Branching to maximal compact subgroups

David Vogan

Department of Mathematics
Massachusetts Institute of Technology

Helgason Conference, 15 August 2007
Outline

Introduction

Helgason’s theorem classically

Helgason’s theorem and algebraic geometry

Interpreting the branching law: Zuckerman’s theorem

Relating representations of K and G
Why restrict to K?

G cplx $\supset G(\mathbb{R})$ real $\supset K(\mathbb{R})$ maxl compact

Want to study representations (π, \mathcal{H}_π) of $G(\mathbb{R})$, but these are complicated and difficult.

Reps of $K(\mathbb{R})$ are easy, so try two things:

- understand $\pi|_{K(\mathbb{R})}$; and
- use understanding to answer questions about π.

Sample question: how often does trivial representation of $K(\mathbb{R})$ appear in $\pi|_{K(\mathbb{R})}$? Answer: multiplicity zero unless π is (quotient of) spherical principal series, then one.

Application: π can appear in functions on $G(\mathbb{R})/K(\mathbb{R})$ only if π spherical; then exactly once.
Why restrict to K?

G cplx $\supset G(\mathbb{R})$ real $\supset K(\mathbb{R})$ maxl compact

Want to study representations (π, \mathcal{H}_π) of $G(\mathbb{R})$, but these are complicated and difficult.

Reps of $K(\mathbb{R})$ are easy, so try two things:
- understand $\pi|_{K(\mathbb{R})}$; and
- use understanding to answer questions about π.

Sample question: how often does trivial representation of $K(\mathbb{R})$ appear in $\pi|_{K(\mathbb{R})}$?

Answer: multiplicity zero unless π is (quotient of) spherical principal series, then one.

Application: π can appear in functions on $G(\mathbb{R})/K(\mathbb{R})$ only if π spherical; then exactly once.
Why restrict to K?

G cplx $\supset G(\mathbb{R})$ real $\supset K(\mathbb{R})$ maxl compact

Want to study representations (π, \mathcal{H}_π) of $G(\mathbb{R})$, but these are complicated and difficult.

Reps of $K(\mathbb{R})$ are easy, so try two things:
- understand $\pi|_{K(\mathbb{R})}$; and
- use understanding to answer questions about π.

Sample question: how often does trivial representation of $K(\mathbb{R})$ appear in $\pi|_{K(\mathbb{R})}$?

Answer: multiplicity zero unless π is (quotient of) spherical principal series, then one.

Application: π can appear in functions on $G(\mathbb{R})/K(\mathbb{R})$ only if π spherical; then exactly once.
Why restrict to K?

G cplx $\supset G(\mathbb{R})$ real $\supset K(\mathbb{R})$ maxl compact

Want to study representations (π, \mathcal{H}_π) of $G(\mathbb{R})$, but these are complicated and difficult.

Reps of $K(\mathbb{R})$ are easy, so try two things:
- understand $\pi|_{K(\mathbb{R})}$; and
- use understanding to answer questions about π.

Sample question: how often does trivial representation of $K(\mathbb{R})$ appear in $\pi|_{K(\mathbb{R})}$?

Answer: multiplicity zero unless π is (quotient of) spherical principal series, then one.

Application: π can appear in functions on $G(\mathbb{R})/K(\mathbb{R})$ only if π spherical; then exactly once.
Why restrict to K?

G cplx $\supset G(\mathbb{R})$ real $\supset K(\mathbb{R})$ maxl compact

Want to study representations (π, \mathcal{H}_π) of $G(\mathbb{R})$, but these are complicated and difficult.

Reps of $K(\mathbb{R})$ are easy, so try two things:

- understand $\pi|_{K(\mathbb{R})}$; and
- use understanding to answer questions about π.

Sample question: how often does trivial representation of $K(\mathbb{R})$ appear in $\pi|_{K(\mathbb{R})}$?

Answer: multiplicity zero unless π is (quotient of) spherical principal series, then one.

Application: π can appear in functions on $G(\mathbb{R})/K(\mathbb{R})$ only if π spherical; then exactly once.
Why restrict to K?

$G \text{ cplx } \supset G(\mathbb{R}) \text{ real } \supset K(\mathbb{R}) \text{ maxl compact}$

Want to study representations (π, \mathcal{H}_π) of $G(\mathbb{R})$, but these are complicated and difficult.

Reps of $K(\mathbb{R})$ are easy, so try two things:

- understand $\pi|_{K(\mathbb{R})}$; and
- use understanding to answer questions about π.

Sample question: how often does trivial representation of $K(\mathbb{R})$ appear in $\pi|_{K(\mathbb{R})}$?

Answer: multiplicity zero unless π is (quotient of) spherical principal series, then one.

Application: π can appear in functions on $G(\mathbb{R})/K(\mathbb{R})$ only if π spherical; then exactly once.
Why restrict to K?

