Sato-Tate groups of abelian threefolds

Andrew V. Sutherland

Massachusetts Institute of Technology

September 26, 2020

Mikio Sato

John Tate

Joint work with Francesc Fité and Kiran Kedlaya

Sato-Tate in dimension 1

Let E / \mathbb{Q} be an elliptic curve, say,

$$
y^{2}=x^{3}+A x+B
$$

and let p be a prime of good reduction (so $p \nmid \Delta(E)$).
The number of \mathbb{F}_{p}-points on the reduction E_{p} of E modulo p is

$$
\# E_{p}\left(\mathbb{F}_{p}\right)=p+1-t_{p}
$$

where the trace of Frobenius t_{p} is an integer in $[-2 \sqrt{p}, 2 \sqrt{p}]$.
We are interested in the limiting distribution of $x_{p}=-t_{p} / \sqrt{p} \in[-2,2]$, as p varies over primes of good reduction up to $N \rightarrow \infty$.

al histogram of $y^{\wedge} 2+x y+y=x^{\wedge} 3-x^{\wedge} 2-20067762415575526585033208209338542750930230312178956502 x$
+34481611795030556467032985690390720374855944359319180361266008296291939448732243429 for $p<=2^{\wedge} 10$ 172 data points in 13 buckets, $z 1=0.023$, out of range data has area 0.250

click histogram to animate (requires adobe reader)

click histogram to animate (requires adobe reader)

Sato-Tate distributions in dimension 1

1. Typical case (no CM)

Elliptic curves E / \mathbb{Q} w/o CM have the semi-circular trace distribution. (Also known for E / k, where k is a totally real or CM number field). [CHT08, Taylor08, HST10, BGG11, BGHT11, ACCGHHNSTT18]

2. Exceptional cases (CM)

Elliptic curves E / k with CM have one of two distinct trace distributions, depending on whether k contains the CM field or not.
[Hecke, Deuring, early 20th century]

Sato-Tate groups in dimension 1

The Sato-Tate group of E is a closed subgroup G of $\mathrm{SU}(2)=\mathrm{USp}(2)$ that is determined by the ℓ-adic Galois representation attached to E.

A refinement/generalization of the Sato-Tate conjecture states that the distribution of normalized Frobenius traces of E converges to the distribution of traces in its Sato-Tate group G (under its Haar measure).

G	G / G^{0}	E	k	$\mathrm{E}\left[x_{p}^{0}\right], \mathrm{E}\left[x_{p}^{2}\right], \mathrm{E}\left[x_{p}^{4}\right] \ldots$
$\mathrm{SU}(2)$	C_{1}	$y^{2}=x^{3}+x+1$	\mathbb{Q}	$1,1,2,5,14,42, \ldots$
$N(\mathrm{U}(1))$	C_{2}	$y^{2}=x^{3}+1$	\mathbb{Q}	$1,1,3,10,35,126, \ldots$
$\mathrm{U}(1)$	C_{1}	$y^{2}=x^{3}+1$	$\mathbb{Q}(\sqrt{-3})$	$1,2,6,20,70,252, \ldots$

Fun fact: in the non-CM case the Sato-Tate conjecture implies that $E\left[x_{p}^{n}\right]=\frac{1}{2 \pi} \int_{0}^{\pi}(2 \cos \theta)^{n} \sin ^{2} \theta d \theta$ is the $\frac{n}{2}$ th Catalan number.

Zeta functions and L-polynomials

For a smooth projective curve X / \mathbb{Q} of genus g and each prime p of good reduction for X we have the zeta function

$$
Z\left(X_{p} / \mathbb{F}_{p} ; T\right):=\exp \left(\sum_{k=1}^{\infty} \# X_{p}\left(\mathbb{F}_{p^{k}}\right) T^{k} / k\right)=\frac{L_{p}(T)}{(1-T)(1-p T)},
$$

where $L_{p} \in \mathbb{Z}[T]$ has degree $2 g$. The normalized L-polynomial

$$
\bar{L}_{p}(T):=L_{p}(T / \sqrt{p})=\sum_{i=0}^{2 g} a_{i} T^{i} \in \mathbb{R}[T]
$$

is monic, reciprocal, and unitary, with $\left|a_{i}\right| \leq\binom{ 2 g}{i}$.
We can now consider the limiting distribution of $a_{1}, a_{2}, \ldots, a_{g}$ over all primes $p \leq N$ of good reduction, as $N \rightarrow \infty$.

