Sato-Tate groups of abelian threefolds

Andrew V. Sutherland

Massachusetts Institute of Technology

September 26, 2020

Mikio Sato

John Tate

Joint work with Francesc Fité and Kiran Kedlaya

Sato-Tate in dimension 1

Let E/\mathbb{Q} be an elliptic curve, say,

$$y^2 = x^3 + Ax + B,$$

and let *p* be a prime of good reduction (so $p \nmid \Delta(E)$).

The number of \mathbb{F}_p -points on the reduction E_p of E modulo p is

$$#E_p(\mathbb{F}_p) = p + 1 - t_p,$$

where the trace of Frobenius t_p is an integer in $[-2\sqrt{p}, 2\sqrt{p}]$.

We are interested in the limiting distribution of $x_p = -t_p/\sqrt{p} \in [-2, 2]$, as *p* varies over primes of good reduction up to $N \to \infty$.

Sato-Tate distributions in dimension 1

1. Typical case (no CM)

Elliptic curves E/\mathbb{Q} w/o CM have the semi-circular trace distribution. (Also known for E/k, where *k* is a totally real or CM number field).

[CHT08, Taylor08, HST10, BGG11, BGHT11, ACCGHHNSTT18]

2. Exceptional cases (CM)

Elliptic curves E/k with CM have one of two distinct trace distributions, depending on whether k contains the CM field or not.

[Hecke, Deuring, early 20th century]

Sato-Tate groups in dimension 1

The Sato-Tate group of *E* is a closed subgroup *G* of SU(2) = USp(2) that is determined by the ℓ -adic Galois representation attached to *E*.

A refinement/generalization of the Sato-Tate conjecture states that the distribution of normalized Frobenius traces of E converges to the distribution of traces in its Sato-Tate group G (under its Haar measure).

G	G/G^0	Ε	k	$\mathrm{E}[x_p^0], \mathrm{E}[x_p^2], \mathrm{E}[x_p^4] \dots$
SU(2)	C_1	$y^2 = x^3 + x + 1$	Q	$1, 1, 2, 5, 14, 42, \ldots$
N(U(1))	C_2	$y^2 = x^3 + 1$	\mathbb{Q}	$1, 1, 3, 10, 35, 126, \ldots$
U(1)	C_1	$y^2 = x^3 + 1$	$\mathbb{Q}(\sqrt{-3})$	$1, 2, 6, 20, 70, 252, \ldots$

Fun fact: in the non-CM case the Sato-Tate conjecture implies that $E[x_p^n] = \frac{1}{2\pi} \int_0^{\pi} (2\cos\theta)^n \sin^2\theta \,d\theta$ is the $\frac{n}{2}$ th Catalan number.

Zeta functions and L-polynomials

For a smooth projective curve X/\mathbb{Q} of genus *g* and each prime *p* of good reduction for *X* we have the zeta function

$$Z(X_p/\mathbb{F}_p;T) := \exp\left(\sum_{k=1}^{\infty} \#X_p(\mathbb{F}_{p^k})T^k/k\right) = \frac{L_p(T)}{(1-T)(1-pT)},$$

where $L_p \in \mathbb{Z}[T]$ has degree 2g. The normalized *L*-polynomial

$$\bar{L}_p(T) := L_p(T/\sqrt{p}) = \sum_{i=0}^{2g} a_i T^i \in \mathbb{R}[T]$$

is monic, reciprocal, and unitary, with $|a_i| \leq {\binom{2g}{i}}$.

We can now consider the limiting distribution of a_1, a_2, \ldots, a_g over all primes $p \leq N$ of good reduction, as $N \rightarrow \infty$.

