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Abstract. We obtain the global sections algebra of the sheaf
of Cherednik algebras Hc,ω(Q,W ) on Q, where Q ⊂ PN−1 is a
smooth quadric hypersurface and W is a Coxeter group of rank at
most N , as a quotient of the Dunkl angular momentum algebra

H
so(N)
c (W ) by a central character. In the case N = 3 we relate

these algebras to rank 2 symplectic reflection algebras.

1. Introduction

1.1. Sheaves of Cherednik algebras. Suppose X is a smooth vari-
ety with the action of a finite group W for which the quotient variety
X/W exists. Etingof in a 2004 preprint [5] has defined a sheaf of
Cherednik algebras Hc,ω(X,W ) on X in the W -equivariant topology
(alternatively, as a sheaf on X/W ) depending on parameters c, ω which
we now explain.1

Define the set S (X) = S (X,W ) of reflections of X to be the set
of pairs (w,Z) such that w ∈ W and Z is an irreducible component of
Xw having codimension 1 in X. Let c : S (X) → C be a W -invariant
function. Take ω to be an element of H2(X,Ω≥1

X )W , where Ω≥1
X is the

two-term subcomplex Ω1
X → (Ω2

X)cl, concentrated in degrees 1 and 2, of
the algebraic De Rham complex and where (Ω2

X)cl denotes the subsheaf
of closed forms in Ω2

X . In the notation of [5], the sheaf of Cherednik
algebras Hc,ω(X,W ) is written as H1,c,ω(X,W ) (i.e., t = 1).

In this paper, we write Hc,ω(X,W ) to refer to the algebra of global
sections of Hc,ω(X,W ) over X. If X is an affine variety, there is no
harm in conflating the two, but our current interest is principally the
case where X is projective.

Finally, there is also a “modified” sheaf of Cherednik algebras, writ-
ten Hc,η,ω(X,W ), where η is a W -invariant C-valued function on the
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set of hypersurfaces Z such that (Z, s) ∈ S for some s ∈ W . We have
Hc,0,ω(X,W ) = Hc,ω(X,W ).

For convenience, we recall the definition of the sheaf Hc,η,ω(X,W ).
Sheaves of twisted differential operators are classified by the space
H2(X,Ω≥1

X ), see section 2 of [1]. Let us write Dω
X to refer to the

sheaf of twisted differential operators corresponding to ω. If we write
X ′ = X \

⋃
(w,Z)∈S (X) Z and j : X ′ → X for the inclusion, then

Hc,η,ω(X,W ) is defined as a subalgebra of the sheaf j∗j
∗(Dω

X o CW )
generated locally by OX , CW , and Dunkl operators Dy associated to
vector fields y. Let U ⊂ X be a W -stable affine open set. We may
now define Dy locally, for y ∈ Γ(U, TX). Let Ly ∈ Dω

X(U) be the
twisted Lie derivative corresponding to y. For every (w,Z) ∈ S (X),
let fZ ∈ Γ(U,OX(Z)) be a function whose residue map at Z agrees
with y once both are restricted to the normal bundle of Z in X (as in
[5, Definition 2.7]). Finally, let λ(w,Z) be the nontrivial eigenvalue of w
on the conormal bundle to Z. Then on U we have

(1.1) Dy = Ly +
∑

(w,Z)∈S (X)

fZ

(
2c(w,Z)

1− λ(w,Z)

(w − 1) + η(Z)

)
.

1.2. Rational Cherednik algebra. If X = V is a vector space and
W acts linearly on V , we say simply that an element of s ∈ W , s 6= 1,
is a reflection if it fixes pointwise a codimension 1 hyperplane of V .
Notice that the set S ⊂ W of reflections in this sense is in natural
correspondence with the set S (V ) of the previous paragraph. Given a
function c : S → C which is constant on W -conjugacy classes in S we
have the rational Cherednik algebra Hc(V,W ) := H1,c(V,W ) defined
as follows. For s ∈ S choose eigenvectors αs ∈ V ∗ and α∨s ∈ V for the
action of s, both with eigenvalue different from 1, and normalized so
that 〈αs, α∨s 〉 = 2 where 〈·, ·〉 is the natural pairing between V ∗ and V .
The rational Cherednik algebra Hc(W,V ) is defined (see [7]) to be the
quotient of the smash-product algebra T (V ⊕ V ∗) o CW (here T (V )
denotes the tensor algebra of V ) by relations of the following form:

[x, x′] = 0, [y, y′] = 0, [y, x] = 〈x, y〉 −
∑
s∈S

c(s)〈αs, y〉〈x, α∨s 〉s,

where x, x′ ∈ V ∗, y, y′ ∈ V .