click histogram to animate (requires adobe reader)

click histogram to animate (requires adobe reader)

click histogram to animate (requires adobe reader)

Exceptional distributions for abelian surfaces over \mathbb{Q} :

L-polynomials of Abelian varieties

Let A be an abelian variety over a number field k and fix a prime ℓ. The action of $\operatorname{Gal}(\bar{k} / k)$ on the ℓ-adic Tate module

$$
V_{\ell}(A):=\lim _{\leftarrow} A\left[\ell^{n}\right] \otimes_{\mathbb{Z}} \mathbb{Q}
$$

gives rise to a Galois representation

$$
\rho_{\ell}: \operatorname{Gal}(\bar{k} / k) \rightarrow \operatorname{Aut}_{\mathbb{Q}_{\ell}}\left(V_{\ell}(A)\right) \simeq \operatorname{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right)
$$

For each prime \mathfrak{p} of good reduction for A we have the L-polynomial

$$
L_{\mathfrak{p}}(T):=\operatorname{det}\left(1-\rho_{\ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right) T\right), \quad \bar{L}_{\mathfrak{p}}(T):=L_{\mathfrak{p}}(T / \sqrt{\|\mathfrak{p}\|})
$$

which appears as an Euler factor in the L-series

$$
L(A, s):=\prod_{\mathfrak{p}} L_{\mathfrak{p}}\left(\|\mathfrak{p}\|^{-s}\right)^{-1} .
$$

The Sato-Tate group of an abelian variety

The Zariski closure of the image of

$$
\rho_{\ell}: G_{k} \rightarrow \operatorname{Aut}_{\mathbb{Q}_{\ell}}\left(V_{\ell}(A)\right) \simeq \operatorname{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right)
$$

is a \mathbb{Q}_{ℓ}-algebraic group $G_{\ell}^{\text {zar }} \subseteq \mathrm{GSp}_{2 g}$, and we let $G_{\ell}^{1, \text { zar }}:=G_{\ell}^{\mathrm{zar}} \cap \mathrm{Sp}_{2 g}$. Now fix $\iota: \mathbb{Q}_{\ell} \hookrightarrow \mathbb{C}$, and let $G_{\ell, \iota}^{\text {zar }}$ and $G_{\ell, \iota}^{1, \text { zar }}$ denote base changes to \mathbb{C}.

Definition [Serre]

$\mathrm{ST}(A) \subseteq \mathrm{USp}(2 g)$ is a maximal compact subgroup of $G_{\ell, \iota}^{1, \mathrm{zar}}(\mathbb{C})$ equipped with the map $s: \mathfrak{p} \mapsto \operatorname{conj}\left(\|\mathfrak{p}\|^{-1 / 2} \rho_{\ell, \iota}\left(\operatorname{Frob}_{\mathfrak{p}}\right)\right) \in \operatorname{Conj}(\operatorname{ST}(A))$.

Note that the characteristic polynomial of $s(\mathfrak{p})$ is $\bar{L}_{\mathfrak{p}}(T)$.

The Sato-Tate conjecture for abelian varieties

Conjecture [Mumford-Tate, Algebraic Sato-Tate]
$\left(G_{\ell}^{\text {zar }}\right)^{0}=\mathrm{MT}(A) \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$, equivalently, $\left(G_{\ell}^{1, \text {,zar }}\right)^{0}=\mathrm{Hg}(A) \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$. More generally, $\left(G_{\ell}^{\text {zar }}\right)=\operatorname{AST}(A) \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$.

The algebraic Sato-Tate conjecture is known for $g \leq 3$ [BK15].

Sato-Tate conjecture for abelian varieties.
The conjugacy classes $s(\mathfrak{p})$ are equidistributed with respect to $\mu_{\mathrm{ST}(A)}$, the pushforward of the Haar measure to $\operatorname{Conj}(\operatorname{ST}(A))$.

The Sato-Tate conjecture implies that the distribution $\bar{L}_{\mathfrak{p}}(T)$ is given by the distribution of characteristic polynomials in $\mathrm{ST}(A)$.