G cplx $\supset G(\mathbb{R})$ real $\supset K(\mathbb{R})$ maxl compact

Want to study representations (π, \mathcal{H}_π) of $G(\mathbb{R})$, but these are complicated and difficult.

Reps of $K(\mathbb{R})$ are easy, so try two things:

understand $\pi|_{K(\mathbb{R})}$; and

use understanding to answer questions about π.

Sample question: how often does trivial representation of $K(\mathbb{R})$ appear in $\pi|_{K(\mathbb{R})}$?

Answer: multiplicity zero unless π is (quotient of) spherical principal series, then one.

Application: π can appear in functions on $G(\mathbb{R})/K(\mathbb{R})$ only if π spherical; then exactly once.
Why restrict to K?

$G \subset G(\mathbb{R}) \supset K(\mathbb{R})$ maxl compact

Want to study representations (π, \mathcal{H}_π) of $G(\mathbb{R})$, but these are complicated and difficult.

Reps of $K(\mathbb{R})$ are easy, so try two things:

- understand $\pi|_{K(\mathbb{R})}$;
- use understanding to answer questions about π.

Sample question: how often does trivial representation of $K(\mathbb{R})$ appear in $\pi|_{K(\mathbb{R})}$?

Answer: multiplicity zero unless π is (quotient of) spherical principal series, then one.

Application: π can appear in functions on $G(\mathbb{R})/K(\mathbb{R})$ only if π spherical; then exactly once.
Write $\theta = \text{Cartan involution of } G(\mathbb{R}) \text{ and } G$;

\[K(\mathbb{R}) = G(\mathbb{R})^\theta \quad \text{(real groups)}, \]
\[K = G^\theta \quad \text{(complex algebraic groups)}. \]

Iwasawa decomposition $G(\mathbb{R}) = K(\mathbb{R})A(\mathbb{R})_0N(\mathbb{R})$.

Here $A = \text{maxl cplx torus where } \theta \text{ acts by inverse}$.

$L(\mathbb{R}) = \text{centralizer of } A \text{ in } G(\mathbb{R})$

$P(\mathbb{R}) = L(\mathbb{R})N(\mathbb{R})$.

Group $P(\mathbb{R})$ is \textit{minimal parabolic subgroup of } $G(\mathbb{R})$.
Minimal parabolic subgroup

Write $\theta = \text{Cartan involution of } G(\mathbb{R})$ and G;

$$K(\mathbb{R}) = G(\mathbb{R})^\theta \quad \text{(real groups)},$$

$$K = G^\theta \quad \text{(complex algebraic groups)}.$$

Iwasawa decomp $G(\mathbb{R}) = K(\mathbb{R})A(\mathbb{R})_0N(\mathbb{R})$.

Here $A = \text{maxl cplx torus where } \theta \text{ acts by inverse}$.

$$L(\mathbb{R}) = \text{centralizer of } A \text{ in } G(\mathbb{R})$$

$$P(\mathbb{R}) = L(\mathbb{R})N(\mathbb{R}).$$

Group $P(\mathbb{R})$ is *minimal parabolic subgroup* of $G(\mathbb{R})$.
Write $\theta = \text{Cartan involution of } G(\mathbb{R}) \text{ and } G$;

$$K(\mathbb{R}) = G(\mathbb{R})^\theta \quad (\text{real groups}),$$

$$K = G^\theta \quad (\text{complex algebraic groups}).$$

Iwasawa decomposition $G(\mathbb{R}) = K(\mathbb{R})A(\mathbb{R})_0N(\mathbb{R})$.

Here $A = \text{maxl cplx torus where } \theta \text{ acts by inverse.}$

$$L(\mathbb{R}) = \text{centralizer of } A \text{ in } G(\mathbb{R})$$

$$P(\mathbb{R}) = L(\mathbb{R})N(\mathbb{R}).$$

Group $P(\mathbb{R})$ is minimal parabolic subgroup of $G(\mathbb{R})$.
Minimal parabolic subgroup

Write $\theta = \text{Cartan involution of } G(\mathbb{R})$ and G;

$$K(\mathbb{R}) = G(\mathbb{R})^\theta \quad \text{ (real groups)},$$

$$K = G^\theta \quad \text{ (complex algebraic groups)}.$$

Iwasawa decomp $G(\mathbb{R}) = K(\mathbb{R})A(\mathbb{R})_0N(\mathbb{R})$.

Here $A = \text{maxl cplx torus where } \theta \text{ acts by inverse}$.

$$L(\mathbb{R}) = \text{centralizer of } A \text{ in } G(\mathbb{R})$$

$$P(\mathbb{R}) = L(\mathbb{R})N(\mathbb{R}).$$

Group $P(\mathbb{R})$ is minimal parabolic subgroup of $G(\mathbb{R})$.
Minimal parabolic subgroup

Write θ = Cartan involution of $G(\mathbb{R})$ and G;

$$K(\mathbb{R}) = G(\mathbb{R})^{\theta} \quad \text{(real groups)},$$
$$K = G^{\theta} \quad \text{(complex algebraic groups)}.$$

Iwasawa decomp $G(\mathbb{R}) = K(\mathbb{R})A(\mathbb{R})_0 N(\mathbb{R})$.