1.3. A result of Bellamy-Martino. Let W be a finite group acting
linearly on V = CN . There is an induced action of W on P(V ), and
Lemma 5.4.1 of [2] tells us how to compute the global sections algebra
Hc,ω(P(V ),W ). We recall it now.
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Let Hc(V,W ) be a rational Cherednik algebra. If w ∈ S is a reflec-
tion which fixes the hyperplane H ⊂ V , then of course (w,P(H)) ∈
S (P(V )). Define c′ : S (P(V ))→ C by

c′(w,P(H)) = c(w)

and c′(w,Z) = 0 for all other (w,Z) ∈ S (P(V )). For example, in
the case when N = 2 and W = S2, the nontrivial element s ∈ S2

has two fixed points on P1, only one of which comes from a reflection
hyperplane of C2. However, for SN with N > 2 all reflections of P(V )
take the form (w,P(H)). In general, we might even have reflections
(w,Z) ∈ S (P(V )) where w is not a reflection on V , as it would be
enough for αw to be a reflection for some α ∈ C×.

Recall that the rational Cherednik algebra Hc(V,W ) is graded by
putting deg(x) = 1, deg(y) = −1, and deg(CW ) = 0. In fact this
grading is internal, defined by the element

h =
N∑
i=1

xiyi −
∑
s∈S

2c(s)

1− λs
s.

Here λs is the nontrivial eigenvalue for s on h∗, xi is a basis of V ∗, and
yi the dual basis of V . Write Hc(V,W )m to refer to the mth graded
piece of Hc(V,W ).

Given a line bundle L on P(V ), let ωL ∈ H2(P(V ),Ω≥1
P(V )) be given

by its curvature. Finally, let us identify H2(P(V ),Ω≥1
P(V )) with C in such

a way that ωO(n) = n.

Proposition 1.1 (Lemma 5.4.1 of [2]). Fix a parameter c for the ra-
tional Cherednik algebra Hc(V,W ), and define c′ as above. Then we
have

Hc′,ω(P(V ),W ) = Hc(V,W )0/(h +
∑
s∈S

2c(s)

1− λs
− ω).

For arbitrary parameter c for (P(V ),W ), a computation ofHc,ω(P(V ),W )
is contained in [5, Example 2.20]. It can be deduced from the above
theorem by passing to a possibly larger group than W .

1.4. The quadric hypersurface. Now we fix W = SN with N >
2, let V = CN afford the permutation action of W , and let c be a
parameter for the rational Cherednik algebra Hc(V,W ) (in this case,
c ∈ C since all reflections are conjugate). Let Q ⊂ P(V ) be the smooth

connected quadric hypersurface defined by
∑N

i=1 xi
2 = 0. Now Q is

stable under the action of W , and since Q is not contained in any
reflection hyperplane of P(V ) it is immediate that Q is transverse to
each of them. Thus any W -invariant function c′ : S (P(V )) → C
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restricts to a function c′|Q : S (Q) → C via c′|Q(w,Z ∩ Q) = c′(w,Z)
and c′|Q(w,Z) = 0 for all other (w,Z) ∈ S (Q). We note that in
general there may be reflections of Q that are not of the form (w,Z∩Q),
though such reflections do not occur if W ⊂ GL(V ) is generated by its
reflections S (as will always be the case in this paper).

We give for a way to compute Hc′|Q,ω|Q(Q,W ) in the spirit of Propo-
sition 1.1.

Theorem 1.2. Let W = SN for N > 2 and fix a parameter c for
the rational Cherednik algebra Hc(V,W ). Define c′(w,P(H)) = c(w)
for H ⊂ V a reflection hyperplane given by xi = xj. Then we have

an isomorphism between Hc′|Q,ω|Q(Q,W ) and H
so(N)
c / (HΩ + a) , with

a = (ω − cN(N−1)
2

)(ω − cN(N−1)
2

+N − 2).

Here H
so(N)
c = H

so(N)
c (SN) is the Dunkl angular momentum algebra

introduced by Hakobyan and one of the authors in [8], and HΩ ∈ Hso(N)
c

is an element which generates its center (definitions of both are recalled
in §2.2 below).

The structure of this paper is as follows. Section 2 will be devoted to
proving main Theorem 1.2. Along the way we observe in Propositions
2.1, 2.2 that the cotangent bundle to Q is a resolution of a particular
nilpotent orbit in so(N). In section 3, we state a more general ver-
sion of Theorem 1.2, where SN is now replaced by any finite Coxeter
group W , whose proof is identical. Our next result of interest is The-
orem 3.3, the statement of which was first asserted by Etingof in [5]
without specification of parameters. It relates (most) symplectic reflec-
tion algebras (SRAs) in rank 2 to global sections algebras for sheaves
of Cherednik algebras on P1. This relation provides an isomorphism
between a certain “partialy spherical” subalgebra of all symplectic re-
flection algebras for finite subgroups of SL2(C) which are not cyclic of
odd order and the global sections algebra of a Cherednik sheaf for a
corresponding finite group of automorphisms of P1. This allows us to
give an isomorphism of these partialy spherical SRAs with quotients of
Dunkl angular momentum algebras.

