Special kinds of maps

November 13, 2019

1 Special maps from V to V

The subject of linear algebra is (first, or possibly second) vector spaces and (second, or possibly first) interesting functions ("maps") taking one vector space to another. I want to collect here in one place a number of the ideas we've discussed about maps, to see the formal similiarities among them. All of these ideas make sense for maps between two different vector spaces, and all of them are interesting also for infinite-dimensional vector spaces; but to simplify, I'll first look at them for a single finite-dimensional vector space. So for this section, I'll always assume

$$
\begin{equation*}
V \text { is a finite-dimensional vector space over any field } F \text {. } \tag{1.1}
\end{equation*}
$$

Definition 1.2. A function $T: V \rightarrow V$ (that is, something that takes one vector v and hands you another vector $T(v)$) is called linear if T respects the vector space structure:

$$
T(v+w)=T(v)+T(w), \quad T(a v)=a T(v) \quad(v, w \in V, a \in F) .
$$

I'll write $n=\operatorname{dim} V$, and sometimes choose

$$
\begin{equation*}
\left(e_{1}, \ldots, e_{n}\right)=\text { basis of } V \quad\left(e_{i} \in V\right) \tag{1.3a}
\end{equation*}
$$

Once we've chosen a basis, elements of V can be written uniquely as

$$
\begin{equation*}
v=x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n} \quad\left(x_{i} \in F\right) . \tag{1.3b}
\end{equation*}
$$

In this way V is identified with $n \times 1$ column vectors

$$
v \longleftrightarrow\left(\begin{array}{c}
x_{1} \tag{1.3c}\\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

. Again in the presence of a basis, giving a linear map T is the same thing as giving n vectors in V

$$
\begin{equation*}
t^{1}=T\left(e_{1}\right) \quad t^{2}=T\left(e_{2}\right) \cdots t^{n}=T\left(e_{n}\right) \tag{1.3d}
\end{equation*}
$$

or equivalently n column vectors

$$
\left(\begin{array}{c}
t_{1}^{1} \tag{1.3e}\\
t_{2}^{1} \\
\vdots \\
t_{n}^{1}
\end{array}\right) \quad\left(\begin{array}{c}
t_{1}^{2} \\
t_{2}^{2} \\
\vdots \\
t_{n}^{2}
\end{array}\right) \cdots\left(\begin{array}{c}
t_{1}^{n} \\
t_{2}^{n} \\
\vdots \\
t_{n}^{n}
\end{array}\right)
$$

or equivalently the $n \times n$ matrix

$$
\left(\begin{array}{cccc}
t_{1}^{1} & t_{1}^{2} & \cdots & t_{1}^{n} \tag{1.3f}\\
t_{2}^{1} & t_{2}^{2} & \cdots & t_{2}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
t_{n}^{1} & t_{n}^{2} & \cdots & t_{n}^{n}
\end{array}\right) .
$$

What these definitions say is that applying the linear map T to a vector v means taking a certain linear combination of the columns of T :

$$
T\left(\begin{array}{c}
x_{1} \tag{1.3~g}\\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=T\left(x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n}\right)=x_{1} t^{1}+x_{2} t^{2}+\cdots+x_{n} t^{n}
$$

The point of these notes is to talk about various special kinds of linear maps, and what kinds of matrices they correspond to.

Definition 1.4. The linear map $T \in \mathcal{L}(V)$ is called injective or one-to-one if its null space is zero:

$$
\operatorname{Null}(T)=0
$$

Because of $(1.3 \mathrm{~g})$, it is equivalent to require the columns of the matrix of T are linearly independent.

We could sharpen this equivalence a bit. How much T fails to be injective is measured by the size of the null space. If $\left(w_{1}, w_{2}, \cdots, w_{m}\right)$ is any list of vectors in a vector space W over F, we could define a subspace

$$
\begin{align*}
& D\left(w_{1}, \ldots, w_{m}\right) \subset F^{m}, \\
& D\left(w_{1}, \ldots, w_{m}\right)=\left\{\left(x_{1}, \ldots, x_{m}\right) \in F^{m} \mid x_{1} w_{1}+\cdots+x_{m} w_{m}=0\right\} \tag{1.5}
\end{align*}
$$

The D stands for "dependence:" $\left(w_{1}, \ldots, w_{m}\right)$ is linearly independent if and only if $D\left(w_{1}, \ldots, w_{m}\right)=0$. The larger D is, the more dependent is the list of vectors. What's clear from the definitions is

$$
\begin{equation*}
\operatorname{Null}(T)=D(\text { columns of } T) \tag{1.6}
\end{equation*}
$$

That is, T fails to be injective exactly as much as its columns fail to be linearly independent.

