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Abstract harmonic analysis

Say Lie group G acts on manifold M. Can ask about
I topology of M
I solutions of G-invariant differential equations
I special functions on M (automorphic forms, etc.)

Method step 1: LINEARIZE. Replace M by Hilbert
space L2(M). Now G acts by unitary operators.
Method step 2: DIAGONALIZE. Decompose L2(M)
into minimal G-invariant subspaces.
Method step 3: REPRESENTATION THEORY. Study
minimal pieces: irreducible unitary repns of G.
Difficult questions: how does DIAGONALIZE work,
and what kind of minimal pieces do you get?
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Plan of talks

I Outline strategy for decomposing L2(M), by analogy
with “double centralizers” in finite-dimensional
algebra.

I Strategy Kirillov-Kostant philosophy:
irreducible unitary representations
of Lie group G

m
(nearly) symplectic manifolds with (nearly)
transitive Hamiltonian action of G

I “Strategy” and “philosophy” have a lot of wishful
thinking. Describe theorems supporting m.
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Decomposing a representation

Given ops on Hilbert space H, want to decompose H
in operator-invt way. Fin-diml theory:
V/C fin-diml, A ⊂ End(V ) cplx semisimple alg of ops.
Classical structure theorem:

W1, . . . , Wr all simple A-modules; then

A ' End(W1)× · · · × End(Wr ).

V ' m1W1 + · · ·+ mr Wr .

Positive integer mi is multiplicity of Wi in V .

Slicker version: define multiplicity space
Mi = HomA(Wi , V ); then mi = dim Mi , and

V ' M1 ⊗W1 + · · ·+ Mr ⊗Wr .

Slickest version: COMMUTING ALGEBRAS. . .
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Commuting algebras and all that

V/C fin-diml, A ⊂ End(V ) cplx semisimple alg of ops.
Define

Z = Cent End(V )(A),

a new semisimple algebra of operators on V .

Theorem
Say A and Z are complex semisimple algebras of
operators on V as above.

1. A = Cent End(V )(Z).
2. There is a natural bijection between irr modules Wi

for A and irr modules Mi for Z, given by

Mi ' HomA(Wi , V ), Wi ' HomZ(Mi , V ).

3. V '
∑

i Mi ⊗Wi as a module for A×Z.
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Example of commuting algebras

G finite group, V = L2(G).

A = alg gen by left translations in G ⊂ End(V ).

A is the group algebra of G.

Z = alg gen by right translations in G ⊂ End(V ).

Z is also the group algebra of G.
Set of simple A-modules is

{Wi} = all irr reps of G.

Set of simple Z-modules is

{Mi} = all irr reps of G, Mi = W ∗
i .

Decomposition of L2(G) is Peter-Weyl theorem:

L2(G) =
∑

Wi irr of G

Wi ⊗W ∗
i .
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Another example of commuting algebras

GL(V ) acts on nth tensor power T n(V ): define
A = ends of T n(V ) gen by GL(V ).

Quotient of group alg of GL(V );

simple A-mods {Wi} = irr reps of GL(V ) on T n(V ).

Symmetric group Sn also acts on T n(V ): define
Z = ends of T n(V ) gen by symm group Sn.

Quotient of group alg of Sn;
simple Z-mods {Mi} = irr reps of Sn on T n(V ).

Theorem (Schur-Weyl duality)
Algebras A and Z acting on T n(V ) as mutual centralizers:

T n(V ) =
∑

Mi ⊗Wi .

Summands! partitions of n into at most dim V parts.
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Another example of commuting algebras

GL(V ) acts on nth tensor power T n(V ): define

A = ends of T n(V ) gen by GL(V ).

Quotient of group alg of GL(V );

simple A-mods {Wi} = irr reps of GL(V ) on T n(V ).
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Infinite-dimensional representations

Need framework to study ops on inf-diml V .

Finite-diml ↔ infinite-diml dictionary
finite-diml V ↔ C∞(M)

repn of G on V ↔ action of G on M
End(V ) ↔ Diff(M)

A = im(C[G]) ⊂ End(V ) ↔ A = im(U(g)) ⊂ Diff(M)

Z = CentEnd(V )(A) ↔ Z = diff ops comm with G

Which differential operators commute with G?

Answer generalizations of dictionary. . .
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Differential operators and symbols

Diffn(M) = diff operators of order ≤ n.

Increasing filtration, (Diffp)(Diffq) ⊂ Diffp+q .

Theorem (Symbol calculus)
1. There is an isomorphism of graded algebras

σ : gr Diff(M) → Poly(T ∗(M))

to fns on T ∗(M) that are polynomial in fibers.
2.

σn : Diffn(M)/ Diffn−1(M) → Polyn(T ∗(M)).

3. Commutator of diff ops Poisson bracket {, } on
T ∗(M): for D ∈ Diffp(M), D′ ∈ Diffq(M),

σp+q−1([D, D′]) = {σp(D), σq(D′)}.