Acknowledgments. The authors would like to thank Pavel Etingof
for the suggestion of this direction, and Gwyn Bellamy for useful discus-
sions. The work of the second named author was partially supported
by the National Science Foundation Graduate Research Fellowship Pro-
gram under Grant No. 1122374.

2. Proof of the main theorem
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2.1. Geometric preliminaries. In this section we study the closure
of a certain nilpotent orbit O of soN . The results here will be used in
the proof of Theorem 1.2.

Fix a symmetric nondegenerate form on V preserved by soN . These
are unique up to scale, and in coordinates the form is given by

∑N
i=1 xi

2.
Define O ⊂ soN to be the space of rank 2 nilpotent matrices A such
that the form is nonzero on the image of A in V . It is easy to see that
the partition-type classification (e.g., [4, Ch. 5]) of O is (3, 1, . . . , 1).
Indeed, this claim follows from Propositions 5.2.5 and 5.2.8 of [4]. We
note that O has dimension 2N − 4, while the minimal nilpotent orbit
of soN (orbits if N = 4) has dimension 2N − 6 (see [12]).

For any projective variety X ⊂ Pr, let CX denote the cone over X
in Ar+1, and let C◦X = CX \ {0} ⊂ Ar+1 \ {0}. Let G(2, N) denote the
Grassmannian of 2-planes in V . Let xij (for 1 ≤ i < j ≤ N) be the
Plücker coordinates for G(2, N), viewed as elements of C[CG(2,N)] under
the natural isomorphism of the later with the homogeneous coordinate
ring of G(2, N).

Proposition 2.1. The orbit closure O is the subvariety of CG(2,N) given
by
∑

i<j x
2
ij = 0.

Proof. Observe that the orbit closure O ⊂ soN is the space of rank at
most 2 nilpotent matrices in soN . We must give a map O→ CG(2,N).

Use the form to make the SON -equivariant identification soN ' Λ2V .
A rank 2 matrix in soN , then, can be written as A = v ⊗ w − w ⊗ v
for v, w ∈ V linearly independent, nonzero vectors (and well-defined
up to the action of SL2). On the other hand, as varieties, CG(2,N) is
isomorphic to the space of ordered pairs of linearly independent vectors
(v, w) modulo the action of SL2 (just as G(2, N) can be thought of as
the space of pairs of linearly independent vectors (v, w) modulo the
action of GL2) and zero.

Define a map of varieties O→ CG(2,N) by v⊗w−w⊗v 7→ (v, w). The
map is clearly injective; we claim this is the desired closed embedding.
For a rank 2 matrix A = v⊗w−w⊗ v ∈ soN is nilpotent if and only if
the form is degenerate when restricted to the span of {v, w}. Also, the
point (v, w) ∈ CG(2,N) satisfies the condition

∑
i<j x

2
ij = 0 if and only

if the form is degenerate. This concludes the proof. �

Recall now that Q ⊂ P(V ) is the projectivization of the space of
isotropic vectors in V . Equivalently, the quadric Q is a quotient of the
space of isotropic vectors in V ◦ by C×. At the image v of a point v ∈ V
with v2 = 0 we may represent the cotangent space as

T ∗vQ = v⊥/Cv,
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with identifications T ∗vQ → T ∗
λv
Q for λ ∈ C× given by multiplication

by λ−1. Now define the map p : T ∗Q→ O by

w 7→ v ⊗ w − w ⊗ v
for any w ∈ T ∗vQ. It follows from the proof of the previous Proposition
that this map takes values inside of O.

Proposition 2.2. (cf. [9]) The map p is projective and birational.

Proof. To see that p is birational, it is enough to observe that the
subset of T ∗Q represented by elements (v, w), w ∈ T ∗vQ, such that w is
not isotropic, maps isomorphically onto O. Indeed, given an element
A ∈ O the corresponding v is the kernel of the bilinear form on the
plane corresponding to A.

Now to show that the map p is projective, we consider the product
T ∗Q→ O×Q of p with the bundle projection. We have only to show
this map is a closed embedding because Q is projective. But in fact, it
is easy to see that the composition

T ∗Q→ O×Q→ soN ×Q
is a vector subbundle over Q. �

2.2. Construction of the map. Let CQ denote the cone over Q in
V . Let V ◦ be V \ {0}, and let C◦Q = CQ ∩ V ◦. As in subsection 2.1, c
restricts to a function c|Q on the reflections of C◦Q. Now C◦Q ⊂ V ◦ is a
smooth closed subvariety so by section 4.3.2 of [11], Hc|Q(C◦Q,W ) is nat-
urally a subsheaf of Hc(V

◦,W )/IC◦Q
Hc(V

◦,W ) where IC◦Q
is the ideal

sheaf of C◦Q in V ◦. Upon taking global sections, this inclusion becomes

Hc|Q(C◦Q,W ) ⊂ Hc(V,W )/IHc(V,W ) where I = (
∑N

i=1 xi
2), as can be

seen from the elements given in the next paragraph. Since IHc(V,W )
is a homogeneous ideal, the right module Hc(V,W )/IHc(V,W ) is again
graded.