Here $A = \text{maxl cplx torus}$ where θ acts by inverse.

$$L(\mathbb{R}) = \text{centralizer of } A \text{ in } G(\mathbb{R})$$
$$P(\mathbb{R}) = L(\mathbb{R})N(\mathbb{R}).$$

Group $P(\mathbb{R})$ is \textit{minimal parabolic subgroup} of $G(\mathbb{R})$.
Helgason’s theorem (classical picture)

Minimal parabolic is \(P(\mathbb{R}) = M(\mathbb{R})A(\mathbb{R})_0N(\mathbb{R}) \).

Fin-diml of \(G(\mathbb{R}) \) \(\Leftrightarrow \) highest wt = \(N(\mathbb{R}) \)-invts.

highest weight = \(\delta \otimes \nu \), \(\delta \in \hat{M}(\mathbb{R}) \), \(\nu \in \hat{A}(\mathbb{R})_0 \).

Theorem (Helgason)

1. Rep of hwt vector has \(K(\mathbb{R}) \)-fixed vecs \(\iff \delta \) \(\text{triv.} \)
2. \(\text{triv} \otimes \nu \) is a highest wt \(\iff \nu \) is dom even int wt.

Says: \(K(\mathbb{R}) \)-fixed vecs \(\leftrightarrow \) \(M(\mathbb{R})N(\mathbb{R}) \)-fixed vecs.

Reason: \(M(\mathbb{R})N(\mathbb{R}) = \text{deformation of } K(\mathbb{R}) \).

Conjugate \(K(\mathbb{R}) \) by elts of \(A(\mathbb{R})_0 \), \(\rightsquigarrow \) limiting subgroup.
Helgason’s theorem (classical picture)

Minimal parabolic is $P(\mathbb{R}) = M(\mathbb{R})A(\mathbb{R})_0N(\mathbb{R})$.

Fin-diml of $G(\mathbb{R}) \leftrightarrow$ highest wt $= N(\mathbb{R})$-invts.

highest weight $= \delta \otimes \nu$, $\delta \in \hat{M}(\mathbb{R})$, $\nu \in \hat{A}(\mathbb{R})_0$.

Theorem (Helgason)

1. Rep of hwt $\delta \otimes \nu$ has $K(\mathbb{R})$-fixed vecs \iff δ triv.
2. ν is a highest wt \iff ν is dom even int wt.

Says: $K(\mathbb{R})$-fixed vecs \leftrightarrow $M(\mathbb{R})N(\mathbb{R})$-fixed vecs.

Reason: $M(\mathbb{R})N(\mathbb{R}) = \text{deformation of } K(\mathbb{R})$.

Conjugate $K(\mathbb{R})$ by elts of $A(\mathbb{R})_0$, $
ightarrow$ limiting subgroup.
Helgason’s theorem (classical picture)

Minimal parabolic is $P(\mathbb{R}) = M(\mathbb{R})A(\mathbb{R})_0N(\mathbb{R})$.

Fin-diml of $G(\mathbb{R}) \leftrightarrow$ highest wt $= N(\mathbb{R})$-invts.

highest weight $= \delta \otimes \nu$, $\delta \in \widehat{M(\mathbb{R})}$, $\nu \in \widehat{A(\mathbb{R})}_0$.

Theorem (Helgason)

1. Rep of highest wt has $K(\mathbb{R})$-fixed vct \iff triv.
2. Triv $\otimes \nu$ is a highest wt \iff ν is dom even int wt.

Says: $K(\mathbb{R})$-fixed vcts $\leftrightarrow M(\mathbb{R})N(\mathbb{R})$-fixed vct.

Reason: $M(\mathbb{R})N(\mathbb{R}) = \text{deformation of } K(\mathbb{R})$.

Conjugate $K(\mathbb{R})$ by elts of $A(\mathbb{R})_0$, \leftrightarrow limiting subgroup.
Helgason’s theorem (classical picture)

Minimal parabolic is \(P(\mathbb{R}) = M(\mathbb{R})A(\mathbb{R})_0N(\mathbb{R}) \).

Fin-diml of \(G(\mathbb{R}) \) \(\sim \) highest wt = \(N(\mathbb{R}) \)-invts.

highest weight = \(\delta \otimes \nu \), \(\delta \in \widehat{M}(\mathbb{R}), \nu \in \widehat{A}(\mathbb{R})_0 \).