Sato-Tate axioms for abelian varieties

$G \subseteq \mathrm{USp}(2 g)$ satisfies the Sato-Tate axioms (for abelian varieties) if:
(1) Compact: G is closed;
(2) Hodge: G contains a Hodge circle $\theta: \mathrm{U}(1) \rightarrow G^{0}$ whose elements $\theta(u)$ have eigenvalues $u, 1 / u$ with multiplicity g, such that the conjugates of θ conjugates generate a dense subset of G;
(3) Rationality: for each component H of G and each irreducible character χ of $\mathrm{GL}_{2 g}(\mathbb{C})$ we have $\mathrm{E}[\chi(\gamma): \gamma \in H] \in \mathbb{Z}$;
(4) Lefschetz: The subgroup of $\operatorname{USp}(2 g)$ fixing $\operatorname{End}\left(\mathbb{C}^{2 g}\right)^{G_{0}}$ is G^{0}.

Theorem [FKRS12, FKS19]

Let A / k be an abelian variety of dimension $g \leq 3$.
Then $\operatorname{ST}(A)$ satisfies the Sato-Tate axioms.
Axioms 1-3 are expected to hold in general, but Axiom 4 fails for $g=4$. For any g, the set of G satisfying axioms $1-3$ is finite.

Galois endomorphism types

Let A be an abelian variety defined over a number field k.
Let K be the minimal extension of k for which $\operatorname{End}\left(A_{K}\right)=\operatorname{End}\left(A_{\bar{k}}\right)$.
$\operatorname{Gal}(K / k)$ acts on the \mathbb{R}-algebra $\operatorname{End}\left(A_{K}\right)_{\mathbb{R}}=\operatorname{End}\left(A_{K}\right) \otimes_{\mathbb{Z}} \mathbb{R}$.

Definition

The Galois endomorphism type of A is the isomorphism class of $\left[\operatorname{Gal}(K / k), \operatorname{End}\left(A_{K}\right)_{\mathbb{R}}\right]$, where $[G, E] \simeq\left[G^{\prime}, E^{\prime}\right]$ iff there are isomorphisms $G \simeq G^{\prime}$ and $E \simeq E^{\prime}$ compatible with the group actions.

Theorem [FKRS12]

For abelian varieties A / k of dimension $g \leq 3$ there is a one-to-one correspondence between Sato-Tate groups and Galois types.

More precisely, the identity component G^{0} is uniquely determined by $\operatorname{End}\left(A_{K}\right)_{\mathbb{R}}$ and $G / G^{0} \simeq \operatorname{Gal}(K / k)$ (with corresponding actions).

Real endomorphism algebras of abelian surfaces

abelian surface	$\operatorname{End}\left(\boldsymbol{A}_{\boldsymbol{K}}\right)_{\mathbb{R}}$	$\mathrm{ST}(\boldsymbol{A})^{\mathbf{0}}$
square of CM elliptic curve	$\mathrm{M}_{2}(\mathbb{C})$	$\mathrm{U}(1)_{2}$
\bullet QM abelian surface \bullet square of non-CM elliptic curve	$\mathrm{M}_{2}(\mathbb{R})$	$\mathrm{SU}(2)_{2}$
\bullet CM abelian surface • product of CM elliptic curves	$\mathbb{C} \times \mathbb{C}$	$\mathrm{U}(1) \times \mathrm{U}(1)$
product of CM and non-CM elliptic curves	$\mathbb{C} \times \mathbb{R}$	$\mathrm{U}(1) \times \mathrm{SU}(2)$
\bullet RM abelian surface \bullet	$\mathbb{R} \times \mathbb{R}$	$\mathrm{SU}(2) \times \mathrm{SU}(2)$
generic abelian surface	\mathbb{R}	$\mathrm{USp}(4)$

(factors in products are assumed to be non-isogenous)

Sato-Tate groups of abelian surfaces

Theorem [FKRS12]