The subalgebraHc|Q(C◦Q,W ) is generated over C[C◦Q] = C[x1, . . . , xN ]/I
by the residues modulo I of elements of the form xiyj − xjyi and h, as
well as by CW . As these generators are all homogeneous of degree 0,
the algebra Hc|Q(C◦Q,W ) also has a grading inherited from Hc(V,W ).

The Dunkl angular momentum algebra H
so(N)
c is defined in [8] to be

the subalgebra of the rational Cherednik algebra Hc(V,W ) generated
over CW by elements

Mij = xiyj − xjyi.

Hence we see that the composite map H
so(N)
c → Hc(V,W )/IHc(V,W )

in fact takes values in the degree zero part of Hc|Q(C◦Q,W ).
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Finally, we construct a map Hc|Q(C◦Q,W )0 → Hc′|Q,ω|Q(Q,W ). Let
π : C◦Q → Q be the quotient map (a principal C×-bundle). By Propo-
sition 4.3.2 of [2], we have a map of sheaves of algebras on Q given
by

(π∗Hc|Q(C◦Q,W ))C
× →Hc′|Q,ω|Q(Q,W ).

(If c′ is defined as in the previous section, then c′|Q is such that π is
melys and c|Q is its pullback.) Taking global sections we get a map

ϕ : Hc|Q(C◦Q,W )0 = Hc|Q(C◦Q,W )C
× → Hc′|Q,ω|Q(Q,W ).

We claim that h + cN(N−1)
2

− ω is in the kernel of this map; this can
immediately be seen from [2, Proposition 4.3.2] by restricting π to a
principal C×-bundle over an affine open set of Q, and from the fact
that the map β there is compatible with restriction.

Let

ψ : Hso(N)
c → Hc|Q(C◦Q,W )0

be the natural inclusion. Define the composite map

Ψ = ϕ ◦ ψ : Hso(N)
c → Hc′|Q,ω|Q(Q,W ).

Lemma 2.3. Let HΩ be the the angular Calogero–Moser Hamiltonian:

HΩ =
∑
i<j

M2
ij − S(S −N + 2),

where S =
∑

i<j csij, and sij denote the reflections in SN . Then

Ψ

(
HΩ + (ω − cN(N − 1)

2
)(ω − cN(N − 1)

2
+N − 2)

)
= 0.

Proof. It follows from equation (2.14) of [8] that

Ψ(
∑
i<j

M2
ij) = −ϕ(h + S)2 + (2S −N + 2)ϕ(h + S).

Since we also have ϕ(h + S) = −cN(N−1)
2

+ ω + S, the statement
follows. �

2.3. Associated graded algebras and isomorphism. Finally, we
must check that modulo this central character, the map Ψ is an isomor-
phism. Now both of these algebras have compatible order filtrations,
and we know what the associated graded of each is.

By [8, Theorem 4] grH
so(N)
c is the smash product of W with homo-

geneous coordinate ring for the Grassmannian G(2, N).
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Let ρ : T ∗Q→ Q be the canonical projection. By the usual descrip-
tion of T ∗Q as the Hamiltonian reduction of T ∗C◦Q with respect to the
induced C×-action, we can calculate

grHc′|Q,ω|Q(Q,W ) = Γ(Q, ρ∗OT ∗Q oCW ) = C[T ∗Q] oCW

as C[T ∗C◦Q]0/(
∑

i xiyi) oCW . For

grHc′|Q,ω|Q(Q,W ) = ρ∗OT ∗Q oCW

by [5, Theorem 2.11], and taking associated graded is seen to com-
mute with taking global sections. To see this, consider the short exact
sequences

0→ F i−1(Q,W )→ F i(Q,W )→ (SymiΘQ) oCW → 0,

where F i(Q,W ) denotes the order filtration on Hc′|Q,ω|Q(Q,W ) and

ΘQ is the tangent sheaf, and show by induction that F i(Q,W ) is
acyclic. The third term in each sequence has vanishing higher coho-
mology by [3, §A2].

We have C[C◦Q] = C[x1, . . . , xN ]/(
∑

i xi
2) and C[T ∗C◦Q] is the subal-

gebra of C[C◦Q][y1, . . . , yN ] generated over C[C◦Q] by elements xiyj−xjyi
and

∑N
i=1 xiyi. It is apparent from this description that the associated

graded map is surjective.
Now we turn to computing the kernel of

grΨ : C[CG(2,N)] oCW → C[T ∗Q] oCW.