Theorem (Helgason)

1. Rep of hwt \(\delta \otimes \nu \) has \(K(\mathbb{R}) \)-fixed vec \(\iff \delta = \text{triv} \).
2. \(\text{triv} \otimes \nu \) is a highest wt \(\iff \nu \) is dom even int wt.

Says: \(K(\mathbb{R}) \)-fixed vecs \(\sim \) \(M(\mathbb{R})N(\mathbb{R}) \)-fixed vecs.

Reason: \(M(\mathbb{R})N(\mathbb{R}) = \text{deformation of } K(\mathbb{R}) \).

Conjugate \(K(\mathbb{R}) \) by elts of \(A(\mathbb{R})_0 \), \(\sim \) limiting subgroup.
Helgason’s theorem (classical picture)

Minimal parabolic is $P(\mathbb{R}) = M(\mathbb{R})A(\mathbb{R})_0N(\mathbb{R})$.
Fin-diml of $G(\mathbb{R}) \leftrightarrow$ highest wt $= N(\mathbb{R})$-invts.

highest weight $= \delta \otimes \nu$, $\delta \in \widehat{M(\mathbb{R})}$, $\nu \in \widehat{A(\mathbb{R})}_0$.

Theorem (Helgason)

1. Rep of hwt $\delta \otimes \nu$ has $K(\mathbb{R})$-fixed vec $\iff \delta = \text{triv}$.
2. triv $\otimes \nu$ is a highest wt $\iff \nu$ is dom even int wt.

Says: $K(\mathbb{R})$-fixed vecs \leftrightarrow $M(\mathbb{R})N(\mathbb{R})$-fixed vecs.
Reason: $M(\mathbb{R})N(\mathbb{R})$ = deformation of $K(\mathbb{R})$.

Conjugate $K(\mathbb{R})$ by elts of $A(\mathbb{R})_0$, \rightsquigarrow limiting subgroup.
Helgason’s theorem (classical picture)

Minimal parabolic is $P(\mathbb{R}) = M(\mathbb{R})A(\mathbb{R})_0N(\mathbb{R})$.
Fin-diml of $G(\mathbb{R}) \iff$ highest wt = $N(\mathbb{R})$-invts.
highest weight $= \delta \otimes \nu$, $\delta \in \widehat{M}(\mathbb{R})$, $\nu \in \widehat{A(\mathbb{R})}_0$.

Theorem (Helgason)

1. Rep of hwt $\delta \otimes \nu$ has $K(\mathbb{R})$-fixed vec $\iff \delta = \text{triv}$.
2. triv $\otimes \nu$ is a highest wt $\iff \nu$ is dom even int wt.

Says: $K(\mathbb{R})$-fixed vecs $\iff M(\mathbb{R})N(\mathbb{R})$-fixed vecs.
Reason: $M(\mathbb{R})N(\mathbb{R}) = \text{deformation of } K(\mathbb{R})$.

Conjugate $K(\mathbb{R})$ by elts of $A(\mathbb{R})_0$, \rightsquigarrow limiting subgroup.
Helgason’s theorem (classical picture)

Minimal parabolic is $P(\mathbb{R}) = M(\mathbb{R})A(\mathbb{R})_0N(\mathbb{R})$.
Fin-diml of $G(\mathbb{R}) \leftrightarrow$ highest wt = $N(\mathbb{R})$-invts.

highest weight $= \delta \otimes \nu$, $\delta \in \hat{M}(\mathbb{R})$, $\nu \in \hat{A}(\mathbb{R})_0$.

Theorem (Helgason)

1. Rep of hwt $\delta \otimes \nu$ has $K(\mathbb{R})$-fixed vec $\iff \delta = \text{triv}$.
2. triv $\otimes \nu$ is a highest wt $\iff \nu$ is dom even int wt.

Says: $K(\mathbb{R})$-fixed vecs $\leftrightarrow M(\mathbb{R})N(\mathbb{R})$-fixed vecs.
Reason: $M(\mathbb{R})N(\mathbb{R}) = \text{deformation of } K(\mathbb{R})$.

Conjugate $K(\mathbb{R})$ by elts of $A(\mathbb{R})_0$, \rightsquigarrow limiting subgroup.
Helgason’s theorem (classical picture)

Minimal parabolic is $P(\mathbb{R}) = M(\mathbb{R})A(\mathbb{R})_0N(\mathbb{R})$.

Fin-dim of $G(\mathbb{R}) \iff$ highest wt $= N(\mathbb{R})$-invts.

Highest weight $= \delta \otimes \nu$, $\delta \in \hat{M}(\mathbb{R})$, $\nu \in \hat{A}(\mathbb{R})_0$.

Theorem (Helgason)

1. Rep of hwt $\delta \otimes \nu$ has $K(\mathbb{R})$-fixed vec \iff $\delta = \text{triv}$.
2. triv $\otimes \nu$ is a highest wt \iff ν is dom even int wt.