Exceptional distributions for abelian surfaces over \mathbb{Q} :

Andrew V. Sutherland (MIT)

Sato-Tate groups of abelian threefolds

L-polynomials of Abelian varieties

Let *A* be an abelian variety over a number field *k* and fix a prime ℓ . The action of $\text{Gal}(\bar{k}/k)$ on the ℓ -adic Tate module

 $V_{\ell}(A) := \lim_{\longleftarrow} A[\ell^n] \otimes_{\mathbb{Z}} \mathbb{Q}$

gives rise to a Galois representation

$$\rho_{\ell} \colon \operatorname{Gal}(\bar{k}/k) \to \operatorname{Aut}_{\mathbb{Q}_{\ell}}(V_{\ell}(A)) \simeq \operatorname{GSp}_{2g}(\mathbb{Q}_{\ell}).$$

For each prime p of good reduction for A we have the L-polynomial

$$L_{\mathfrak{p}}(T) := \det(1 - \rho_{\ell}(\operatorname{Frob}_{\mathfrak{p}})T), \qquad \overline{L}_{\mathfrak{p}}(T) := L_{\mathfrak{p}}(T/\sqrt{\|\mathfrak{p}\|}),$$

which appears as an Euler factor in the L-series

$$L(A,s) := \prod_{\mathfrak{p}} L_{\mathfrak{p}}(\|\mathfrak{p}\|^{-s})^{-1}.$$

The Sato-Tate group of an abelian variety

The Zariski closure of the image of

$$\rho_{\ell} \colon G_k \to \operatorname{Aut}_{\mathbb{Q}_{\ell}}(V_{\ell}(A)) \simeq \operatorname{GSp}_{2g}(\mathbb{Q}_{\ell})$$

is a \mathbb{Q}_{ℓ} -algebraic group $G_{\ell}^{zar} \subseteq \mathrm{GSp}_{2g}$, and we let $G_{\ell}^{1,zar} := G_{\ell}^{zar} \cap \mathrm{Sp}_{2g}$. Now fix $\iota : \mathbb{Q}_{\ell} \hookrightarrow \mathbb{C}$, and let $G_{\ell,\iota}^{zar}$ and $G_{\ell,\iota}^{1,zar}$ denote base changes to \mathbb{C} .

Definition [Serre]

 $\operatorname{ST}(A) \subseteq \operatorname{USp}(2g)$ is a maximal compact subgroup of $G_{\ell,\iota}^{1,\operatorname{zar}}(\mathbb{C})$ equipped with the map $s \colon \mathfrak{p} \mapsto \operatorname{conj}(\|\mathfrak{p}\|^{-1/2}\rho_{\ell,\iota}(\operatorname{Frob}_{\mathfrak{p}})) \in \operatorname{Conj}(\operatorname{ST}(A)).$

Note that the characteristic polynomial of s(p) is $\overline{L}_{p}(T)$.

The Sato-Tate conjecture for abelian varieties

Conjecture [Mumford-Tate, Algebraic Sato-Tate]

 $(G_{\ell}^{\operatorname{zar}})^0 = \operatorname{MT}(A) \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$, equivalently, $(G_{\ell}^{1,\operatorname{zar}})^0 = \operatorname{Hg}(A) \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$. More generally, $(G_{\ell}^{\operatorname{zar}}) = \operatorname{AST}(A) \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$.

The algebraic Sato-Tate conjecture is known for $g \leq 3$ [BK15].

Sato-Tate conjecture for abelian varieties.

The conjugacy classes s(p) are equidistributed with respect to $\mu_{ST(A)}$, the pushforward of the Haar measure to Conj(ST(A)).

The Sato-Tate conjecture implies that the distribution $\bar{L}_{p}(T)$ is given by the distribution of characteristic polynomials in ST(A).

Sato-Tate axioms for abelian varieties

- $G \subseteq USp(2g)$ satisfies the Sato-Tate axioms (for abelian varieties) if:
 - **Compact**: *G* is closed;
 - **Output Hodge:** *G* contains a Hodge circle θ : U(1) \rightarrow *G*⁰ whose elements $\theta(u)$ have eigenvalues *u*, 1/u with multiplicity *g*, such that the conjugates of θ conjugates generate a dense subset of *G*;
 - Sationality: for each component *H* of *G* and each irreducible character χ of GL_{2g}(ℂ) we have E[χ(γ) : γ ∈ H] ∈ ℤ;
 - **Solution** Lefschetz: The subgroup of USp(2g) fixing $End(\mathbb{C}^{2g})^{G_0}$ is G^0 .

