which transform Z+ in blocks of length N .

By (5.2.24) applied with EN replacing E, we find that EP[F ∣∣X−1(A(N)
∞ )

]
=

EP[F ∣∣ T ] P-almost surely. Hence, since X−1(I∞) ⊆ X−1(I(N)
∞ ), (5.2.27) holds

for every σ
(
{Xn : 1 ≤ n ≤ N}

)
-measurable F ∈ L1(P;R). �
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The best known consequence of Lemma 5.2.26 is the Hewitt–Savage 0–1
Law, which says that X−1(A∞) is trivial if the Xn’s are independent and iden-
tically distributed. Clearly, their result is a immediate consequence of Lemma
5.2.26 together with Kolmogorov’s 0–1 law.

Seeing as the Strong Law of Large Numbers follows from (5.2.24) combined
with the Hewitt–Savage 0–1 law, one might think that (5.2.24) represents an
extension of the strong law. However, that is not really the case, since it can be
shown that X−1(A∞) is trivial only if the Xn’s are independent. On the other
hand, the derivation of the Strong Law via (5.2.24) extends without alteration
to the Banach space setting (cf. part (ii) of Exercise 6.1.16).

Exercises for § 5.2

Exercise 5.2.28. In this exercise I will outline a quite independent derivation
of the convergence assertion in Doob’s Martingale Convergence Theorem. The
key observations here are first that, given Doob’s Inequality (cf. (5.2.2)), the
result is nearly trivial for martingales having two bounded moments and, second,
that everything can be reduced to that case.

(i) Let
(
Mn,Fn,P

)
be a martingale which is L2-bounded in the sense that

supn∈N EP[M2
n] <∞. Note that

EP[M2
n

]
− EP[M2

m−1

]
= EP

[(
Mn −Mm−1

)2]
for 1 ≤ m ≤ n;

and starting from this, show that there is an M ∈ L2(P;R) such that Mn −→M

in L2(P;R). Next apply (5.2.5) to the submartingale
(∣∣Mn∨m −Mm

∣∣,Fn,P) to

show that, for every ε > 0,

P
(

sup
n≥m

∣∣Mn −Mm

∣∣ ≥ ε) ≤ 1

ε
EP
[∣∣M −Mm

∣∣] −→ 0 as m→∞,

and conclude that Mn −→M (a.s.,P).

(ii) Let
(
Xn,Fn,P

)
be a non-negative submartingale with the property that

supn∈N EP[X2
n] <∞, define the sequence

{
An : n ∈ N

}
as in Lemma 5.2.12, and

set Mn = Xn − An, n ∈ N. Then
(
Mn,Fn,P

)
is a martingale, and clearly both

Mn and An are square P-integrable for each n ∈ N. In fact, check that

EP[M2
n −M2

n−1

]
= EP[(Mn −Mn−1

)(
Xn +Xn−1

)]
= EP[X2

n −X2
n−1

]
− EP[(An −An−1

)(
Xn +Xn−1

)]
≤ EP[X2

n −X2
n−1

]
,

and therefore that

EP[M2
n

]
≤ EP[X2

n

]
and EP[A2

n

]
≤ 4EP[X2

n

]
for every n ∈ N.

Finally, show that there exist M ∈ L2(P;R) and A ∈ L2
(
P; [0,∞)

)
such that

Mn −→M , An ↗ A, and, therefore, Xn −→ X ≡M + A both P-almost surely
and in L2(P;R).
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(iii) Let
(
Xn,Fn,P

)
be a non-negative martingale, set Yn = e−Xn , n ∈ N, use

Corollary 5.2.9 to see that
(
Yn,Fn,P

)
is a uniformly bounded, non-negative,

submartingale, and apply part (ii) to conclude that {Xn : n ≥ 0} converges
P-almost surely to a non-negative X ∈ L1(P;R).