Surjectivity is "dual."
Definition 1.7. The linear map $T \in \mathcal{L}(V)$ is called surjective or onto if its range is all of V :

$$
\operatorname{Range}(T)=V
$$

Because of $(1.3 \mathrm{~g})$, it is equivalent to require the columns of the matrix of T span V.

Again we can make this more precise:

$$
\begin{equation*}
\text { Range }(T)=\operatorname{span}(\text { columns of } T) \tag{1.8}
\end{equation*}
$$

That is, T fails to be surjective exactly as much as its columns fail to span V.

A list of n vectors in the n-dimensional space V is linearly independent if and only if it spans V; so Definitions 1.4 and 1.7 are equivalent. That is, a linear map on an n-dimensional vector space is injective if and only if it is surjective. When we work with $\mathcal{L}(V, W)$, injectivity and surjectivity will become two different properties.

Next, suppose that

$$
\begin{equation*}
W \subset V, \quad \operatorname{dim} W=p, \quad q=n-p \tag{1.9a}
\end{equation*}
$$

is a p-dimensional subspace of V. We can choose a basis of W

$$
\begin{equation*}
\left(f_{1}, \ldots, f_{p}\right)=\text { basis of } W \quad\left(f_{i} \in W\right) \tag{1.9b}
\end{equation*}
$$

and extend it to a basis of V.

$$
\begin{equation*}
\left(f_{1}, \ldots, f_{p}, g_{1}, \ldots g_{q}\right)=\text { basis of } V \tag{1.9c}
\end{equation*}
$$

Recall that then

$$
\begin{equation*}
\left(g_{1}+W, \ldots g_{q}+W\right)=\text { basis of } V / W \tag{1.9~d}
\end{equation*}
$$

Definition 1.10. In the setting (1.9), we say that $T \in \mathcal{L}(V)$ preserves W (or that W is an invariant subspace for T) if

$$
T w \in W, \quad \text { all } w \in W
$$

If the basis $\left(f_{1}, \ldots, f_{p}, g_{1}, \ldots, g_{q}\right)$ is chosen as in (1.9c), then it is equivalent to require that

$$
T\left(f_{1}\right), \ldots, T\left(f_{p}\right) \text { all belong to } W \text {. }
$$

In terms of the matrix of T in the basis $\left(f_{1}, \ldots, f_{p}, g_{1}, \ldots, g_{q}\right)$, this is

$$
\text { the first } p \text { columns belong to } F^{p} \subset F^{n} \text {; }
$$

that is, that the last q entries of each of the first p columns are all zero.
The conditions in the definition say that the matrix of T is block upper triangular:

$$
T=\left(\begin{array}{cc}
A & B \tag{1.11}\\
0 & D
\end{array}\right),
$$

with A a $p \times p$ matrix, B a $p \times q$ matrix, 0 the $q \times p$ zero matrix, and D a $q \times q$ matrix. Furthermore

$$
\begin{align*}
& A=\text { matrix of } T \text { restricted to } W \text { in the basis }\left(f_{1}, \ldots, f_{p}\right), \tag{1.12}\\
& D=\text { matrix of } T \text { on } V / W \text { in basis }\left(g_{1}+W, \ldots, g_{q}+W\right) . \tag{1.13}
\end{align*}
$$

Finally we discuss isometries. For this suppose F is \mathbb{R} or \mathbb{C}, and that V is an n-dimensional inner product space over F. Recall that we can fix an orthonormal basis

$$
\begin{equation*}
\left(e_{1}, \ldots, e_{n}\right)=\text { orthonormal basis of } V \quad\left(e_{i} \in V\right), \tag{1.14}
\end{equation*}
$$

meaning that

$$
\left\langle e_{i}, e_{j}\right\rangle= \begin{cases}1 & (i=j) \\ 0 & (i \neq j) .\end{cases}
$$

Definition 1.15. Recall that $T \in \mathcal{L}(V)$ is called an isometry if

$$
\langle T v, T w\rangle=\langle v, w\rangle \quad(\text { all } v, w \in V) .
$$

Assuming that $\left(e_{1}, \ldots, e_{n}\right)$ is an orthonormal basis of V, it is equivalent to require that the columns of T are also an orthonormal basis of V. Another equivalent statement is that $T^{*} T=I$; that is, that $T^{*}=T^{-1}$.