Theorem [FKRS12, FKS19]

Let A/k be an abelian variety of dimension $g \le 3$. Then ST(A) satisfies the Sato-Tate axioms.

Axioms 1-3 are expected to hold in general, but Axiom 4 fails for g = 4. For any g, the set of G satisfying axioms 1-3 is **finite**.

Galois endomorphism types

Let *A* be an abelian variety defined over a number field *k*. Let *K* be the minimal extension of *k* for which $\operatorname{End}(A_K) = \operatorname{End}(A_{\bar{k}})$. $\operatorname{Gal}(K/k)$ acts on the \mathbb{R} -algebra $\operatorname{End}(A_K)_{\mathbb{R}} = \operatorname{End}(A_K) \otimes_{\mathbb{Z}} \mathbb{R}$.

Definition

The *Galois endomorphism type* of *A* is the isomorphism class of $[Gal(K/k), End(A_K)_{\mathbb{R}}]$, where $[G, E] \simeq [G', E']$ iff there are isomorphisms $G \simeq G'$ and $E \simeq E'$ compatible with the group actions.

Theorem [FKRS12]

For abelian varieties A/k of dimension $g \le 3$ there is a one-to-one correspondence between Sato-Tate groups and Galois types.

More precisely, the identity component G^0 is uniquely determined by $\operatorname{End}(A_K)_{\mathbb{R}}$ and $G/G^0 \simeq \operatorname{Gal}(K/k)$ (with corresponding actions).

Real endomorphism algebras of abelian surfaces

abelian surface	$\operatorname{End}(A_K)_{\mathbb{R}}$	$ST(A)^0$
square of CM elliptic curve	$M_2(\mathbb{C})$	U(1) ₂
QM abelian surface	$M_2(\mathbb{R})$	$SU(2)_2$
 square of non-CM elliptic curve 		
CM abelian surface	$\mathbb{C} \times \mathbb{C}$	$U(1) \times U(1)$
 product of CM elliptic curves 		
product of CM and non-CM elliptic curves	$\mathbb{C} imes \mathbb{R}$	$\mathrm{U}(1) imes \mathrm{SU}(2)$
RM abelian surface	$\mathbb{R} imes \mathbb{R}$	$SU(2)\times SU(2)$
 product of non-CM elliptic curves 		
generic abelian surface	R	USp(4)

(factors in products are assumed to be non-isogenous)

Sato-Tate groups of abelian surfaces

Theorem [FKRS12]

Up to conjugacy in USp(4), there are 52 Sato-Tate groups ST(A) that arise for abelian surfaces A/k over number fields; 34 occur for $k = \mathbb{Q}$.

\mathcal{O}_1
E ₆)

This theorem says nothing about equidistribution, however this is now known in many special cases [FS12, Johansson13, Taylor18].

SU(2

Maximal Sato-Tate groups of abelian surfaces

G_0	G/G_0	X
USp(4)	C ₁	$y^2 = x^5 - x + 1$
$SU(2) \times SU(2)$	C_2	$y^2 = x^6 + x^5 + x - 1$
$U(1) \times SU(2)$	C_2	$y^2 = x^6 + 3x^4 - 2$
$U(1) \times U(1)$	D_2	$y^2 = x^6 + 3x^4 + x^2 - 1$
	C_4	$y^2 = x^5 + 1$
$SU(2)_2$	D_4	$y^2 = x^5 + x^3 + 2x$
	D_6	$y^2 = x^6 + x^3 - 2$
$U(1)_{2}$	$D_6 \times C_2 \\$	$y^2 = x^6 + 3x^5 + 10x^3 - 15x^2 + 15x - 6$
	$S_4 \times C_2 \\$	$y^2 = x^6 - 5x^4 + 10x^3 - 5x^2 + 2x - 1$

Each of the 9 maximal Sato-Tate groups in dimension 2 can be realized by the Jacobian of a genus 2 curve X/\mathbb{Q} . One can now verify this using the algorithm of [CMSV19].