(iv) Let
(
Xn,Fn,P

)
be a martingale for which

(5.2.29) sup
n∈N

EP[∣∣Xn

∣∣] <∞.
For each m ∈ N, define Y ±n,m = EP[X±n∨m∣∣Fm]∨0 for n ∈ N. Show that Y ±n+1,m ≥
Y ±n,m (a.s.,P), define Y ±m = limn→∞ Y ±n,m, check that both

(
Y +
m ,Fm,P

)
and(

Y −m ,Fm,P
)

are non-negative martingales with EP[Y +
0 +Y −0

]
≤ supn∈N EP[|Xn|

]
,

and note that Xm = Y +
m − Y −m (a.s.,P) for each m ∈ N. In other words, every

martingale
(
Xn,Fn,P

)
satisfying (5.2.29 ) admits a Hahn decomposition∗ as

the difference of two non-negative martingales whose sum has expectation value
dominated by the left-hand side of (5.2.29). Finally, use this observation together
with (iii) to see that every such martingale converges P-almost surely to some
X ∈ L1(P;R).

(v) By combining the final assertion in (iv) together with Doob’s Decomposition
in Lemma 5.2.12, give another proof of the convergence assertion in Theorem
5.2.15.

Exercise 5.2.30. In this exercise we will develop another way to reduce Doob’s
Martingale Convergence Theorem to the case of L2-bounded martingales. The
technique here is due to R. Gundy and derives from the ideas introduced by
Calderón and Zygmund in connection with their famous work on weak-type 1–1
estimates for singular integrals.

(i) Let
{
Zn : n ∈ N

}
be a

{
Fn : n ∈ N

}
-progressively measurable, [0, R]-valued

sequence with the property that
(
−Zn,Fn,P

)
is a submartingale. Next, choose{

An : n ∈ N
}

for
(
−Zn,Fn,P

)
as in Lemma 5.2.12, note that An’s can be chosen

so that 0 ≤ An − An−1 ≤ R for all n ∈ Z+, and set Mn = Zn + An, n ∈ N.
Check that

(
Mn,Fn,P

)
is a non-negative martingale with Mn ≤ (n + 1)R for

each n ∈ N. Next, show that

EP[M2
n −M2

n−1

]
= EP[(Mn −Mn−1

)(
Zn + Zn−1

)]
= EP[Z2

n − Z2
n−1

]
+ EP[(An −An−1

)(
Zn + Zn−1

)]
≤ EP[Z2

n − Z2
n−1

]
+ 2REP[An −An−1

]
,

and conclude that EP[A2
n] ≤ EP[M2

n] ≤ 3REP[Z0] for all n ∈ N.

∗ This useful observation was made by Klaus Krickeberg.
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(ii) Let
(
Xn,Fn,P

)
be a non-negative martingale. Show that, for each R ∈

(0,∞), Xn = M
(R)
n −A(R)

n +∆
(R)
n , n ∈ N, where

(
M

(R)
n ,Fn,P

)
is a non-negative

martingale satisfying EP[(M (R)
n

)2] ≤ 3REP[X0

]
, n ∈ N,

{
A

(R)
n : n ∈ N

}
is a

non-decreasing sequence of random variables with the properties that A
(R)
0 ≡ 0,

A
(R)
n is Fn−1-measurable and EP[(A(R)

n

)2] ≤ 3REP[X0

]
, n ∈ Z+, and

{
∆

(R)
n :

n ∈ N
}

is a
{
Fn : n ∈ N

}
-progressively measurable sequence with the property

that

P
(
∃n ∈ N ∆(R)

n 6= 0
)
≤ 1

R
EP[X0

]
.

Hint: Set Z
(R)
n = Xn ∧ R and ∆

(R)
n = Xn − Z(R)

n for n ∈ N, apply part (i)

to
{
Z

(R)
n : n ∈ N

}
, and use Doob’s Inequality to estimate the probability that

∆
(R)
n 6= 0 for some n ∈ N.