It's a fact from calculus that any vector in \mathbb{R}^{2} of length 1 is of the form

$$
\begin{equation*}
\binom{\cos \theta}{\sin \theta} \tag{1.16}
\end{equation*}
$$

for some real number θ that is determined up to a multiple of 2π. It's an elementary geometric fact (still in \mathbb{R}^{2}) that $\binom{-b}{a}$ is perpendicular to $\binom{a}{b}$; and that if a and b are not both zero, then

$$
\binom{a}{b}^{\perp}=\left\{\left.r\binom{-b}{a} \right\rvert\, r \in \mathbb{R}\right\} .
$$

It follows easily that every orthonormal basis of \mathbb{R}^{2} is of the form

$$
\begin{equation*}
\left(\binom{\cos \theta}{\sin \theta},\binom{\mp \sin \theta}{ \pm \cos \theta}\right), \tag{1.17}
\end{equation*}
$$

with θ a real number determined up to a multiple of 2π and a single choice of sign. (That is, the two signs \mp and \pm must be opposite.) According to Definition 1.15 , this means that every isometry of \mathbb{R}^{2} is of the form

$$
\left(\begin{array}{cc}
\cos \theta & \mp \sin \theta \tag{1.18}\\
\sin \theta & \pm \cos \theta
\end{array}\right) .
$$

In the case of $\binom{-}{+}$ (signs in the second column) this matrix represents rotation of \mathbb{R}^{2} counterclockwise by an angle of θ. In the case of $\binom{+}{-}$, the matrix is a reflection fixing the line through $\binom{\cos \theta / 2}{\sin \theta / 2}$, and acting by -1 on the perpendicular line through $\binom{-\sin \theta / 2}{\cos \theta / 2}$.

2 Special maps from V to W

In this section I'll see how to extend the ideas from Section 1 to maps between two different vector spaces. So for this section, I'll always assume
V and W are finite-dimensional vector spaces over any field F.

Definition 2.2. A function $T: V \rightarrow W$ (that is, something that takes a vector $v \in V$ and hands you a vector $T(v) \in W)$ is called linear if T respects the vector space structure:

$$
T\left(v+v^{\prime}\right)=T(v)+T\left(v^{\prime}\right), \quad T(a v)=a T(v) \quad\left(v, v^{\prime} \in V, a \in F\right)
$$

I'll write $n=\operatorname{dim} V, m=\operatorname{dim} W$ and sometimes choose

$$
\begin{align*}
\left(e_{1}, \ldots, e_{n}\right) & =\text { basis of } V \quad\left(e_{j} \in V\right) \\
\left(f_{1}, \ldots, f_{m}\right) & =\text { basis of } W \quad\left(f_{i} \in W\right) \tag{2.3a}
\end{align*}
$$

Once we've chosen bases, elements of V and W can be written uniquely as

$$
\begin{array}{rlr}
v & =x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n} & \left(x_{j} \in F\right), \tag{2.3b}\\
w & =y_{1} f_{1}+y_{2} f_{2}+\cdots+y_{m} f_{m} & \left(y_{i} \in F\right),
\end{array}
$$

In this way V is identified with $n \times 1$ column vectors, and W with $m \times 1$ column vectors:

$$
v \longleftrightarrow\left(\begin{array}{c}
x_{1} \tag{2.3c}\\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \quad w \longleftrightarrow\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)
$$

. Again in the presence of these bases, giving a linear map T is the same thing as giving n vectors in W

$$
\begin{equation*}
t^{1}=T\left(e_{1}\right) \quad t^{2}=T\left(e_{2}\right) \cdots t^{n}=T\left(e_{n}\right) \tag{2.3d}
\end{equation*}
$$

or equivalently n column vectors

$$
\left(\begin{array}{c}
t_{1}^{1} \tag{2.3e}\\
t_{2}^{1} \\
\vdots \\
t_{m}^{1}
\end{array}\right) \quad\left(\begin{array}{c}
t_{1}^{2} \\
t_{2}^{2} \\
\vdots \\
t_{m}^{2}
\end{array}\right) \cdots\left(\begin{array}{c}
t_{1}^{n} \\
t_{2}^{n} \\
\vdots \\
t_{m}^{n}
\end{array}\right)
$$

or equivalently the $m \times n$ matrix

$$
\left(\begin{array}{cccc}
t_{1}^{1} & t_{1}^{2} & \cdots & t_{1}^{n} \tag{2.3f}\\
t_{2}^{1} & t_{2}^{2} & \cdots & t_{2}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
t_{m}^{1} & t_{m}^{2} & \cdots & t_{m}^{n}
\end{array}\right) .
$$

