Special kinds of maps

November 13, 2019

1 Special maps from V to V

The subject of linear algebra is (first, or possibly second) vector spaces and (second, or possibly first) interesting functions ("maps") taking one vector space to another. I want to collect here in one place a number of the ideas we've discussed about maps, to see the formal similiarities among them. All of these ideas make sense for maps between two *different* vector spaces, and all of them are interesting also for *infinite-dimensional* vector spaces; but to simplify, I'll first look at them for a single finite-dimensional vector space. So for this section, I'll always assume

$$V$$
 is a finite-dimensional vector space over any field F . (1.1)

Definition 1.2. A function $T: V \to V$ (that is, something that takes one vector v and hands you another vector T(v)) is called *linear* if T respects the vector space structure:

$$T(v+w) = T(v) + T(w), \qquad T(av) = aT(v) \qquad (v, w \in V, a \in F).$$

I'll write $n = \dim V$, and sometimes choose

$$(e_1, \dots, e_n) =$$
basis of $V \quad (e_i \in V).$ (1.3a)

Once we've chosen a basis, elements of V can be written uniquely as

$$v = x_1 e_1 + x_2 e_2 + \dots + x_n e_n$$
 $(x_i \in F).$ (1.3b)

In this way V is identified with $n \times 1$ column vectors

$$v \longleftrightarrow \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
(1.3c)

. Again in the presence of a basis, giving a linear map T is the same thing as giving n vectors in V

$$t^{1} = T(e_{1})$$
 $t^{2} = T(e_{2}) \cdots t^{n} = T(e_{n})$ (1.3d)

or equivalently n column vectors

$$\begin{pmatrix} t_1^1 \\ t_2^1 \\ \vdots \\ t_n^1 \end{pmatrix} \begin{pmatrix} t_1^2 \\ t_2^2 \\ \vdots \\ t_n^2 \end{pmatrix} \cdots \begin{pmatrix} t_1^n \\ t_2^n \\ \vdots \\ t_n^n \end{pmatrix}$$
(1.3e)

or equivalently the $n \times n$ matrix

$$\begin{pmatrix} t_1^1 & t_1^2 & \cdots & t_1^n \\ t_2^1 & t_2^2 & \cdots & t_2^n \\ \vdots & \vdots & \ddots & \vdots \\ t_n^1 & t_n^2 & \cdots & t_n^n \end{pmatrix}.$$
 (1.3f)

What these definitions say is that applying the linear map T to a vector v means taking a certain linear combination of the columns of T:

$$T\begin{pmatrix} x_1\\ x_2\\ \vdots\\ x_n \end{pmatrix} = T(x_1e_1 + x_2e_2 + \dots + x_ne_n) = x_1t^1 + x_2t^2 + \dots + x_nt^n.$$
(1.3g)

The point of these notes is to talk about various special kinds of linear maps, and what kinds of matrices they correspond to.

Definition 1.4. The linear map $T \in \mathcal{L}(V)$ is called *injective* or *one-to-one* if its null space is zero:

$$\operatorname{Null}(T) = 0.$$

Because of (1.3g), it is equivalent to require the columns of the matrix of T are linearly independent.

We could sharpen this equivalence a bit. How much T fails to be injective is measured by the *size* of the null space. If (w_1, w_2, \dots, w_m) is any list of vectors in a vector space W over F, we could define a subspace

$$D(w_1, \dots, w_m) \subset F^m, D(w_1, \dots, w_m) = \{(x_1, \dots, x_m) \in F^m \mid x_1 w_1 + \dots + x_m w_m = 0\}$$
(1.5)

The *D* stands for "dependence:" (w_1, \ldots, w_m) is linearly independent if and only if $D(w_1, \ldots, w_m) = 0$. The larger *D* is, the more dependent is the list of vectors. What's clear from the definitions is

$$Null(T) = D(\text{columns of } T).$$
(1.6)

That is, T fails to be injective exactly as much as its columns fail to be linearly independent.

Surjectivity is "dual."

Definition 1.7. The linear map $T \in \mathcal{L}(V)$ is called *surjective* or *onto* if its range is all of V:

$$\operatorname{Range}(T) = V.$$

Because of (1.3g), it is equivalent to require the columns of the matrix of T span V.

Again we can make this more precise:

$$Range(T) = span(columns of T).$$
(1.8)

That is, T fails to be surjective exactly as much as its columns fail to span V.

A list of n vectors in the n-dimensional space V is linearly independent if and only if it spans V; so Definitions 1.4 and 1.7 are equivalent. That is, a linear map on an n-dimensional vector space is injective if and only if it is surjective. When we work with $\mathcal{L}(V, W)$, injectivity and surjectivity will become two different properties.