(iii) Let
(
Xn,Fn,P

)
be any martingale. Using (ii) above and part (iv) of Exer-

cise 5.2.28, show that, for each R ∈ (0,∞), Xn = M
(R)
n + V

(R)
n + ∆

(R)
n , n ∈ N,

where
(
M

(R)
n ,Fn,P

)
is a martingale satisfying EP[(M (R)

n

)2] ≤ 12REP[|Xn|
]
,{

V
(R)
n : n ∈ N

}
is a sequence of random variables satisfying V

(R)
0 ≡ 0, V

(R)
n is

Fn−1-measurable, and

EP

( n∑
1

∣∣V (R)
m − V (R)

m−1

∣∣)2
 ≤ 12REP[|Xn|

]
for n ∈ Z+, and

{
∆n :∈ N

}
is an

{
Fn : n ∈ N

}
-progressively measurable

sequence satisfying

P
(
∃ 0 ≤ m ≤ n ∆(R)

m 6= 0
)
≤ 2

R
EP[|Xn|

]
.

The preceding representation is called the Calderón–Zygmund decomposi-
tion of the martingale

(
Xn,Fn,P

)
.

(iv) Let
(
Xn,Fn,P

)
be a martingale which satisfies (5.2.29), and use part (iii)

above together with part (i) of Exercise 5.2.28 to show that, for each R ∈ (0,∞),
{Xn : n ≥ 0} converges off of a set whose P-measure is no more than 2

R times the

supremum over n ∈ N of EP[|Xn|]. In particular, when combined with Lemma
5.2.12, the preceding line of reasoning leads to the advertised alternate proof of
the convergence result in Theorem 5.2.15.

Exercise 5.2.31. In this exercise we will extend Hunt’s Theorem (cf. Theorem
5.2.13) to allow unbounded stopping times. To this end, let

(
Xn,Fn,P

)
be a

uniformly P-integrable submartingale on the probability space (Ω,F ,P), and set
Mn = Xn−An, n ∈ N, where

{
An : n ∈ N

}
is the sequence discussed in Lemma
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5.2.12. After checking that
(
Mn,Fn,P

)
is a uniformly P-integrable martingale,

show that, for any stopping time ζ: Xζ = EP[M∞|Fζ ] + Aζ (a.s.,P), where,
X∞, M∞, and A∞ are, respectively, the P-almost sure limits of {Xn : n ≥ 0},
{Mn : n ≥ 0}, and {An : n ≥ 0}. In particular, if ζ and ζ ′ are a pair of stopping
times and ζ ≤ ζ ′, conclude that Xζ ≤ EP[Xζ′ |Fζ ] (a.s.,P).

Exercise 5.2.32. There are times when submartingales converge even though
they are not bounded in L1(P;R). For example, suppose that (Xn,Fn,P) is a
submartingale for which there exists a non-decreasing function ρ : R 7−→ R with
the properties that ρ(R) ≥ R for all R and Xn+1 ≤ ρ

(
Xn

)
(a.e.,P) for each

n ∈ N.

(i) Set ζR(ω) = inf
{
n ∈ N : Xn(ω) ≥ R

}
for R ∈ (0,∞), and note that

sup
n∈N

Xn∧ζR ≤ X0 ∨ ρ(R) (a.e.,P).

In particular, if X0 is P-integrable, show that {Xn(ω) : n ≥ 0} converges in R
for P-almost every ω for which {Xn(ω) : n ≥ 0} is bounded above.

Hint: After observing that supn∈N EP[X+
n∧ζR ] < ∞ for every R ∈ (0,∞), con-

clude that, for each R ∈ (0,∞), {Xn : n ≥ 0} converges P-almost everywhere
on {ζR =∞}.

(ii) Let {Yn : n ≥ 1} be a sequence of mutually independent, P-integrable
random variables, assume that EP[Yn] ≥ 0 for n ∈ N and supn∈N ‖Y +

n ‖L∞(P;R) <

∞, and set Sn =
∑n

1 Ym. Show that {Sn : n ≥ 0} is either P-almost surely
unbounded above or P-almost surely convergent in R.

(iii) Let
{
Fn : n ∈ N

}
be a non-decreasing sequence of sub-σ-algebras and An

an element of Fn for each n ∈ N. Show that the set of ω ∈ Ω for which either

∞∑
n=0

1An
(ω) <∞ but

∞∑
n=1

P
(
An
∣∣Fn−1

)
(ω) =∞

or
∞∑
n=0

1An
(ω) =∞ but

∞∑
n=1

P
(
An
∣∣Fn−1

)
(ω) <∞

has P-measure 0. In particular, note that this gives another derivation of the
second part of the Borel–Cantelli Lemma (cf. Lemma 1.1.3).