Says: $K(\mathbb{R})$-fixed vecs $\iff M(\mathbb{R})N(\mathbb{R})$-fixed vecs.

Reason: $M(\mathbb{R})N(\mathbb{R}) = \text{deformation of } K(\mathbb{R})$.

Conjugate $K(\mathbb{R})$ by elts of $A(\mathbb{R})_0$, \rightsquigarrow limiting subgroup.
Helgason's theorem (classical picture)

Minimal parabolic is $P(\mathbb{R}) = M(\mathbb{R})A(\mathbb{R})_0N(\mathbb{R})$.
Fin-diml of $G(\mathbb{R}) \rightsquigarrow$ highest wt = $N(\mathbb{R})$-invts.

highest weight $= \delta \otimes \nu$, $\delta \in \hat{M}(\mathbb{R})$, $\nu \in \hat{A}(\mathbb{R})_0$.

Theorem (Helgason)

1. Rep of hwt $\delta \otimes \nu$ has $K(\mathbb{R})$-fixed vec $\iff \delta = \text{triv}$.
2. triv $\otimes \nu$ is a highest wt $\iff \nu$ is dom even int wt.

Says: $K(\mathbb{R})$-fixed vecs $\rightsquigarrow M(\mathbb{R})N(\mathbb{R})$-fixed vecs.
Reason: $M(\mathbb{R})N(\mathbb{R}) =$ deformation of $K(\mathbb{R})$.

Conjugate $K(\mathbb{R})$ by elts of $A(\mathbb{R})_0$, \rightsquigarrow limiting subgroup.
Helgason’s theorem (classical picture)

Minimal parabolic is $P(\mathbb{R}) = M(\mathbb{R})A(\mathbb{R})_0N(\mathbb{R})$.
Fin-diml of $G(\mathbb{R}) \rightsquigarrow$ highest wt $= N(\mathbb{R})$-invts.

highest weight $= \delta \otimes \nu$, $\delta \in \hat{M}(\mathbb{R})$, $\nu \in \hat{A}(\mathbb{R})_0$.

Theorem (Helgason)

1. Rep of hwt $\delta \otimes \nu$ has $K(\mathbb{R})$-fixed vec $\iff \delta = \text{triv}$.
2. triv $\otimes \nu$ is a highest wt $\iff \nu$ is dom even int wt.

Says: $K(\mathbb{R})$-fixed vecs $\rightsquigarrow M(\mathbb{R})N(\mathbb{R})$-fixed vecs.

Reason: $M(\mathbb{R})N(\mathbb{R}) = \text{deformation of } K(\mathbb{R})$.

Conjugate $K(\mathbb{R})$ by elts of $A(\mathbb{R})_0$, \rightsquigarrow limiting subgroup.
Moving toward algebraic geometry

Theme: complexify, use algebraic geometry.

Helgason’s theorem concerns compact $K(\mathbb{R})$, minimal parabolic $P(\mathbb{R})$. Theme says complexify, considering algebraic groups $K = G^\theta$ and $P = LN$ parabolic in G. Continuous reps of $K(\mathbb{R}) \hookrightarrow$ algebraic reps of K. Theme says consider projective algebraic variety $\mathcal{P} = \text{subgps of } G \text{ conjugate to } P$, a partial flag variety.
Moving toward algebraic geometry

Theme: complexify, use algebraic geometry.

Helgason’s theorem concerns compact $K(\mathbb{R})$, minimal parabolic $P(\mathbb{R})$.
Theme says complexify, considering algebraic groups $K = G^\theta$ and $P = LN$ parabolic in G.
Continuous reps of $K(\mathbb{R}) \hookrightarrow$ algebraic reps of K.
Theme says consider projective algebraic variety

$$\mathcal{P} = \text{subgps of } G \text{ conjugate to } P,$$

a partial flag variety.
Moving toward algebraic geometry

Theme: complexify, use algebraic geometry.

Helgason’s theorem concerns compact $K(\mathbb{R})$, minimal parabolic $P(\mathbb{R})$.

Theme says complexify, considering algebraic groups $K = G^\theta$ and $P = LN$ parabolic in G.

Continuous reps of $K(\mathbb{R}) \leftrightarrow$ algebraic reps of K.