Up to conjugacy in USp(4), there are 52 Sato-Tate groups $\operatorname{ST}(A)$ that arise for abelian surfaces A / k over number fields; 34 occur for $k=\mathbb{Q}$.

```
        U(1)2: }\quad\mp@subsup{C}{1}{},\mp@subsup{C}{2}{},\mp@subsup{C}{3}{},\mp@subsup{C}{4}{},\mp@subsup{C}{6}{},\mp@subsup{D}{2}{},\mp@subsup{D}{3}{},\mp@subsup{D}{4}{},\mp@subsup{D}{6}{},T,O
        J(C1),J(C2),J(C3),J(C), 隹秽),
        J(D2),J(D\mp@subsup{D}{3}{}),J(\mp@subsup{D}{4}{}),J(D}\mp@subsup{D}{6}{\prime},J(T),J(O)
        C C,1 , C4,1,},\mp@subsup{C}{6,1}{},\mp@subsup{D}{2,1}{},\mp@subsup{D}{3,2}{},\mp@subsup{D}{4,1}{},\mp@subsup{D}{4,2}{},\mp@subsup{D}{6,1}{},\mp@subsup{D}{6,2}{},\mp@subsup{O}{1}{
        SU(2)2: }\quad\mp@subsup{E}{1}{},\mp@subsup{E}{2}{},\mp@subsup{E}{3}{},\mp@subsup{E}{4}{},\mp@subsup{E}{6}{},J(\mp@subsup{E}{1}{}),J(\mp@subsup{E}{2}{}),J(\mp@subsup{E}{3}{}),J(\mp@subsup{E}{4}{}),J(\mp@subsup{E}{6}{}
        U(1)\times\textrm{U}(1):}\quadF,\mp@subsup{F}{a}{},\mp@subsup{F}{a,b}{},\mp@subsup{F}{ab}{},\mp@subsup{F}{ac}{
    U(1)}\times\textrm{SU}(2):\quad\textrm{U}(1)\times\textrm{SU}(2),N(\textrm{U}(1)\times\textrm{SU}(2)
SU(2)\timesSU(2): 
    USp(4): USp(4)
```

This theorem says nothing about equidistribution, however this is now known in many special cases [FS12, Johansson13, Taylor18].

Maximal Sato-Tate groups of abelian surfaces

G_{0}	G / G_{0}	X
$\mathrm{USp}(4)$	C_{1}	$y^{2}=x^{5}-x+1$
$\mathrm{SU}(2) \times \mathrm{SU}(2)$	C_{2}	$y^{2}=x^{6}+x^{5}+x-1$
$\mathrm{U}(1) \times \mathrm{SU}(2)$	C_{2}	$y^{2}=x^{6}+3 x^{4}-2$
$\mathrm{U}(1) \times \mathrm{U}(1)$	D_{2}	$y^{2}=x^{6}+3 x^{4}+x^{2}-1$
	C_{4}	$y^{2}=x^{5}+1$
$\mathrm{SU}(2)_{2}$	D_{4}	$y^{2}=x^{5}+x^{3}+2 x$
	D_{6}	$y^{2}=x^{6}+x^{3}-2$
$\mathrm{U}(1)_{2}$	$\mathrm{D}_{6} \times \mathrm{C}_{2}$	$y^{2}=x^{6}+3 x^{5}+10 x^{3}-15 x^{2}+15 x-6$
	$\mathrm{~S}_{4} \times \mathrm{C}_{2}$	$y^{2}=x^{6}-5 x^{4}+10 x^{3}-5 x^{2}+2 x-1$

Each of the 9 maximal Sato-Tate groups in dimension 2 can be realized by the Jacobian of a genus 2 curve X / \mathbb{Q}.
One can now verify this using the algorithm of [CMSV19].
There are 3 subgroups of $N(\mathrm{U}(1) \times \mathrm{U}(1))$ that satisfy the Sato-Tate axioms but do not occur as Sato-Tate groups of abelian surfaces.

click histogram to animate (requires adobe reader)

Sato-Tate groups of abelian threefolds

Theorem [FKS19]

Up to conjugacy in USp(6), 433 groups satisfy the Sato-Tate axioms for $g=3$, but 23 cannot arise as Sato-Tate groups of abelian threefolds.

Theorem [FKS19]

Up to conjugacy in USp(6) there are 410 Sato-Tate groups of abelian threefolds over number fields, of which 33 are maximal.

The 33 maximal groups all arise as the Sato-Tate group of an abelian threefold defined over \mathbb{Q}; the rest can be realized via base change.

There are 14 distinct identity components that arise, and the order of every component group always divides one of the following integers: $192=2^{6} \cdot 3,336=2^{4} \cdot 3 \cdot 7,432=2^{4} \cdot 3^{3}$.