In fact, it is clearly enough to compute the kernel of the restriction

C[CG(2,N)]→ C[T ∗Q].

Now by Proposition 2.2 we know that T ∗Q is a symplectic resolution
of singularities of a certain nilpotent orbit closure O ⊂ soN(C), and
since O is normal ([10, §5]) we have C[T ∗Q] = C[O]. Now, we have
a surjective map from the coordinate ring of an integral scheme (cone
over the Grassmannian) to the coordinate ring of an integral scheme
(a nilpotent orbit closure) of one dimension less. Thus it suffices to
note that the ideal of C[CG(2,N)] generated by grHΩ (i.e., the sum of

squares of the Plücker coordinates) is prime. For the cone in A(N
2 ) =

SpecC[xij|1 ≤ i < j ≤ N ] given by
∑

i<j x
2
ij = 0 is integral because∑

i<j x
2
ij is an irreducible polynomial.

Lemma 2.4. The intersection of CG(2,N) with the cone in A(N
2 ) =

SpecC[xij|1 ≤ i < j ≤ N ] given by
∑

i<j x
2
ij = 0 is an integral scheme.
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Proof. In Proposition 2.1, we have already shown that the intersection
is equal to O as a variety, which implies that the scheme-theoretic
intersection is irreducible. Thus we have only to show the intersection
is reduced.

Since the cone over an reduced scheme is reduced, it will suffice to
consider the intersection between the corresponding quadric hypersur-

face and G(2, N) inside of P(N
2 )−1. This intersection defines a hyper-

surface H in G(2, N). Now the Grassmannian G(2, N) has an open
cover by the sets Uij defined as xij = 1, and each Uij ' A2(N−2).
As such, C[Uij] is a polynomial algebra in the coordinates xkl with
|{k, l} ∩ {i, j}| = 1. On each chart Uij, the hypersurface H is the
variety defined by the polynomial

1 +
∑

|{k,l}∩{i,j}|=1

x2
kl +

∑
|{k,l}∩{i,j}|=0

(xikxjl − xilxjk)2,

and this polynomial is easily seen to be square-free, so H is integral. �

By Lemma 2.4, the ideal (
∑

i<j x
2
ij) remains prime in C[CG(2,N)].

This concludes the proof of Theorem 1.2.

3. Coxeter group generalizations

3.1. In this section, we supposeW is a real reflection group, thus acting
faithfully, on the vector space V = CN . For a choice of parameter c, we
have a rational Cherednik algebra Hc(V,W ). Choose a basis xi of V ∗,
and yi a dual basis of V . We may define the Dunkl angular momenta

algebra H
so(N)
c (W ) to be the subalgebra of the rational Cherednik alge-

bra Hc(V,W ) generated over CW by elements Mij = xiyj − xjyi. The
key results of [8] hold for these algebras as well, see section 8 of that

paper: we have grH
so(N)
c (W ) = C[CG(2,N)]oCW , and there is a central

element HΩ ∈ Hso(N)
c (W ) defined as

HΩ =
∑
i<j

M2
ij − S(S −N + 2),

where S =
∑

s∈S c(s)s, and again S denotes the set of reflections of
W . The same argument used to prove Theorem 1.2 in fact gives us the
following.

Theorem 3.1. Fix a parameter c for the rational Cherednik algebra
Hc(V,W ). Define c′(w,P(H)) = c(w) for H ⊂ V a reflection hyper-
plane for the action of W , and c′(w,Z) = 0 otherwise. Then we have
isomorphism of algebras

Hc′|Q,ω|Q(Q,W ) ∼= Hso(N)
c (W )/ (HΩ + a) ,
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where a = (ω −
∑

s∈S c(s))(ω +N − 2−
∑

s∈S c(s)).

Remark 3.2. It would be interesting to see whether there are ana-
logues of Dunkl angular momentum algebras such that Theorem 3.1 can
be generalised for the case of some W -invariant smooth (hyper)surfaces
of degree bigger than 2 for some (complex) reflection groups W .

3.2. Relation of H
so(N)
c (W ) to symplectic reflection algebra. Let

us specialize to the case N = 3, and suppose still that W is a real
reflection group. According to the classification of Coxeter groups, W
is of type A3, B3, H3, A1× Im, Im, or A1, where m ≥ 2 with I2 standing
for A1 × A1.

By the well-known genus-degree formula, the quadric is Q = P1, and
our identifications H2(Pn,Ω≥1

Pn ) ' C (§1.3) are such that if ω = ωP3 = n
then ω|Q = 2n because Q has degree 2. Now the group W acts on
Q by algebraic automorphisms, giving us a map W → PGL2(C) =
PSL2(C). Note that the kernel K of this map is W ∩ {±Id}, the
intersection taken in GL3(C). Let W = W/K be the image of W in
PSL2(C).

