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1 Special maps from V to V

The subject of linear algebra is (first, or possibly second) vector spaces and
(second, or possibly first) interesting functions (“maps”) taking one vector
space to another. I want to collect here in one place a number of the ideas
we’ve discussed about maps, to see the formal similiarities among them. All
of these ideas make sense for maps between two different vector spaces, and
all of them are interesting also for infinite-dimensional vector spaces; but to
simplify, I’ll first look at them for a single finite-dimensional vector space.
So for this section, I’ll always assume

V is a finite-dimensional vector space over any field F . (1.1)

Definition 1.2. A function T : V → V (that is, something that takes one
vector v and hands you another vector T (v)) is called linear if T respects
the vector space structure:

T (v + w) = T (v) + T (w), T (av) = aT (v) (v, w ∈ V, a ∈ F ).

I’ll write n = dimV , and sometimes choose

(e1, . . . , en) = basis of V (ei ∈ V ). (1.3a)

Once we’ve chosen a basis, elements of V can be written uniquely as

v = x1e1 + x2e2 + · · ·+ xnen (xi ∈ F ). (1.3b)

In this way V is identified with n× 1 column vectors

v ←→


x1
x2
...
xn

 (1.3c)
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. Again in the presence of a basis, giving a linear map T is the same thing
as giving n vectors in V

t1 = T (e1) t2 = T (e2) · · · tn = T (en) (1.3d)

or equivalently n column vectors
t11
t12
...
t1n



t21
t22
...
t2n

 · · ·

tn1
tn2
...
tnn

 (1.3e)

or equivalently the n× n matrix
t11 t21 · · · tn1
t12 t22 · · · tn2
...

...
. . .

...
t1n t2n · · · tnn

 . (1.3f)

What these definitions say is that applying the linear map T to a vector v
means taking a certain linear combination of the columns of T :

T


x1
x2
...
xn

 = T (x1e1 + x2e2 + · · ·+ xnen) = x1t
1 + x2t

2 + · · ·+ xnt
n. (1.3g)

The point of these notes is to talk about various special kinds of linear
maps, and what kinds of matrices they correspond to.

Definition 1.4. The linear map T ∈ L(V ) is called injective or one-to-one
if its null space is zero:

Null(T ) = 0.

Because of (1.3g), it is equivalent to require the columns of the matrix of T
are linearly independent.

We could sharpen this equivalence a bit. How much T fails to be injective
is measured by the size of the null space. If (w1, w2, · · · , wm) is any list of
vectors in a vector space W over F , we could define a subspace

D(w1, . . . , wm) ⊂ Fm,

D(w1, . . . , wm) = {(x1, . . . , xm) ∈ Fm | x1w1 + · · ·+ xmwm = 0}
(1.5)
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The D stands for “dependence:” (w1, . . . , wm) is linearly independent if and
only if D(w1, . . . , wm) = 0. The larger D is, the more dependent is the list
of vectors. What’s clear from the definitions is

Null(T ) = D(columns of T ). (1.6)

That is, T fails to be injective exactly as much as its columns fail to be
linearly independent.

Surjectivity is “dual.”

Definition 1.7. The linear map T ∈ L(V ) is called surjective or onto if its
range is all of V :

Range(T ) = V.

Because of (1.3g), it is equivalent to require the columns of the matrix of T
span V .

Again we can make this more precise:

Range(T ) = span(columns of T ). (1.8)

That is, T fails to be surjective exactly as much as its columns fail to span
V .

A list of n vectors in the n-dimensional space V is linearly independent
if and only if it spans V ; so Definitions 1.4 and 1.7 are equivalent. That is,
a linear map on an n-dimensional vector space is injective if and only if it
is surjective. When we work with L(V,W ), injectivity and surjectivity will
become two different properties.

Next, suppose that

W ⊂ V, dimW = p, q = n− p (1.9a)

is a p-dimensional subspace of V . We can choose a basis of W

(f1, . . . , fp) = basis of W (fi ∈W ) (1.9b)

and extend it to a basis of V .

(f1, . . . , fp, g1, . . . gq) = basis of V . (1.9c)

Recall that then

(g1 +W, . . . gq +W ) = basis of V/W (1.9d)
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Definition 1.10. In the setting (1.9), we say that T ∈ L(V ) preserves W
(or that W is an invariant subspace for T ) if

Tw ∈W, all w ∈W.

If the basis (f1, . . . , fp, g1, . . . , gq) is chosen as in (1.9c), then it is equivalent
to require that

T (f1), . . . , T (fp) all belong to W.

In terms of the matrix of T in the basis (f1, . . . , fp, g1, . . . , gq), this is

the first p columns belong to F p ⊂ Fn;

that is, that the last q entries of each of the first p columns are all zero.