Real endomorphism algebras of abelian threefolds

abelian threefold	End $\left(A_{K}\right)_{\mathbb{R}}$	ST(A) ${ }^{\mathbf{0}}$
cube of a CM elliptic curve	$\mathrm{M}_{3}(\mathbb{C})$	$\mathrm{U}(1)_{3}$
cube of a non-CM elliptic curve	$\mathrm{M}_{3}(\mathbb{R})$	$\mathrm{SU}(2)_{3}$
product of CM elliptic curve and square of CM elliptic curve	$\mathbb{C} \times \mathrm{M}_{2}(\mathbb{C})$	$\mathrm{U}(1) \times \mathrm{U}(1)_{2}$
product of non-CM elliptic curve and square of CM elliptic curve	$\mathbb{R} \times \mathrm{M}_{2}(\mathbb{C})$	$\mathrm{SU}(2) \times \mathrm{U}(1)_{2}$
- product of CM elliptic curve and QM abelian surface - product of CM elliptic curve and square of non-CM elliptic curve	$\mathbb{C} \times \mathrm{M}_{2}(\mathbb{R})$	$\mathrm{U}(1) \times \mathrm{SU}(2)_{2}$
- product of non-CM elliptic curve and QM abelian surface - product of non-CM elliptic curve and square of non-CM elliptic curve	$\mathbb{R} \times \mathrm{M}_{2}(\mathbb{R})$	$\mathrm{SU}(2) \times \mathrm{SU}(2)_{2}$
- CM abelian threefold - product of CM elliptic curve and CM abelian surface - product of three CM elliptic curves	$\mathbb{C} \times \mathbb{C} \times \mathbb{C}$	$\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$
- product of non-CM elliptic curve and CM abelian surface - product of non-CM elliptic curve and two CM elliptic curves	$\mathbb{C} \times \mathbb{C} \times \mathbb{R}$	$\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{SU}(2)$
- product of CM elliptic curve and RM abelian surface - product of CM elliptic curve and two non-CM elliptic curves	$\mathbb{C} \times \mathbb{R} \times \mathbb{R}$	$\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$
- RM abelian threefold - product of non-CM elliptic curve and RM abelian surface - product of 3 non-CM elliptic curves	$\mathbb{R} \times \mathbb{R} \times \mathbb{R}$	$\mathrm{SU}(2) \times \mathrm{SU}(3) \times \mathrm{SU}(3)$
product of CM elliptic curve and abelian surface	$\mathbb{C} \times \mathbb{R}$	$\mathrm{U}(1) \times \mathrm{USp}(4)$
product of non-CM elliptic curve and abelian surface	$\mathbb{R} \times \mathbb{R}$	$\mathrm{SU}(2) \times \mathrm{USp}(4)$
quadratic CM abelian threefold	\mathbb{C}	U(3)
generic abelian threefold	\mathbb{R}	USp(6)

Connected Sato-Tate groups of abelian threefolds:

Maximal Sato-Tate groups of abelian threefolds

G_{0}	G / G_{0}	$\left\|G / G_{0}\right\|$
$\mathrm{USp}(6)$	C_{1}	1
$\mathrm{U}(3)$	C_{2}	2
$\mathrm{SU}(2) \times \mathrm{USp}(4)$	C_{1}	1
$\mathrm{U}(1) \times \mathrm{USp}(4)$	C_{2}	2
$\mathrm{SU}(2)^{3}$	$\mathrm{~S}_{3}$	6
$\mathrm{U}(1) \times \mathrm{SU}(2)^{2}$	D_{2}	4
$\mathrm{U}(1)^{2} \times \mathrm{SU}(2)$	$\mathrm{C}_{2}, \mathrm{D}_{2}$	4
$\mathrm{U}(1)^{3}$	$\mathrm{~S}_{3}, \mathrm{C}_{2}{ }^{3}, \mathrm{C}_{2} \times \mathrm{C}_{4}$	6,8
$\mathrm{SU}(2) \times \mathrm{SU}(2)_{2}$	$\mathrm{D}_{4}, \mathrm{D}_{6}$	8,12
$\mathrm{U}(1) \times \mathrm{SU}(2)_{2}$	$\mathrm{D}_{4} \times \mathrm{C}_{2}$,	$\mathrm{D}_{6} \times \mathrm{C}_{2}$
$\mathrm{SU}(2) \times \mathrm{U}(1)_{2}$	$\mathrm{D}_{6} \times \mathrm{C}_{2}, \mathrm{~S}_{4} \times \mathrm{C}_{2}$	16,24
$\mathrm{U}(1) \times \mathrm{U}(1)_{2}$	$\mathrm{D}_{6} \times \mathrm{C}_{2}{ }^{2}, \mathrm{~S}_{4} \times \mathrm{C}_{2}{ }^{2}$	48
$\mathrm{SU}(2)_{3}$	$\mathrm{D}_{6}, \mathrm{~S}_{4}$	48,96
$\mathrm{U}(1)_{3}$	see below	$48^{\times 4}, 96,144 \times 2$,
		$192^{\times 2}, 336,432^{\times 2}$