There are 3 subgroups of $N(U(1) \times U(1))$ that satisfy the Sato-Tate axioms but do not occur as Sato-Tate groups of abelian surfaces.

Sato-Tate groups of abelian threefolds

Theorem [FKS19]

Up to conjugacy in USp(6), 433 groups satisfy the Sato-Tate axioms for g = 3, but 23 cannot arise as Sato-Tate groups of abelian threefolds.

Theorem [FKS19]

Up to conjugacy in USp(6) there are 410 Sato-Tate groups of abelian threefolds over number fields, of which 33 are maximal.

The 33 maximal groups all arise as the Sato-Tate group of an abelian threefold defined over \mathbb{Q} ; the rest can be realized via base change.

There are 14 distinct identity components that arise, and the order of every component group always divides one of the following integers: $192 = 2^6 \cdot 3$, $336 = 2^4 \cdot 3 \cdot 7$, $432 = 2^4 \cdot 3^3$.

Real endomorphism algebras of abelian threefolds

abelian threefold	$\operatorname{End}(A_K)_{\mathbb{R}}$	$ST(A)^0$
cube of a CM elliptic curve	$M_3(\mathbb{C})$	U(1) ₃
cube of a non-CM elliptic curve	$M_3(\mathbb{R})$	SU(2) ₃
product of CM elliptic curve and square of CM elliptic curve	$\mathbb{C} \times M_2(\mathbb{C})$	$U(1) \times U(1)_2$
product of non-CM elliptic curve and square of CM elliptic curve	$\mathbb{R}\times M_2(\mathbb{C})$	$SU(2) \times U(1)_2$
 product of CM elliptic curve and QM abelian surface 	$\mathbb{C} \times M_2(\mathbb{R})$	$U(1) \times SU(2)_2$
 product of CM elliptic curve and square of non-CM elliptic curve 		
 product of non-CM elliptic curve and QM abelian surface 	$\mathbb{R} \times M_2(\mathbb{R})$	$SU(2) \times SU(2)_2$
 product of non-CM elliptic curve and square of non-CM elliptic curve 		
CM abelian threefold	$\mathbb{C}\times\mathbb{C}\times\mathbb{C}$	$U(1) \times U(1) \times U(1)$
 product of CM elliptic curve and CM abelian surface 		
 product of three CM elliptic curves 		
 product of non-CM elliptic curve and CM abelian surface 	$\mathbb{C}\times\mathbb{C}\times\mathbb{R}$	$U(1) \times U(1) \times SU(2)$
 product of non-CM elliptic curve and two CM elliptic curves 		
 product of CM elliptic curve and RM abelian surface 	$\mathbb{C}\times\mathbb{R}\times\mathbb{R}$	$U(1) \times SU(2) \times SU(2)$
 product of CM elliptic curve and two non-CM elliptic curves 		
RM abelian threefold	$\mathbb{R}\times\mathbb{R}\times\mathbb{R}$	$SU(2) \times SU(3) \times SU(3)$
 product of non-CM elliptic curve and RM abelian surface 		
 product of 3 non-CM elliptic curves 		
product of CM elliptic curve and abelian surface	$\mathbb{C} \times \mathbb{R}$	$U(1) \times USp(4)$
product of non-CM elliptic curve and abelian surface	$\mathbb{R} \times \mathbb{R}$	$SU(2) \times USp(4)$
quadratic CM abelian threefold	C	U(3)
generic abelian threefold	R	USp(6)

Connected Sato-Tate groups of abelian threefolds:

G_0	G/G_0	$ G/G_0 $
USp(6)	C ₁	1
U(3)	C_2	2
$SU(2) \times USp(4)$	C_1	1
$U(1) \times USp(4)$	C_2	2
$SU(2)^3$	S_3	6
$U(1) \times SU(2)^2$	D_2	4
$U(1)^2 \times SU(2)$	$C_2,\ D_2$	4
$U(1)^{3}$	$S_3, C_2{}^3, C_2 \times C_4$	6, 8
$SU(2) \times SU(2)_2$	D_4, D_6	8, 12
$U(1) \times SU(2)_2$	$D_4 imes C_2, \ D_6 imes C_2$	16, 24
$SU(2) \times U(1)_2$	$D_6 imes C_2, S_4 imes C_2$	48
$U(1) \times U(1)_2$	$D_6 \times {C_2}^2, \hspace{0.2cm} S_4 \times {C_2}^2$	48, 96
$SU(2)_3$	D_6, S_4	12, 24
$U(1)_{3}$	see below	$48^{\times 4}, 96, 144^{\times 2},$
• •		$192^{\times 2}, 336, 432^{\times 2}$