If K is nontrivial, it is easy to see that we have a natural isomorphism

(3.1) Hc′|Q,ω|Q(Q,W )/((−Id)− 1) ' Hc′′,ω|Q(Q,W ),

where c′′(s, Z) =
∑

k∈K c
′|Q(sk, Z). Recall that by definition, we have

that c′|Q(sk, Z) 6= 0 only if sk is a reflection on V . Since V = C3, s
and −s cannot both be reflections of V . Thus c′′(s, Z) = c′|Q(s, Z) if
s ∈ S (V ), and c′′(s, Z) = c′|Q(−s, Z) otherwise.

Now we may apply the result of Example 2.21 of [5] to express
Hc′′,ω|Q(Q,W ) as a “partially spherical” subalgebra of the rank 2 sym-

plectic reflection algebra corresponding to the preimage of W under the
map SL2(C) → PSL2(C). Combining this with Theorem 3.1 allows

us to relate the quotient of H
so(N)
c (W ) by a central character to this

partially spherical SRA.
We are unaware of a proof of the claim of [5, Example 2.21] in the

literature, so it is this to which we must attend first. Let Γ be the
preimage of W ⊂ PSL2(C) in SL2(C) = Sp2(C). (For the next propo-
sition, W is allowed to be any finite subgroup, that is, it does not
necessarly come from a W at the beginning of the subsection.) The
kernel of the map Γ→ W consists of the identity 1 and minus identity
z. Let pz ∈ C[Γ] be the idempotent pz = (1 + z)/2. Let κ ∈ C[Γ]Γ,
and let Aκ = Aκ(Γ) be the SRA associated with Γ ⊂ SL2(C). Aκ is
defined to be the quotient of the smash product T (C2) o CΓ by the
ideal generated by vu−uv−κ (where T (C2) in the tensor algebra of the
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tautological representation of Γ, and v, u are a basis of C2). Finally,
each s ∈ W \ {1} fixes two points of P1. Moreover, we have a bijection
ξ : Γ \ {1, z} → S (P1,W ) given by ξ : γ 7→ (γ, Y +), where γ is the
projection of γ to W and where Y + is the projectivization of the fixed
line of γ on which it acts with eigenvalue λγ having positive imaginary
part. The bijection ξ takes Γ-conjugacy classes to W -conjugacy classes.
We have λzγ = −λγ.

Theorem 3.3. Let W ⊂ PSL2(C) be any finite subgroup, and let Γ be
its preimage in SL2(C). Suppose κ is of the form

κ = |Γ|−1 +
∑

γ∈Γ\{1}

κγ · γ.

Then there is an isomorphism pzAκpz ∼= Hc,φ(P1,W ), with the Chered-
nik parameters given by

(3.2) c(ξ(γ)) = −|Γ|
4

((1 + λγ)κγ + (1− λγ)κzγ),

(3.3) φ = −1 + κz|Γ|
2

−
∑

γ∈Γ\{1,z}

2c(ξ(γ))

(1− λ2
γ)(|W y| − 1)

,

where the point y ∈ P1 in the sum is given by ξ(γ) = (γ, y), and W y

denotes its stabilizer.

Proof. We use the map θDunkl : Aκ → B of [6, Theorem 4.3.2] in the
n = 1 case, where B denotes the target of that map.

Let

(3.4) ψ = −1

2
(1 + κz|Γ|).

Multiplying this map on both sides by the idempotent pz, the map
becomes an injection from

pzAκpz → Γ(X ′,D
ψ|X′
X′ ) oCW,

with D
ψ|X′
X′ denoting the sheaf of twisted differential operators on the

W -regular locus of P1:

X ′ = P1 \
⋃

(s,y)∈S (P1)

y.

To explain why this is so, first note that pzAκpz lives in even degree
in v and w, and so the image of θDunkl is represented by 2 × 2 diago-
nal matrices. However, after taking the equalizer [6, §4.2] and passing
to the spherical subalgebra, the subalgebra of pzBpz generated by di-
agonal matrices with first diagonal term 0 is zero. Now following the
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construction of B given in [6, §3.1], we see that the subalgebra of pzBpz
generated by diagonal matrices is equal to the subalgebra generated by(

1 0
0 0

)
pz

(
Γ(X ′,D

ψ|X′
X′ ) oCΓ

)
pz,

and hence is isomorphic to Γ(X ′,D
ψ|X′
X′ ) o CW (see [2, Proposition

7.3.2]).