Exercise 5.2.33. For each n ∈ N, let (En,Bn) be a measurable space and
µn and νn a pair of probability measures on (En,Bn) with the property that
νn � µn. Prove Kakutani’s Theorem which says that (cf. Exercise 1.1.14)
either

∏
n∈N νn ⊥

∏
n∈N µn or

∏
n∈N νn �

∏
n∈N µn.
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Hint: Set

Ω =
∏
n∈N

En, F =
∏
n∈N
Bn, P =

∏
n∈N

µn, and Q =
∏
n∈N

νn.

Next, take Fn = π−1
n (

∏n
0 Bm) , where πn is the natural projection from Ω onto∏n

0 Em, set Pn = P � Fn and Qn = Q � Fn, and note that

Xn(x) ≡ dQn
dPn

(x) =

n∏
0

fm(xm), x ∈ Ω,

where fn ≡ dνn
dµn

. In particular, when νn ∼ µn for each n ∈ N, use Kol-

mogorov’s 0–1 Law (cf. Theorem 1.1.2) to see that Q(G) ∈ {0, 1}, where G ≡{
limn→∞Xn ∈ (0,∞)

}
, and combine this with the last part of Theorem 5.2.20

to conclude that Q 6⊥ P =⇒ Q � P. Finally, to remove the assumption that
νn ∼ µn for all n’s, define ν̃n on (En,Bn) by ν̃n =

(
1 − 2−n−1

)
νn + 2−n−1µn,

check that ν̃n ∼ µn and Q� Q̃ ≡
∏
n∈N ν̃n, and use the preceding to complete

the proof.

Exercise 5.2.34. Let (Ω,F) be a measurable space and Σ a sub-σ-algebra of
F . Given a pair of probability measures P and Q on (Ω,F), let XΣ and YΣ

be non-negative Radon–Nikodym derivatives of, respectively, PΣ ≡ P � Σ and
QΣ ≡ Q � Σ with respect to

(
PΣ + QΣ

)
, and define

(
P,Q

)
Σ

=

∫
X

1
2

Σ Y
1
2

Σ d(P + Q).

(i) Show that if µ is any σ-finite measure on (Ω,Σ) with the property that
PΣ � µ and QΣ � µ, then the number

(
P,Q

)
Σ

given above is equal to

∫ (
dPΣ

dµ

) 1
2
(
dQΣ

dµ

) 1
2

dµ.

Also, check that PΣ ⊥ QΣ if and only if
(
P,Q

)
Σ

= 0.

(ii) Suppose that
{
Fn : n ∈ N

}
is a non-decreasing sequence of sub-σ-algebras

of F , and show that (P,Q)Fn −→ (P,Q)∨∞
0
Fn

.

(iii) Referring to part (ii), assume that Q � Fn � P � Fn for each n ∈ N, let Xn

be a non-negative Radon–Nikodym derivative of Q � Fn with respect to P � Fn,
and show that Q �

∨∞
0 Fn is singular to P �

∨∞
0 Fn if and only if EP[√Xn

]
−→ 0

as n→∞.
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(iv) Let {σn}∞0 ⊆ (0,∞), and, for each n ∈ N, let µn and νn be Gaussian
measures on R with variance σ2

n. If an and bn are the mean value of, respectively,
µn and νn, show that∏

n∈N
νn ∼

∏
n∈N

µn or
∏
n∈N

νn ⊥
∏
n∈N

µn

depending on whether
∑∞

0 σ−2
n (bn − an)2 converges or diverges.