Theme says consider projective algebraic variety $\mathcal{P} = \text{subgps of } G \text{ conjugate to } P$, a partial flag variety.
Moving toward algebraic geometry

Theme: complexify, use algebraic geometry.
Helgason’s theorem concerns compact $K(\mathbb{R})$, minimal parabolic $P(\mathbb{R})$.
Theme says complexify, considering algebraic groups $K = G^\theta$ and $P = LN$ parabolic in G.
Continuous reps of $K(\mathbb{R}) \leftrightarrow$ algebraic reps of K.
Theme says consider projective algebraic variety \mathcal{P} = subgps of G conjugate to P,
a partial flag variety.
Moving toward algebraic geometry

Theme: complexify, use algebraic geometry.
Helgason’s theorem concerns compact \(K(\mathbb{R}) \), minimal parabolic \(P(\mathbb{R}) \).
Theme says complexify, considering algebraic groups \(K = G^\theta \) and \(P = LN \) parabolic in \(G \).
Continuous reps of \(K(\mathbb{R}) \leftrightarrow \) algebraic reps of \(K \).
Theme says consider projective algebraic variety

\[\mathcal{P} = \text{subgps of } G \text{ conjugate to } P, \]

a partial flag variety.
Helgason’s theorem (alg geometry picture)

Proposition

\[K \cdot P \text{ is open in } \mathcal{P} : K/M \cong K \cdot P \subset \mathcal{P} \cong G/P. \]
Here \(M = \text{cplx pts of } M(\mathbb{R}) = \text{cent in } K \text{ of } A. \)

Follows immediately from Iwasawa decomposition.

Theorem (Borel-Weil, Helgason)

1. Alg repn of \(G \) = alg secs of equiv vector bdle on \(P \).
2. Gives \(\{ \text{ irr alg reps of } L \} \) \(\hookrightarrow \) \(\{ \text{ irr alg reps of } G \} \).
3. \(\hat{L} = \{ (\delta, \nu) \in \hat{M} \times \hat{A} | \delta = \nu \text{ on } M \cap A \} \).
4. \(\{ \text{ alg secs of } \delta \otimes \nu \text{ on } P \} \hookrightarrow \) \(\{ \text{ alg secs of } \delta \text{ on } K/M \} \).
5. \(\{ \text{ Alg rep of } G \mid K \hookrightarrow \) Ind \(K/M \{ \text{highest wt} \} \text{ on } M \} \).

Picture: \(\mathcal{P} = K/M \cup \{ \text{divisors} \} \).

Section on \(K/M \) \(\leadsto \) pole order on each divisor.
Section extends to \(\mathcal{P} \) \(\iff \) no pole on any divisor.
Helgason’s theorem (alg geometry picture)

Proposition

\(K \cdot P \) is open in \(\mathcal{P} : K/M \cong K \cdot P \subset \mathcal{P} \cong G/P. \) Here \(M = \text{cplx pts of } M(\mathbb{R}) = \text{cent in } K \text{ of } A. \)

Follows immediately from Iwasawa decomposition.

Theorem (Borel-Weil, Helgason)

1. Alg repn of \(G = \text{alg secs of equiv vector bdle on } \mathcal{P}. \)
2. Gives \(\{ \text{irr alg reps of } G \} \rightarrow \{ \text{irr alg reps of } L \}. \)
3. \(\hat{L} = \{ (\delta, \nu) \in \hat{M} \times \hat{A} : \delta = \nu \text{ on } M \cap A \}. \)
4. \(\{ \text{alg secs of } \delta \otimes \nu \text{ on } \mathcal{P} \} \rightarrow \{ \text{alg secs of } \delta \text{ on } K/M \}. \)
5. \(\{ \text{Alg rep of } G \} |_{K} \rightarrow \text{Ind } K/M(\{ \text{highest wt} \} |_{M}). \)

Picture: \(\mathcal{P} = K/M \bigcup \{ \text{divisors} \}. \)

Section on \(K/M \rightarrow \text{pole order on each divisor.} \)

Section extends to \(\mathcal{P} \iff \text{no pole on any divisor.} \)
Helgason’s theorem (alg geometry picture)

Proposition

\(K \cdot P \) is open in \(\mathcal{P} : K/M \cong K \cdot P \subset \mathcal{P} \cong G/P. \) Here \(M = \text{cplx pts of } M(\mathbb{R}) = \text{cent in } K \text{ of } A. \)

Follows immediately from Iwasawa decomposition.

Theorem (Borel-Weil, Helgason)

1. Alg repn of \(G \) = alg secs of equiv vector bdle on \(P \).
2. Gives \(\{ \text{irr alg reps of } G \} \hookrightarrow \{ \text{irr alg reps of } L \} \).
3. \(\mathcal{P} = \{(\delta, \nu) \in \hat{M} \times \hat{A} | \delta = \nu \text{ on } M \cap A \} \).
4. \(\{ \text{alg sect of } \delta \otimes \nu \text{ on } P \} \hookrightarrow \{ \text{alg sect of } \delta \text{ on } K/M \} \).
5. \(\{ \text{Alg rep of } G \} |_{K} \hookrightarrow \text{Ind}_{K/M} \{ \text{highest wt} \} |_{M} \).

Picture: \(\mathcal{P} = K/M \cup \{ \text{divisors} \} \).