[^0]
References

- [ACCGHHNSTT18] P. Allen, F. Calegari, A. Caraiani, T. Gee, D. Helm, B. Le-Hung, J. Newton, P. Scholze, R. Taylor, J. Thorne, Potential automorphy over CM fields, arXiv:1812.09999.
- [BGG11] T. Barnet-Lamb, D. Geraghty, and T. Gee, The Sato-Tate conjecture for Hilbert modular forms, J. Amer. Math. Soc. 24 (2011), 411-469.
- [BGHT11] T. Barnet-Lamb, D. Geraghty, M. Harris, and R. Taylor, A family of Calabi-Yau varieties and potential automorphy II, Publications of the Research Institute for Mathematical Sciences 47 (2011), 29-98.
- [BK15] G. Banaszak and K. S. Kedlaya, An algebraic Sato-Tate group and Sato-Tate conjecture, Indiana U. Math. Journal 64 (2015), 245-274.
- [CHT08] L. Clozel, M. Harris, and R. Taylor, Automorphy for some ℓ-adic lifts of automorphic mod- ℓ Galois representations, Publ. Math. IHES 108 (2008), 1-181.
- [CMSV19] E. Costa, N. Mascot, J. Sijsling, J. Voight, Rigorous computation of the endomorphism ring of a Jacobian, Math. Comp. 88 (2019), 1303-1339.
- [FKRS12] F. Fité, K. S. Kedlaya, V. Rotger, and A. V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, Compositio Mathematica 148 (2012), 1390-1442.

References

- [FKS19] F. Fité, K. S. Kedlaya, and A. V. Sutherland, Sato-Tate groups of abelian threefolds: a preview of the classification, Arithmetic Geometry, Cryptography, and Coding Theory, Contemp. Math., AMS, to appear.
- [FS14] F. Fité and A. V. Sutherland, Sato-Tate distributions of twists of $y^{2}=x^{5}-x$ and $y^{2}=x^{6}+1$, Algebra and Number Theory 8 (2014), 543-585.
- [HST10] M. Harris, N. Shepherd-Barron, and R. Taylor, A family of Calabi-Yau varieties and potential automorphy, Annals Math. 171 (2010), 779-813.
- [Johansson13] C. Johansson, On the Sato-Tate conjecture for non-generic abelian surfaces, with an appendix by Francesc Fité, Transactions of the AMS 369 (2017), 6303-6325.
- [Serre12] J.-P. Serre, Lectures on $N_{X}(p)$, Research Notes in Mathematics 11, CRC Press, 2012.
- [Sutherland18] A. V. Sutherland, Sato-Tate distributions, Analytic Methods in Arithmetic Geometry, Contemp. Math. 740 (2019), AMS, 197-248.
- [Taylor18] N. Taylor, Sato-Tate distributions of abelian surfaces, Trans. Amer. Math. Soc. 373 (2020), 3541-3559
- [Taylor08] R. Taylor, Automorphy for some ℓ-adic lifts of automorphic mod ℓ Galois representations II, Publ. Math. IHES 108 (2008) 183-239.

[^0]: $\langle 48,15\rangle,\langle 48,15\rangle,\langle 48,38\rangle,\langle 48,41\rangle,\langle 96,193\rangle,\langle 144,125\rangle$,
 $\langle 144,127\rangle,\langle 192,988\rangle,\langle 192,956\rangle,\langle 336,208\rangle,\langle 432,523\rangle,\langle 432,734\rangle$.