The conditions in the definition say that the matrix of T is block upper
triangular:

T =

(
A B
0 D

)
, (1.11)

with A a p× p matrix, B a p× q matrix, 0 the q × p zero matrix, and D a
q × q matrix. Furthermore

A = matrix of T restricted to W in the basis (f1, . . . , fp), (1.12)

D = matrix of T on V/W in basis (g1 +W, . . . , gq +W ). (1.13)

Finally we discuss isometries. For this suppose F is R or C, and that V
is an n-dimensional inner product space over F . Recall that we can fix an
orthonormal basis

(e1, . . . , en) = orthonormal basis of V (ei ∈ V ), (1.14)

meaning that

〈ei, ej〉 =

{
1 (i = j)

0 (i 6= j).

Definition 1.15. Recall that T ∈ L(V ) is called an isometry if

〈Tv, Tw〉 = 〈v, w〉 (all v, w ∈ V ).

Assuming that (e1, . . . , en) is an orthonormal basis of V , it is equivalent to
require that the columns of T are also an orthonormal basis of V . Another
equivalent statement is that T ∗T = I; that is, that T ∗ = T−1.
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It’s a fact from calculus that any vector in R2 of length 1 is of the form(
cos θ
sin θ

)
(1.16)

for some real number θ that is determined up to a multiple of 2π. It’s an

elementary geometric fact (still in R2) that

(
−b
a

)
is perpendicular to

(
a
b

)
;

and that if a and b are not both zero, then(
a
b

)⊥
=

{
r

(
−b
a

)
| r ∈ R

}
.

It follows easily that every orthonormal basis of R2 is of the form((
cos θ
sin θ

)
,

(
∓ sin θ
± cos θ

))
, (1.17)

with θ a real number determined up to a multiple of 2π and a single choice
of sign. (That is, the two signs ∓ and ± must be opposite.) According to
Definition 1.15, this means that every isometry of R2 is of the form(

cos θ ∓ sin θ
sin θ ± cos θ

)
. (1.18)

In the case of

(
−
+

)
(signs in the second column) this matrix represents

rotation of R2 counterclockwise by an angle of θ. In the case of

(
+
−

)
, the

matrix is a reflection fixing the line through

(
cos θ/2
sin θ/2

)
, and acting by −1

on the perpendicular line through

(
− sin θ/2
cos θ/2

)
.

2 Special maps from V to W

In this section I’ll see how to extend the ideas from Section 1 to maps
between two different vector spaces. So for this section, I’ll always assume

V and W are finite-dimensional vector spaces over any field F . (2.1)
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Definition 2.2. A function T : V → W (that is, something that takes a
vector v ∈ V and hands you a vector T (v) ∈W ) is called linear if T respects
the vector space structure:

T (v + v′) = T (v) + T (v′), T (av) = aT (v) (v, v′ ∈ V, a ∈ F ).

I’ll write n = dimV , m = dimW and sometimes choose

(e1, . . . , en) = basis of V (ej ∈ V ),

(f1, . . . , fm) = basis of W (fi ∈W ),
(2.3a)

Once we’ve chosen bases, elements of V and W can be written uniquely as

v = x1e1 + x2e2 + · · ·+ xnen (xj ∈ F ),

w = y1f1 + y2f2 + · · ·+ ymfm (yi ∈ F ),
(2.3b)

In this way V is identified with n × 1 column vectors, and W with m × 1
column vectors:

v ←→


x1
x2
...
xn

 , w ←→


y1
y2
...
ym

 (2.3c)

. Again in the presence of these bases, giving a linear map T is the same
thing as giving n vectors in W

t1 = T (e1) t2 = T (e2) · · · tn = T (en) (2.3d)

or equivalently n column vectors
t11
t12
...
t1m



t21
t22
...
t2m

 · · ·

tn1
tn2
...
tnm

 (2.3e)

or equivalently the m× n matrix
t11 t21 · · · tn1
t12 t22 · · · tn2
...

...
. . .

...
t1m t2m · · · tnm

 . (2.3f)
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What these definitions say is that applying the linear map T to a vector v
means taking a certain linear combination of the columns of T :

T


x1
x2
...
xn

 = T (x1e1 + x2e2 + · · ·+ xnen) = x1t
1 + x2t

2 + · · ·+ xnt
n. (2.3g)

We now begin to extend the definitions from Section 1.

Definition 2.4. The linear map T ∈ L(V,W ) is called injective or one-to-
one if its null space is zero:

Null(T ) = 0.

Because of (2.3g), it is equivalent to require the columns of the matrix of T
are linearly independent. It is also equivalent to require that T has a left
inverse S ∈ L(W,V ):

ST = IV .