Maximal Sato-Tate groups of abelian threefolds

 $\begin{array}{l} \langle 48,15\rangle, \langle 48,15\rangle, \langle 48,38\rangle, \langle 48,41\rangle, \langle 96,193\rangle, \langle 144,125\rangle, \\ \langle 144,127\rangle, \langle 192,988\rangle, \langle 192,956\rangle, \langle 336,208\rangle, \langle 432,523\rangle, \langle 432,734\rangle. \end{array}$

Andrew V. Sutherland (MIT)

References

- [ACCGHHNSTT18] P. Allen, F. Calegari, A. Caraiani, T. Gee, D. Helm, B. Le-Hung, J. Newton, P. Scholze, R. Taylor, J. Thorne, *Potential automorphy over CM fields*, arXiv:1812.09999.
- [BGG11] T. Barnet-Lamb, D. Geraghty, and T. Gee, *The Sato-Tate conjecture for Hilbert modular forms*, J. Amer. Math. Soc. 24 (2011), 411–469.
- [BGHT11] T. Barnet-Lamb, D. Geraghty, M. Harris, and R. Taylor, A family of Calabi-Yau varieties and potential automorphy II, Publications of the Research Institute for Mathematical Sciences 47 (2011), 29–98.
- [BK15] G. Banaszak and K. S. Kedlaya, An algebraic Sato-Tate group and Sato-Tate conjecture, Indiana U. Math. Journal 64 (2015), 245–274.
- [CHT08] L. Clozel, M. Harris, and R. Taylor, Automorphy for some ℓ-adic lifts of automorphic mod-ℓ Galois representations, Publ. Math. IHES 108 (2008), 1–181.
- [CMSV19] E. Costa, N. Mascot, J. Sijsling, J. Voight, *Rigorous computation of the endomorphism ring of a Jacobian*, Math. Comp. 88 (2019), 1303-1339.
- [FKRS12] F. Fité, K. S. Kedlaya, V. Rotger, and A. V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, Compositio Mathematica 148 (2012), 1390–1442.

References

- [FKS19] F. Fité, K. S. Kedlaya, and A. V. Sutherland, Sato-Tate groups of abelian threefolds: a preview of the classification, Arithmetic Geometry, Cryptography, and Coding Theory, Contemp. Math., AMS, to appear.
- [FS14] F. Fité and A. V. Sutherland, *Sato-Tate distributions of twists of* $y^2 = x^5 x$ and $y^2 = x^6 + 1$, Algebra and Number Theory **8** (2014), 543–585.
- [HST10] M. Harris, N. Shepherd-Barron, and R. Taylor, A family of Calabi-Yau varieties and potential automorphy, Annals Math. 171 (2010), 779–813.
- [Johansson13] C. Johansson, On the Sato-Tate conjecture for non-generic abelian surfaces, with an appendix by Francesc Fité, Transactions of the AMS 369 (2017), 6303–6325.
- [Serre12] J.-P. Serre, *Lectures on N_X(p)*, Research Notes in Mathematics 11, CRC Press, 2012.
- [Sutherland18] A. V. Sutherland, *Sato-Tate distributions*, Analytic Methods in Arithmetic Geometry, Contemp. Math. 740 (2019), AMS, 197-248.
- [Taylor18] N. Taylor, Sato-Tate distributions of abelian surfaces, Trans. Amer. Math. Soc. 373 (2020), 3541-3559
- [Taylor08] R. Taylor, Automorphy for some ℓ-adic lifts of automorphic mod ℓ Galois representations II, Publ. Math. IHES **108** (2008) 183–239.