What these definitions say is that applying the linear map T to a vector v means taking a certain linear combination of the columns of T :

$$
T\left(\begin{array}{c}
x_{1} \tag{2.3~g}\\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=T\left(x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n}\right)=x_{1} t^{1}+x_{2} t^{2}+\cdots+x_{n} t^{n}
$$

We now begin to extend the definitions from Section 1.
Definition 2.4. The linear map $T \in \mathcal{L}(V, W)$ is called injective or one-toone if its null space is zero:

$$
\operatorname{Null}(T)=0
$$

Because of $(2.3 \mathrm{~g})$, it is equivalent to require the columns of the matrix of T are linearly independent. It is also equivalent to require that T has a left inverse $S \in \mathcal{L}(W, V)$:

$$
S T=I_{V} .
$$

These conditions can be satisfied only if $n=\operatorname{dim} V \leq \operatorname{dim} W=m$.
We could sharpen this equivalence a bit. How much T fails to be injective is measured by the size of the null space. If $\left(w_{1}, w_{2}, \cdots, w_{m}\right)$ is any list of vectors in a vector space W over F, we could define a subspace

$$
\begin{align*}
& D\left(w_{1}, \ldots, w_{m}\right) \subset F^{m}, \\
& D\left(w_{1}, \ldots, w_{m}\right)=\left\{\left(x_{1}, \ldots, x_{m}\right) \in F^{m} \mid x_{1} w_{1}+\cdots+x_{m} w_{m}=0\right\} \tag{2.5}
\end{align*}
$$

The D stands for "dependence:" $\left(w_{1}, \ldots, w_{m}\right)$ is linearly independent if and only if $D\left(w_{1}, \ldots, w_{m}\right)=0$. The larger D is, the more dependent is the list of vectors. What's clear from the definitions is

$$
\begin{equation*}
\operatorname{Null}(T)=D(\text { columns of } T) \tag{2.6}
\end{equation*}
$$

That is, T fails to be injective exactly as much as its columns fail to be linearly independent.

Surjectivity is "dual."
Definition 2.7. The linear map $T \in \mathcal{L}(V, W)$ is called surjective or onto if its range is all of W :

$$
\operatorname{Range}(T)=W
$$

Because of $(2.3 \mathrm{~g})$, it is equivalent to require the columns of the matrix of T span W. It is also equivalent to require that T has a right inverse $S \in$ $\mathcal{L}(W, V)$:

$$
T S=I_{W}
$$

These conditions can be satisfied only if $m=\operatorname{dim} W \leq \operatorname{dim} V=n$.
Again we can make this more precise:

$$
\begin{equation*}
\operatorname{Range}(T)=\operatorname{span}(\text { columns of } T) . \tag{2.8}
\end{equation*}
$$

That is, T fails to be surjective exactly as much as its columns fail to span W.

Next, suppose that

$$
\begin{align*}
V_{1} \subset V, & \operatorname{dim} V_{1}=n_{1}, \quad n_{2}=n-n_{1} \tag{2.9a}\\
W_{1} \subset W, & \operatorname{dim} W_{1}=m_{1}, \quad m_{2}=m-m_{1}
\end{align*}
$$

are subspaces of V and W. We can choose a basis of V_{1}

$$
\begin{equation*}
\left(e_{1}, \ldots, e_{n_{1}}\right)=\text { basis of } V_{1} \quad\left(e_{j} \in V_{1}\right) \tag{2.9b}
\end{equation*}
$$

and extend it to a basis of V

$$
\begin{equation*}
\left(e_{1}, \ldots, e_{n_{1}}, g_{1}, \ldots g_{n_{2}}\right)=\text { basis of } V . \tag{2.9c}
\end{equation*}
$$

and we can choose a basis

$$
\begin{equation*}
\left(f_{1}, \ldots, f_{m_{1}}\right)=\text { basis of } V_{1} \quad\left(f_{i} \in V_{1}\right) \tag{2.9d}
\end{equation*}
$$

and extend it to a basis of W

$$
\begin{equation*}
\left(f_{1}, \ldots, f_{m_{1}}, h_{1}, \ldots h_{m_{2}}\right)=\text { basis of } W \tag{2.9e}
\end{equation*}
$$

Recall that then

$$
\begin{equation*}
\left(g_{1}+V_{1}, \ldots g_{n_{2}}+V_{1}\right)=\text { basis of } V / V_{1}, \tag{2.9f}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(h_{1}+W_{1}, \ldots h_{m_{2}}+W_{1}\right)=\text { basis of } W / W_{1} . \tag{2.9g}
\end{equation*}
$$