Next, suppose that

$$W \subset V, \qquad \dim W = p, \quad q = n - p$$
 (1.9a)

is a p-dimensional subspace of V. We can choose a basis of W

$$(f_1, \dots, f_p) =$$
basis of $W \quad (f_i \in W)$ (1.9b)

and extend it to a basis of V.

$$(f_1, \dots, f_p, g_1, \dots g_q) = \text{basis of } V.$$
(1.9c)

Recall that then

$$(g_1 + W, \dots g_q + W) = \text{basis of } V/W \tag{1.9d}$$

Definition 1.10. In the setting (1.9), we say that $T \in \mathcal{L}(V)$ preserves W (or that W is an invariant subspace for T) if

$$Tw \in W$$
, all $w \in W$.

If the basis $(f_1, \ldots, f_p, g_1, \ldots, g_q)$ is chosen as in (1.9c), then it is equivalent to require that

 $T(f_1), \ldots, T(f_p)$ all belong to W.

In terms of the matrix of T in the basis $(f_1, \ldots, f_p, g_1, \ldots, g_q)$, this is

the first p columns belong to $F^p \subset F^n$;

that is, that the last q entries of each of the first p columns are all zero.

The conditions in the definition say that the matrix of T is block upper triangular:

$$T = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix}, \tag{1.11}$$

with A a $p \times p$ matrix, B a $p \times q$ matrix, 0 the $q \times p$ zero matrix, and D a $q \times q$ matrix. Furthermore

$$A = \text{matrix of } T \text{ restricted to } W \text{ in the basis } (f_1, \dots, f_p), \qquad (1.12)$$

$$D = \text{matrix of } T \text{ on } V/W \text{ in basis } (g_1 + W, \dots, g_q + W).$$
(1.13)

Finally we discuss isometries. For this suppose F is \mathbb{R} or \mathbb{C} , and that V is an *n*-dimensional inner product space over F. Recall that we can fix an *orthonormal* basis

$$(e_1, \dots, e_n) =$$
orthonormal basis of $V \quad (e_i \in V),$ (1.14)

meaning that

$$\langle e_i, e_j \rangle = \begin{cases} 1 & (i=j) \\ 0 & (i \neq j). \end{cases}$$

Definition 1.15. Recall that $T \in \mathcal{L}(V)$ is called an *isometry* if

$$\langle Tv, Tw \rangle = \langle v, w \rangle$$
 (all $v, w \in V$).

Assuming that (e_1, \ldots, e_n) is an orthonormal basis of V, it is equivalent to require that the columns of T are also an orthonormal basis of V. Another equivalent statement is that $T^*T = I$; that is, that $T^* = T^{-1}$.

It's a fact from calculus that any vector in \mathbb{R}^2 of length 1 is of the form

$$\begin{pmatrix} \cos \theta\\ \sin \theta \end{pmatrix} \tag{1.16}$$

for some real number θ that is determined up to a multiple of 2π . It's an elementary geometric fact (still in \mathbb{R}^2) that $\begin{pmatrix} -b \\ a \end{pmatrix}$ is perpendicular to $\begin{pmatrix} a \\ b \end{pmatrix}$; and that if a and b are not both zero, then

$$\begin{pmatrix} a \\ b \end{pmatrix}^{\perp} = \left\{ r \begin{pmatrix} -b \\ a \end{pmatrix} \mid r \in \mathbb{R} \right\}.$$

It follows easily that every orthonormal basis of \mathbb{R}^2 is of the form

$$\left(\begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, \begin{pmatrix} \mp \sin \theta \\ \pm \cos \theta \end{pmatrix} \right), \tag{1.17}$$

with θ a real number determined up to a multiple of 2π and a single choice of sign. (That is, the two signs \mp and \pm must be opposite.) According to Definition 1.15, this means that every isometry of \mathbb{R}^2 is of the form

$$\begin{pmatrix} \cos\theta & \mp \sin\theta\\ \sin\theta & \pm \cos\theta \end{pmatrix}.$$
 (1.18)

In the case of $\begin{pmatrix} -\\ + \end{pmatrix}$ (signs in the second column) this matrix represents rotation of \mathbb{R}^2 counterclockwise by an angle of θ . In the case of $\begin{pmatrix} +\\ - \end{pmatrix}$, the matrix is a reflection fixing the line through $\begin{pmatrix} \cos \theta/2\\ \sin \theta/2 \end{pmatrix}$, and acting by -1on the perpendicular line through $\begin{pmatrix} -\sin \theta/2\\ \cos \theta/2 \end{pmatrix}$.