Now to see that the image of pzθ
Dunklpz inside of Γ(X ′,D

ψ|X′
X′ ) o

CW is isomorphic to Hc,φ(P1,W ), we work affine-locally on P1. The
algebra pzAκpz is generated by pzv

2pz, pzvupz, pzuvpz, pzu
2, where v, u

give a basis for C2. According to the definition of θDunkl, the image
is generated over CW by the images of the four elements pzv

∨Dvpz,

pzv
∨Dupz, pzu

∨Dvpz, pzu
∨Dupz in Γ(X ′,D

ψ|X′
X′ ) oCW , where, for any

v ∈ C2, we have

Dv = v +
|Γ|
2

∑
γ∈Γ\{1,z}

κγ
(γv + v)∨

ωγ
γ.

Here ω is the symplectic form on C2, (v)∨ = ιvω is a linear functional
for any v ∈ C2, and ωγ is the quadratic function given by ωγ(v) =
ω(v, γv). These four elements induce twisted differential operators on
P1 with poles at Γ-fixed points. We must check that locally they induce
“modified” Dunkl operators defined in equation (1.1), so they define
global sections of the sheaf Hc,η,ψ(P1,W ), with parameters c, ψ as in

(3.2), (3.4) and η(y) = 1
|W y |−1

∑
w∈W y

2c(w,y)
1−λ(w,y)

. First we will check this

in the case that W , hence Γ, is cyclic, then we will show how this result
implies the statement for any group W . Finally, we will compute how
the modification affects the global twisting parameter in the untwisted
Cherednik algebra, to get (3.3).

Suppose now that Γ cyclic with eigenvectors v, u of C2, normalized
so that ω(v, u) = 1. For each γ ∈ Γ\{1, z}, say v, u have corresponding
eigenvalues λγ, λγ respectively. We check that pzv

∨Dvpz restricts to a
Dunkl operator on the chart U = P1 \ P(Cv) of P1. Of course, U ' A1

is affine and W -stable; let x = −u∨/v∨ be a coordinate of this chart,
and C[U ] = C[x]. Denote by 0 the point P(Cu) of P1.

We compute directly that the differential operator induced on U by
pzv
∨Dvpz is

∂x +
∑

γ∈Γ\{1,z}:ξ(γ)=(γ,0)

2c(ξ(γ))

1− λ2
γ

1

x
γ

(note that on U , ∂x = L∂x since H2(U,C) = 0). The other three
generators are easy to calcluate on U , using the fact that the Euler
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element −u∨∂v + v∨∂u acts on P1 by the constant ψ (as this is its

image in Dψ
P1(P1)). We conclude that

pzu
∨Dvpz, pzv

∨Dupz, pzu
∨Dupz,

differ by elements of C[U ] oCW from

−x∂x, −x∂x, x2∂x,

respectively. By definition, these are all elements of Hc,η,ψ(U,W ), a
rational Cherednik algebra.

Now we turn to the situation of a general group W . To show that
the image of pzθ

Dunklpz consists of sections of Hc,η,ψ(P1,W ), by the fact
below it suffices to check that this is the case at formal neighborhoods
of each point of P1/W .

Lemma 3.4. Let f : F → G be a map of quasicoherent sheaves on a
variety, with F coherent. Then f = 0 if and only if the completion of

the map, f
∧

q : F
∧

q → G
∧

q, at every point q, is equal to zero.

Proof. The lemma follows easily from standard results of commutative
algebra. �

To apply the lemma to our case, we take F to be the subsheaf

of D
ψ|X′
X′ o CW generated (over OX) by those global sections in the

image of pzθ
Dunklpz, and then take f to be the composition of the

aforementioned inclusion with the quotient by Hc,η,ψ(P1,W ).
Now since the desired containment,

pzθ
Dunklpz ⊂Hc,η,ψ(P1,W ),

is trivial when restricted to X ′, we have only to consider the completion
at points y with nontrivial stabilizer. But by [13, Proposition 2.6], the
completion of the sheaf at W · y can be written:

Hc,η,ψ(P1,W )
∧

W ·y ' Mat[W,W y ]

(
Hc,η(TyX,W y)
∧

0

)
.

There is a similar formula for the completion of the pushforward under

the inclusion j : X ′ → P1 of D
ψ|X′
X′ o CW (of which Hc,η,ψ(P1,W ) is a

subsheaf):

(3.5)
(
j∗D

ψ|X′
X′

)∧
W ·y

oCW ' Mat[W,W y ]

(
DTyX(TyX \ {0})
∧

0
oCW y

)
.

These isomorphisms depend on the choice of a set T of left coset repre-
sentatives for W/W y. Now following the proof of [13, Proposition 2.6],
we describe the image under the isomorphism (3.5) of the restriction
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to this formal neighborhood of the section of D
ψ|X′
X′ oCW represented

by pzu
∨Dvpz. The off-diagonals terms belong to

C[TyX]
∧

y oCW y ⊂ Hc,η(TyX,W y)
∧

0.