Definition 2.10. In the setting (2.9), we say that $T \in \mathcal{L}(V, W)$ carries V_{1} to W_{1} if

$$
T v_{1} \in W_{1}, \quad \text { all } v_{1} \in V_{1} .
$$

If the bases

$$
\left(e_{1}, \ldots, e_{n_{1}}, g_{1}, \ldots, g_{n_{2}}\right) \quad \text { and } \quad\left(f_{1}, \ldots, f_{m_{1}}, h_{1}, \ldots h_{m_{2}}\right)
$$

are chosen as in (2.9c) and (2.9e), then it is equivalent to require that

$$
T\left(e_{1}\right), \ldots, T\left(e_{p}\right) \text { all belong to } W_{1} \text {. }
$$

In terms of the matrix of T in these bases, this is

$$
\text { the first } n_{1} \text { columns belong to } F^{m_{1}} \subset F^{m} \text {; }
$$

that is, that the last m_{2} entries of each of the first n_{1} columns are all zero.
The conditions in the definition say that the matrix of T is block upper triangular:

$$
T=\left(\begin{array}{cc}
A & B \tag{2.11}\\
0 & D
\end{array}\right)
$$

with A an $m_{1} \times n_{1}$ matrix, B an $m_{1} \times n_{2}$ matrix, 0 the $m_{2} \times n_{1}$ zero matrix, and D an $m_{2} \times n_{2}$ matrix. Furthermore

$$
\begin{gather*}
A=\text { matrix of }\left.T\right|_{V_{1}} \in \mathcal{L}\left(V_{1}, W_{1}\right) \text { in bases } \tag{2.12}\\
\left(e_{1}, \ldots, e_{m_{1}}\right), \quad\left(f_{1}, \ldots, f_{m_{1}}\right),
\end{gather*}
$$

$$
\begin{align*}
D= & \text { matrix of }\left.T\right|_{V / V_{1}} \in \mathcal{L}\left(V / V_{1}, W / W_{1}\right) \text { in bases } \tag{2.13}\\
& \left(g_{1}+V_{1}, \ldots, g_{n_{2}}+V_{1}\right), \quad\left(h_{1}+W_{1}, \ldots, h_{m_{2}}+W_{1}\right) .
\end{align*}
$$

Finally we discuss isometries. For this suppose F is \mathbb{R} or \mathbb{C}, and that V and W are inner product spaces over F, still of dimensions n and m. Recall that we can fix orthonormal bases

$$
\begin{align*}
\left(e_{1}, \ldots, e_{n}\right) & =\text { orthonormal basis of } V \quad\left(e_{j} \in V\right), \tag{2.14}\\
\left(f_{1}, \ldots, f_{m}\right) & =\text { orthonormal basis of } W \quad\left(f_{i} \in W\right),
\end{align*}
$$

meaning that

$$
\left\langle e_{j}, e_{j^{\prime}}\right\rangle= \begin{cases}1 & \left(j=j^{\prime}\right) \\ 0 & \left(j \neq j^{\prime}\right)\end{cases}
$$

and

$$
\left\langle f_{i}, f_{i^{\prime}}\right\rangle= \begin{cases}1 & \left(i=i^{\prime}\right) \\ 0 & \left(i \neq i^{\prime}\right)\end{cases}
$$

Definition 2.15. A linear map of inner product spaces $T \in \mathcal{L}(V, W)$ is called an isometry if

$$
\left\langle T v, T v^{\prime}\right\rangle=\left\langle v, v^{\prime}\right\rangle \quad\left(\text { all } v, v^{\prime} \in V\right) .
$$

Assuming that $\left(e_{1}, \ldots, e_{n}\right)$ is an orthonormal basis of V, it is equivalent to require that the columns of T are also an orthonormal set in W. Another equivalent statement is that $T^{*} T=I_{V}$; that is, that T^{*} is a left inverse of T.

Because an orthonormal set is necessarily linearly independent, an isometry is automatically injective; the left inverse that must exist may be taken to be T^{*}. In particular, isometries can exist in $\mathcal{L}(V, W)$ only if $n=\operatorname{dim} V \leq \operatorname{dim} W=m$.

Any isometry from \mathbb{R}^{1} to \mathbb{R}^{2} is a 2×1 matrix

$$
T=\binom{\cos \theta}{\sin \theta}
$$