2 Special maps from V to W

In this section I'll see how to extend the ideas from Section 1 to maps between two different vector spaces. So for this section, I'll always assume

V and W are finite-dimensional vector spaces over any field F. (2.1)

Definition 2.2. A function $T: V \to W$ (that is, something that takes a vector $v \in V$ and hands you a vector $T(v) \in W$) is called *linear* if T respects the vector space structure:

$$T(v + v') = T(v) + T(v'), \qquad T(av) = aT(v) \qquad (v, v' \in V, \ a \in F).$$

I'll write $n = \dim V$, $m = \dim W$ and sometimes choose

$$(e_1, \dots, e_n) = \text{basis of } V \quad (e_j \in V),$$

$$(f_1, \dots, f_m) = \text{basis of } W \quad (f_i \in W),$$
(2.3a)

Once we've chosen bases, elements of V and W can be written uniquely as

$$v = x_1 e_1 + x_2 e_2 + \dots + x_n e_n \qquad (x_j \in F), w = y_1 f_1 + y_2 f_2 + \dots + y_m f_m \qquad (y_i \in F),$$
(2.3b)

In this way V is identified with $n \times 1$ column vectors, and W with $m \times 1$ column vectors:

$$v \longleftrightarrow \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \qquad w \longleftrightarrow \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$
(2.3c)

. Again in the presence of these bases, giving a linear map T is the same thing as giving n vectors in W

$$t^{1} = T(e_{1})$$
 $t^{2} = T(e_{2}) \cdots t^{n} = T(e_{n})$ (2.3d)

or equivalently n column vectors

$$\begin{pmatrix} t_1^1 \\ t_2^1 \\ \vdots \\ t_m^1 \end{pmatrix} \begin{pmatrix} t_1^2 \\ t_2^2 \\ \vdots \\ t_m^2 \end{pmatrix} \dots \begin{pmatrix} t_1^n \\ t_2^n \\ \vdots \\ t_m^n \end{pmatrix}$$
(2.3e)

or equivalently the $m \times n$ matrix

$$\begin{pmatrix} t_1^1 & t_1^2 & \cdots & t_1^n \\ t_2^1 & t_2^2 & \cdots & t_2^n \\ \vdots & \vdots & \ddots & \vdots \\ t_m^1 & t_m^2 & \cdots & t_m^n \end{pmatrix}.$$
 (2.3f)

What these definitions say is that applying the linear map T to a vector v means taking a certain linear combination of the columns of T:

$$T\begin{pmatrix} x_1\\ x_2\\ \vdots\\ x_n \end{pmatrix} = T(x_1e_1 + x_2e_2 + \dots + x_ne_n) = x_1t^1 + x_2t^2 + \dots + x_nt^n.$$
(2.3g)

We now begin to extend the definitions from Section 1.

Definition 2.4. The linear map $T \in \mathcal{L}(V, W)$ is called *injective* or *one-to-one* if its null space is zero:

$$\operatorname{Null}(T) = 0.$$

Because of (2.3g), it is equivalent to require the columns of the matrix of T are linearly independent. It is also equivalent to require that T has a left inverse $S \in \mathcal{L}(W, V)$:

$$ST = I_V.$$

These conditions can be satisfied only if $n = \dim V \leq \dim W = m$.

We could sharpen this equivalence a bit. How much T fails to be injective is measured by the *size* of the null space. If (w_1, w_2, \dots, w_m) is any list of vectors in a vector space W over F, we could define a subspace

$$D(w_1, \dots, w_m) \subset F^m, D(w_1, \dots, w_m) = \{(x_1, \dots, x_m) \in F^m \mid x_1 w_1 + \dots + x_m w_m = 0\}$$
(2.5)

The *D* stands for "dependence:" (w_1, \ldots, w_m) is linearly independent if and only if $D(w_1, \ldots, w_m) = 0$. The larger *D* is, the more dependent is the list of vectors. What's clear from the definitions is

$$Null(T) = D(\text{columns of } T).$$
(2.6)

That is, T fails to be injective exactly as much as its columns fail to be linearly independent.

Surjectivity is "dual."

Definition 2.7. The linear map $T \in \mathcal{L}(V, W)$ is called *surjective* or *onto* if its range is all of W:

$$\operatorname{Range}(T) = W.$$

Because of (2.3g), it is equivalent to require the columns of the matrix of T span W. It is also equivalent to require that T has a right inverse $S \in \mathcal{L}(W, V)$:

$$TS = I_W.$$

These conditions can be satisfied only if $m = \dim W \leq \dim V = n$.