Exercise 5.2.35. Let {Xn : n ∈ Z+} be a sequence of identically distributed,
mutually independent, integrable, mean-value 0, R-valued random variables on
the probability space (Ω,F ,P), and set Sn =

∑n
1 Xm for n ∈ Z+. In Exercise

1.4.28 we showed that limn→∞ |Sn| < ∞ P-almost surely. Here we will show
that

(5.2.36) lim
n→∞

|Sn| = 0 P -almost surely.

As was mentioned before, this result was proved first by K.L. Chung and W.H.
Fuchs. The basic observation behind the present proof is due to A. Perlin, who
noticed that, by the Hewitt–Savage 0–1 Law, there is a constant L ∈ [0,∞)
which equals limn→∞ |Sn| = L P-almost surely. Thus, the problem is to show
that L = 0, and we will do this by an simple argument invented by A. Yushkevich.

(i) Assuming that L > 0, use the Hewitt–Savage 0–1 to show that

P
(
|Sn − x| < L

3 i.o.
)

= 0 for any x ∈ R,

where “i.o.” stands for “infinitely often” and means here “for infinitely many
n’s”.

Hint: Set ρ = L
3 . Begin by observing that, because {Sm+n − Sm : n ∈ Z+}

has the same P-distribution as {Sn : n ∈ Z+}, P(|Sm+n−Sm| < 2ρ i.o.) = 0 for
any m ∈ Z+. Thus, since |Sm+n − x| ≥ |Sm+n − Sm| − |Sm − x|, P(|Sn − x| <
ρ i.o.) ≤ P(|Sm − x| ≥ ρ) for any m ∈ Z+. Moreover, by the Hewitt-Savage
0–1 Law, P(|Sn − x| < ρ i.o.) ∈ {0, 1}. Hence, either P(|Sn − x| < ρ i.o.) = 0,
or one has the contradiction that P(|Sm − x| < ρ) = 0 for all m ∈ Z+ and yet
P(|Sn − x| < ρ i.o.) = 1.

(ii) Still assuming that L > 0, argue that

P
(
|Sn − L| < L

3 i.o.
)
∨ P
(
|Sn + L| < L

3 i.o.
)

= 1,

which, in view of (i), is a contradiction. Conclude that (5.2.36) holds.
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(iii) Knowing (5.2.36) and the Hewitt–Savage 0–1 Law, show that, for each x ∈ R
and ε > 0, one has the dichotomy

P
(
|Sn − x| < ε

)
= 0 for all n ≥ 1 or P

(
|Sn − x| < ε i.o.

)
= 1.

Exercise 5.2.37. Here is a rather frivolous application of reversed martingales.
Let (Ω,F ,P),

{
Fn : n ∈ N

}
, and

{
ek : k ∈ Z

}
be as in part (v) of Exercise

5.1.17. Next, take Sm = {(2k + 1)2m : k ∈ Z} for each m ∈ N, and, for
f ∈ L2

(
[0, 1);C

)
, set

∆m(f) =
∑
`∈Sm

(
f, e`

)
L2([0,1);C)

e`,

where the convergence is in L2(([0, 1];C). Note that, by Exercise 5.1.17,

f − EP[f ∣∣Fn+1

]
=

n∑
m=0

∆m(f).

After noting that
{
Fn : n ∈ N

}
is non-increasing, use the convergence result for

reversed martingales in Theorem 5.2.21 to see that the expansion

f =
(
f,1
)
L2([0,1);C)

+

∞∑
m=0

∆m(f)

converges both almost everywhere as well as in L2([0, 1);C).∗

∗ When f is a function with the property that (f, e`)L2([0,1);C) = 0 for all ` ∈ Z\{2m : m ∈ N},

the preceding almost everywhere convergence result can be interpreted as saying that the

Fourier series of f converges almost everywhere, a result which was discovered originally by

Kolmogorov. The proof suggested here is based on fading memories of a conversation with
N. Varopolous. Of course, ever since L. Carleson’s definitive theorem on the almost every

convergence of the Fourier series of an arbitrary square integrable function, the interest in this
result of Kolmogorov is mostly historical.