Diff ops comm with G! symbols Poisson-comm with g.
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Poisson structure and Lie group actions

X mfld w. Poisson {, } on fns (e.g. T ∗(M)).
Bracket with f  ξf ∈ Vect(X ): ξf (g) = {f , g}.
Vector fields ξf called Hamiltonian; flows preserve
{, }. Map f 7→ ξf is Lie alg homomomorphism.
Lie group action on X  Lie alg homom Y 7→ ξY
from Lie(G) to Vect(X ).
Call X Hamiltonian G-space if given Lie alg homom
Y 7→ fY from Lie(G) to C∞(X ) with ξY = ξfY .
G acts on M  T ∗(M) is Hamiltonian G-space: Lie
alg elt Y  vec fld ξM

Y on M  function fY on T ∗(M):

fY (m, λ) = λ(ξM
Y (m)) (m ∈ M, λ ∈ T ∗

m(M)).

f on X with {f , g} = 0! f constant on G orbits.
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Our story so far. . .

G acts on M ! T ∗(M) Hamiltonian G-space.
G-decomp of C∞(M)! (Diff M)G-modules.

(Diff M)G σ
! C∞(T ∗(M))G ! C∞((T ∗(M))//G).

Hope C∞(M) irr ⇔ G has dense orbit on T ∗(M).

Suggests generalization. . .

Hamiltonian G-cone X  graded alg Poly(X ).
Seek filtered alg D, symbol calc grD σ→Poly(X )
carrying [, ] on D to {, } on Poly(X ).
Seek to lift G action on Poly(X ) to G action on D via
Lie alg hom g → D1.
Seek simple D-module W (analogue of C∞(M)).
Hope W irr for G ⇔ G has dense orbit on X .
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Hope C∞(M) irr ⇔ G has dense orbit on T ∗(M).

Suggests generalization. . .

Hamiltonian G-cone X  graded alg Poly(X ).
Seek filtered alg D, symbol calc grD σ→Poly(X )
carrying [, ] on D to {, } on Poly(X ).
Seek to lift G action on Poly(X ) to G action on D via
Lie alg hom g → D1.
Seek simple D-module W (analogue of C∞(M)).
Hope W irr for G ⇔ G has dense orbit on X .
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Poisson manifolds

Poisson mfld X : brkt {, } on fns with Lie alg axioms
(skew, bilin, Jacobi) AND {f , gh} = {f , g}h + g{f , h}.
Bracket with f  ξf ∈ Vect X , Hamiltonian vector fld;
Jacobi [ξf , ξg] = ξ{f ,g}.
Vals of Hamiltonian vec flds integrable distn S  
foliation of X by embedded submflds.
Symp form on Sx : ωx(ξf (x), ξg(x)) = {f , g}(x).

I Embedded submflds are symplectic.
I Hamiltonian flows preserve embedded submflds.
I Ham G-space! Lie alg map g → C∞(X )!

(Poisson) moment map map µ : X → g∗

I X Ham G-space G-orbits ⊂ embedded submflds.
I Kostant: Homog Ham G-space = cover of orbit on g∗.
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Method of coadjoint orbits

Kostant’s thm worth stating twice: homogeneous
Hamiltonian G-space = covering of G-orbit on g∗.
Includes classification of symp homog spaces for G.
(Riem homog spaces hopelessly complicated.)

Kirillov-Kostant philosophy of coadjt orbits suggests
{irr unitary reps of G} = Ĝ! g∗/G. (?)

Bij (?) true for G simply conn nilp (Kirillov).

Other G: restr rt side to “admissible” orbits (integrality
cond). Expect “almost all” of Ĝ: enough for interesting
harmonic analysis.

Duflo: (?) for algebraic G reduces to reductive G.
Two ways to do repn theory:

1. start with coadjt orbit, look for repn. Hard.
2. start with repn, look for coadjt orbit. Easy.
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harmonic analysis.

Duflo: (?) for algebraic G reduces to reductive G.
Two ways to do repn theory:

1. start with coadjt orbit, look for repn. Hard.
2. start with repn, look for coadjt orbit. Easy.



Geometry and
representations of
reductive groups

David Vogan

Introduction

Commuting
algebras

Differential
operator algebras

Hamiltonian
G-spaces

References

References

W. Graham and D. Vogan, “Geometric quantization for
nilpotent coadjoint orbits,” in Geometry and
Representation Theory of real and p-adic groups.
Birkhauser, Boston-Basel-Berlin, 1998 .

D. Vogan, “The method of coadjoint orbits for real
reductive groups,” in Representation Theory of Lie
Groups. IAS/Park City Mathematics Series 8 (1999),
179–238.


	Introduction
	Commuting algebras
	Differential operator algebras
	Hamiltonian G-spaces
	References