Section on \(K/M \Rightarrow \text{pole order on each divisor.} \)

Section extends to \(\mathcal{P} \leftrightarrow \text{no pole on any divisor.} \)
Proposition

\(K \cdot P \) is open in \(\mathcal{P} \): \(K/M \cong K \cdot P \subset \mathcal{P} \cong G/P \). Here \(M = \text{cplx pts of } M(\mathbb{R}) = \text{cent in } K \text{ of } A \).

Follows immediately from Iwasawa decomposition.

Theorem (Borel-Weil, Helgason)

1. Alg repn of \(G \) = alg secs of equiv vector bdle on \(\mathcal{P} \).
2. Gives \(\{ \text{irr alg reps of } G \} \hookrightarrow \{ \text{irr alg reps of } L \} \).
3. \(\hat{L} = \{ (\delta, \nu) \in \hat{M} \times \hat{A} | \delta = \nu \text{ on } M \cap A \} \).
4. \(\{ \text{alg secs of } \delta \otimes \nu \text{ on } \mathcal{P} \} \hookrightarrow \{ \text{alg secs of } \delta \text{ on } K/M \} \).
5. \(\{ \text{Alg rep of } G \}|_K \hookrightarrow \text{Ind}_M^K(\{ \text{highest wt} \}|_M) \).

Picture: \(\mathcal{P} = K/M \cup \{ \text{divisors} \} \).

Section on \(K/M \leadsto \text{pole order on each divisor} \).

Section extends to \(\mathcal{P} \Longleftrightarrow \text{no pole on any divisor} \).
Proposition

\(K \cdot P \) is open in \(\mathcal{P} : K/M \cong K \cdot P \subset \mathcal{P} \cong G/P \). Here \(M = \text{cplx pts of } M(\mathbb{R}) = \text{cent in } K \text{ of } A \).

Follows immediately from Iwasawa decomposition.

Theorem (Borel-Weil, Helgason)

1. Alg repn of \(G = \text{alg secs of equiv vector bdle on } \mathcal{P} \).
2. Gives \(\{ \text{irr alg reps of } G \} \hookrightarrow \{ \text{irr alg reps of } L \} \).
3. \(\hat{L} = \{(\delta, \nu) \in \hat{M} \times \hat{A} \mid \delta = \nu \text{ on } M \cap A \} \).
4. \(\{ \text{alg secs of } \delta \otimes \nu \text{ on } \mathcal{P} \} \hookrightarrow \{ \text{alg secs of } \delta \text{ on } K/M \} \).
5. \(\{ \text{Alg rep of } G \}|_K \hookrightarrow \text{Ind}^K_M(\{ \text{highest wt} \}|_M) \).

Picture: \(\mathcal{P} = K/M \cup \{ \text{divisors} \} \).

Section on \(K/M \rightsquigarrow \text{pole order on each divisor.} \)

Section extends to \(\mathcal{P} \iff \text{no pole on any divisor.} \)
Helgason’s theorem (alg geometry picture)

Proposition

\[K \cdot P \text{ is open in } \mathcal{P} : K/M \cong K \cdot P \subset \mathcal{P} \cong G/P. \]
Here \(M = \text{cplx pts of } M(\mathbb{R}) = \text{cent in } K \text{ of } A. \)

Follows immediately from Iwasawa decomposition.

Theorem (Borel-Weil, Helgason)

1. Alg repn of \(G = \text{alg secs of equiv vector bdle on } \mathcal{P}. \)
2. Gives \(\{\text{irr alg reps of } G\} \hookrightarrow \{\text{irr alg reps of } L\}. \)
3. \(\hat{L} = \{(\delta, \nu) \in \hat{M} \times \hat{A} | \delta = \nu \text{ on } M \cap A\}. \)
4. \(\{\text{alg secs of } \delta \otimes \nu \text{ on } \mathcal{P}\} \hookrightarrow \{\text{alg secs of } \delta \text{ on } K/M\}. \)
5. \(\{\text{Alg rep of } G\}|_K \hookrightarrow \text{Ind}_M^K(\{\text{highest wt}\}|_M). \)

Picture: \(\mathcal{P} = K/M \cup \{\text{divisors}\}. \)

Section on \(K/M \leadsto \text{pole order on each divisor}. \)

Section extends to \(\mathcal{P} \iff \text{no pole on any divisor}. \)
Helgason’s theorem (alg geometry picture)

Proposition

\[K \cdot P \text{ is open in } \mathcal{P} : K/M \cong K \cdot P \subset \mathcal{P} \cong G/P. \text{ Here } M = \text{cplx pts of } M(\mathbb{R}) = \text{cent in } K \text{ of } A. \]

Follows immediately from Iwasawa decomposition.