These conditions can be satisfied only if n = dimV ≤ dimW = m.

We could sharpen this equivalence a bit. How much T fails to be injective
is measured by the size of the null space. If (w1, w2, · · · , wm) is any list of
vectors in a vector space W over F , we could define a subspace

D(w1, . . . , wm) ⊂ Fm,

D(w1, . . . , wm) = {(x1, . . . , xm) ∈ Fm | x1w1 + · · ·+ xmwm = 0}
(2.5)

The D stands for “dependence:” (w1, . . . , wm) is linearly independent if and
only if D(w1, . . . , wm) = 0. The larger D is, the more dependent is the list
of vectors. What’s clear from the definitions is

Null(T ) = D(columns of T ). (2.6)

That is, T fails to be injective exactly as much as its columns fail to be
linearly independent.

Surjectivity is “dual.”

Definition 2.7. The linear map T ∈ L(V,W ) is called surjective or onto if
its range is all of W :

Range(T ) = W.
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Because of (2.3g), it is equivalent to require the columns of the matrix of
T span W . It is also equivalent to require that T has a right inverse S ∈
L(W,V ):

TS = IW .

These conditions can be satisfied only if m = dimW ≤ dimV = n.

Again we can make this more precise:

Range(T ) = span(columns of T ). (2.8)

That is, T fails to be surjective exactly as much as its columns fail to span
W .

Next, suppose that

V1 ⊂ V, dimV1 = n1, n2 = n− n1
W1 ⊂W, dimW1 = m1, m2 = m−m1

(2.9a)

are subspaces of V and W . We can choose a basis of V1

(e1, . . . , en1) = basis of V1 (ej ∈ V1) (2.9b)

and extend it to a basis of V

(e1, . . . , en1 , g1, . . . gn2) = basis of V . (2.9c)

and we can choose a basis

(f1, . . . , fm1) = basis of V1 (fi ∈ V1) (2.9d)

and extend it to a basis of W

(f1, . . . , fm1 , h1, . . . hm2) = basis of W. (2.9e)

Recall that then

(g1 + V1, . . . gn2 + V1) = basis of V/V1, (2.9f)

and
(h1 +W1, . . . hm2 +W1) = basis of W/W1. (2.9g)

Definition 2.10. In the setting (2.9), we say that T ∈ L(V,W ) carries V1
to W1 if

Tv1 ∈W1, all v1 ∈ V1.
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If the bases

(e1, . . . , en1 , g1, . . . , gn2) and (f1, . . . , fm1 , h1, . . . hm2)

are chosen as in (2.9c) and (2.9e), then it is equivalent to require that

T (e1), . . . , T (ep) all belong to W1.

In terms of the matrix of T in these bases, this is

the first n1 columns belong to Fm1 ⊂ Fm;

that is, that the last m2 entries of each of the first n1 columns are all zero.

The conditions in the definition say that the matrix of T is block upper
triangular:

T =

(
A B
0 D

)
, (2.11)

with A an m1×n1 matrix, B an m1×n2 matrix, 0 the m2×n1 zero matrix,
and D an m2 × n2 matrix. Furthermore

A = matrix of T |V1 ∈ L(V1,W1) in bases

(e1, . . . , em1), (f1, . . . , fm1),
(2.12)

D = matrix of T |V/V1
∈ L(V/V1,W/W1) in bases

(g1 + V1, . . . , gn2 + V1), (h1 +W1, . . . , hm2 +W1).
(2.13)

Finally we discuss isometries. For this suppose F is R or C, and that V
and W are inner product spaces over F , still of dimensions n and m. Recall
that we can fix orthonormal bases

(e1, . . . , en) = orthonormal basis of V (ej ∈ V ),

(f1, . . . , fm) = orthonormal basis of W (fi ∈W ),
(2.14)

meaning that

〈ej , ej′〉 =

{
1 (j = j′)

0 (j 6= j′)

and

〈fi, fi′〉 =

{
1 (i = i′)

0 (i 6= i′)
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Definition 2.15. A linear map of inner product spaces T ∈ L(V,W ) is
called an isometry if

〈Tv, Tv′〉 = 〈v, v′〉 (all v, v′ ∈ V ).

Assuming that (e1, . . . , en) is an orthonormal basis of V , it is equivalent to
require that the columns of T are also an orthonormal set in W . Another
equivalent statement is that T ∗T = IV ; that is, that T ∗ is a left inverse of
T .

Because an orthonormal set is necessarily linearly independent, an isom-
etry is automatically injective; the left inverse that must exist may be
taken to be T ∗. In particular, isometries can exist in L(V,W ) only if
n = dimV ≤ dimW = m.

Any isometry from R1 to R2 is a 2× 1 matrix

T =

(
cos θ
sin θ

)
.
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