Again we can make this more precise:

$$Range(T) = span(columns of T).$$
(2.8)

That is, T fails to be surjective exactly as much as its columns fail to span W.

Next, suppose that

$$V_1 \subset V,$$
 dim $V_1 = n_1, \quad n_2 = n - n_1$
 $W_1 \subset W,$ dim $W_1 = m_1, \quad m_2 = m - m_1$ (2.9a)

are subspaces of V and W. We can choose a basis of V_1

$$(e_1, \dots, e_{n_1}) = \text{basis of } V_1 \quad (e_j \in V_1)$$

$$(2.9b)$$

and extend it to a basis of ${\cal V}$

$$(e_1, \dots, e_{n_1}, g_1, \dots, g_{n_2}) =$$
basis of V. (2.9c)

and we can choose a basis

$$(f_1, \dots, f_{m_1}) = \text{basis of } V_1 \quad (f_i \in V_1) \tag{2.9d}$$

and extend it to a basis of ${\cal W}$

$$(f_1, \dots, f_{m_1}, h_1, \dots, h_{m_2}) =$$
basis of $W.$ (2.9e)

Recall that then

$$(g_1 + V_1, \dots g_{n_2} + V_1) =$$
basis of V/V_1 , (2.9f)

and

$$(h_1 + W_1, \dots h_{m_2} + W_1) = \text{basis of } W/W_1.$$
 (2.9g)

Definition 2.10. In the setting (2.9), we say that $T \in \mathcal{L}(V, W)$ carries V_1 to W_1 if

$$Tv_1 \in W_1$$
, all $v_1 \in V_1$.

If the bases

$$(e_1, \ldots, e_{n_1}, g_1, \ldots, g_{n_2})$$
 and $(f_1, \ldots, f_{m_1}, h_1, \ldots, h_{m_2})$

are chosen as in (2.9c) and (2.9e), then it is equivalent to require that

 $T(e_1), \ldots, T(e_p)$ all belong to W_1 .

In terms of the matrix of T in these bases, this is

the first
$$n_1$$
 columns belong to $F^{m_1} \subset F^m$;

that is, that the last m_2 entries of each of the first n_1 columns are all zero.

The conditions in the definition say that the matrix of T is block upper triangular:

$$T = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix}, \tag{2.11}$$

with A an $m_1 \times n_1$ matrix, B an $m_1 \times n_2$ matrix, 0 the $m_2 \times n_1$ zero matrix, and D an $m_2 \times n_2$ matrix. Furthermore

$$A = \text{matrix of } T|_{V_1} \in \mathcal{L}(V_1, W_1) \text{ in bases}$$

(e_1, ..., e_{m_1}), (f_1, ..., f_{m_1}), (2.12)

$$D = \text{matrix of } T|_{V/V_1} \in \mathcal{L}(V/V_1, W/W_1) \text{ in bases}$$

(g_1 + V_1, ..., g_{n_2} + V_1), (h_1 + W_1, ..., h_{m_2} + W_1). (2.13)

Finally we discuss isometries. For this suppose F is \mathbb{R} or \mathbb{C} , and that V and W are inner product spaces over F, still of dimensions n and m. Recall that we can fix *orthonormal* bases

$$(e_1, \dots, e_n) = \text{orthonormal basis of } V \quad (e_j \in V),$$

$$(f_1, \dots, f_m) = \text{orthonormal basis of } W \quad (f_i \in W),$$

$$(2.14)$$

meaning that

$$\langle e_j, e_{j'} \rangle = \begin{cases} 1 & (j = j') \\ 0 & (j \neq j') \end{cases}$$

and

$$\langle f_i, f_{i'} \rangle = \begin{cases} 1 & (i = i') \\ 0 & (i \neq i') \end{cases}$$

Definition 2.15. A linear map of inner product spaces $T \in \mathcal{L}(V, W)$ is called an *isometry* if

$$\langle Tv, Tv' \rangle = \langle v, v' \rangle$$
 (all $v, v' \in V$).

Assuming that (e_1, \ldots, e_n) is an orthonormal basis of V, it is equivalent to require that the columns of T are also an orthonormal set in W. Another equivalent statement is that $T^*T = I_V$; that is, that T^* is a left inverse of T.

Because an orthonormal set is necessarily linearly independent, an isometry is automatically injective; the left inverse that must exist may be taken to be T^* . In particular, isometries can exist in $\mathcal{L}(V, W)$ only if $n = \dim V \leq \dim W = m$.

Any isometry from \mathbb{R}^1 to \mathbb{R}^2 is a 2×1 matrix

$$T = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}.$$