On the other hand, the diagonal terms agree with the the formal re-
strictions of the operators induced by

(3.6) pz(δu)∨

(δv) +
|Γ|
2

∑
γ∈Γy\{1,z}

κγ
(γδv + δv)∨

ωγ
γ

 pz, δ ∈ T,

where Γy denotes the preimage of W y. The twisted differential opera-
tors induced by (3.6) are element of Hc,η(X,W y), as we have seen from
considering the case of cyclic groups above, so their restrictions to a

formal neighborhood of y give elements of Hc,η(TyX,W y)
∧

0. Thus, we
have checked that at every point, the formal completion of the image
of pzθ

Dunklpz is contained in the formal completion of Hc,η,ψ(P1,W ).
Finally, we use [5, Proposition 2.18] to obtain the global, twisting

parameter:

φ = ψ +
∑

y∈P1\X′
η(y)ωy,

where ωy is the class in H2(Pn,Ω≥1
Pn ) ' C given by O(−y). Since y has

degree 1, under the identification of §1.3 we have ωy = −1.

We have seen that the image of pzθ
Dunklpz inside Γ(X ′,D

ψ|X′
X′ )oCW

is contained in the modified Cherednik algebra Hc,η,ψ(P1,W ). Thus
the image is exactly Hc,η,ψ(P1,W ), since this is so at the level of the
associated graded. Finally, we have explained that Hc,φ(P1,W ) '
Hc,η,ψ(P1,W ), so the Proposition is proved. �

Remark 3.5. The key to the proof of Theorem 3.3 shows that opera-
tors of the form pzv

∨Dupz induce Dunkl operators on P1. It is possible
to replace these elements with members of a rank 2 Cherednik algebra

corresponding to the subgroup W
∧

generated by complex reflections of
the preimage of W under the map GL2(C)→ PSL2(C). We may then
use a result along the lines of [5, Example 2.20] to produce the Dunkl
operators on P1.

Finally, we relate this construction to H
so(N)
c (W ). Recall that we

began with W ⊂ GL3(C) and c : S → C, W -equivariant. For s ∈ S ,
we know that c′|Q(s, Y +) = c′|Q(s, Y −) = c(s) for both points of Q, Y +

and Y −, fixed by s, while c′|Q is zero for other reflections. Furthermore,
in the case when −Id ∈ W , under the isomorphism of (3.1), we have
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c′′(s, Y +) = c′′(s, Y −) = c(s), while c′′ is zero for all other reflections
of S (Q,W ). Finally, recall from the beginning of this subsection that
we have ω|Q = 2ω.

By Theorem 3.3, we have Hc′′,ω|Q(Q,W ) = pzAκ(Γ)pz (here we write

c′′ = c′|Q if W = W ), where

κ = |Γ|−1 +
∑

γ∈Γ\{1}

κγ · γ,

with κz =
−(1+4ω+4

∑
s∈S c(s))

|Γ| , κγ = −2
|Γ| c(γ), if γ ∈ S , and κγ = 0

otherwise. This formula is simply obtained by inverting the equations
(3.2) and (3.3).

Now Theorem 3.1 along with (3.1) allows us to relate the quotient

of H
so(3)
c (W ) to the algebra pzAκ(Γ)pz with this parameter κ. We have

left only to specify which Γ ⊂ SL2(C) corresponds to the given Coxeter
group W ⊂ GL3(C). This is illustrated in the two tables below.

Table 1

W W Γ

A1 Z/2Z Z/4Z
Im Dm BDm

A1 × Im, m odd D2m BD2m

A3 O BO

Table 2

W W Γ

A1 × Im, m even Dm BDm

B3 O BO
H3 D BD

The groups W are specified according to their Coxeter type. The
other symbols are defined as follows: Dm refers to the dihedral group
of order 2m, O ' S4 is the tetrahedral group, and D refers to the
dodecahedral group. The groups BDm,BO, and BD are their double
covers, and have types Dm+2, E7, and E8, respectively, under the well-
known McKay correspondence.

Corollary 3.6.

(1) If W is listed in Table 1, then for the corresponding Γ we have

pzAκ(Γ)pz ∼= Hso(3)
c (W )/ (HΩ + a) ,

where a = (ω −
∑

s∈S c(s))(ω +N − 2−
∑

s∈S c(s)).

(2) If W is listed in Table 2, then for the corresponding Γ we have
that

pzAκ(Γ)pz ∼= Hso(3)
c (W )/ (HΩ + a, (−Id)− 1) .
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Remark 3.7. In both cases of Corollary 3.6 we quotient out the central

character of the algebra H
so(3)
c (W ). In general the centre of H

so(N)
c (W )

is generated by HΩ and C if (−Id) /∈ W (see [8]). If (−Id) ∈ W then it
is easy to see that the centre is generated by HΩ,C and (−Id). We note
that in the latter case the generator (−Id) is missing in [8, Theorem
9].
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