Theorem (Borel-Weil, Helgason)

1. Alg repn of } G = \text{alg secs of equiv vector bdle on } \mathcal{P}.
2. Gives \{irr alg reps of } G \hookrightarrow \{irr alg reps of } L\}
3. \hat{\mathcal{L}} = \{(\delta, \nu) \in \hat{\mathcal{M}} \times \hat{\mathcal{A}} | \delta = \nu \text{ on } M \cap A\}.
4. \{\text{alg secs of } \delta \otimes \nu \text{ on } \mathcal{P}\} \hookrightarrow \{\text{alg secs of } \delta \text{ on } K/M\}.
5. \{\text{Alg rep of } G\}|_K \hookrightarrow \text{Ind}_M^K(\{\text{highest wt}\}|_M).

Picture: \mathcal{P} = K/M \cup \{\text{divisors}\}.

Section on } K/M \rightsquigarrow \text{pole order on each divisor.}

Section extends to } \mathcal{P} \iff \text{no pole on any divisor.}
Helgason’s theorem (alg geometry picture)

Proposition

\[K \cdot P \text{ is open in } \mathcal{P} : K/M \cong K \cdot P \subset \mathcal{P} \cong G/P. \]
\[\text{Here } M = \text{cplx pts of } M(\mathbb{R}) = \text{cent in } K \text{ of } A. \]

Follows immediately from Iwasawa decomposition.

Theorem (Borel-Weil, Helgason)

1. Alg repn of \(G \) = alg secs of equiv vector bdle on \(\mathcal{P} \).
2. Gives \(\{ \text{irr alg reps of } G \} \hookrightarrow \{ \text{irr alg reps of } L \} \).
3. \(\hat{L} = \{ (\delta, \nu) \in \hat{M} \times \hat{A} \mid \delta = \nu \text{ on } M \cap A \} \).
4. \(\{ \text{alg secs of } \delta \otimes \nu \text{ on } \mathcal{P} \} \hookrightarrow \{ \text{alg secs of } \delta \text{ on } K/M \} \).
5. \(\{ \text{Alg rep of } G \}\big|_K \hookrightarrow \text{Ind}^K_M(\{ \text{highest wt} \}\big|_M) \)

Picture: \(\mathcal{P} = K/M \cup \{ \text{divisors} \} \).

Section on \(K/M \leadsto \) pole order on each divisor.
Section extends to \(\mathcal{P} \Longleftrightarrow \) no pole on any divisor.
Proposition

\(K \cdot P \) is open in \(\mathcal{P} \): \(K/M \simeq K \cdot P \subset \mathcal{P} \simeq G/P \). Here \(M = \text{cplx pts of } M(\mathbb{R}) = \text{cent in } K \text{ of } A \).

Follows immediately from Iwasawa decomposition.

Theorem (Borel-Weil, Helgason)

1. Alg repn of \(G \) = alg secs of equiv vector bdle on \(\mathcal{P} \).
2. Gives \(\{ \text{irr alg reps of } G \} \hookrightarrow \{ \text{irr alg reps of } L \} \).
3. \(\hat{L} = \{ (\delta, \nu) \in \hat{M} \times \hat{A} \mid \delta = \nu \text{ on } M \cap A \} \).
4. \(\{ \text{alg secs of } \delta \otimes \nu \text{ on } \mathcal{P} \} \hookrightarrow \{ \text{alg secs of } \delta \text{ on } K/M \} \).
5. \(\{ \text{Alg rep of } G \}|_K \hookrightarrow \text{Ind}_M^K(\{ \text{highest wt} \}|_M) \).

Picture: \(\mathcal{P} = K/M \cup \{ \text{divisors} \} \).

Section on \(K/M \) ⇔ pole order on each divisor.

Section extends to \(\mathcal{P} \) ⇔ no pole on any divisor.
Proposition

\(K \cdot P \) is open in \(\mathcal{P} \): \(K/M \cong K \cdot P \subset \mathcal{P} \cong G/P \). Here \(M = \text{cplx pts of } M(\mathbb{R}) = \text{cent in } K \text{ of } A \).

Follows immediately from Iwasawa decomposition.

Theorem (Borel-Weil, Helgason)

1. Alg repn of \(G = \text{alg secs of equiv vector bdle on } \mathcal{P} \).
2. Gives \(\{ \text{irr alg reps of } G \} \hookrightarrow \{ \text{irr alg reps of } L \} \).
3. \(\hat{L} = \{ (\delta, \nu) \in \hat{M} \times \hat{A} \mid \delta = \nu \text{ on } M \cap A \} \).
4. \(\{ \text{alg secs of } \delta \otimes \nu \text{ on } \mathcal{P} \} \hookrightarrow \{ \text{alg secs of } \delta \text{ on } K/M \} \).
5. \(\{ \text{Alg rep of } G \}|_K \hookrightarrow \text{Ind}^K_M(\{ \text{highest wt} \}|_M) \)

Picture: \(\mathcal{P} = K/M \cup \{ \text{divisors} \} \).
Section on \(K/M \) \(\leadsto \) pole order on each divisor.
Section extends to \(\mathcal{P} \iff \) no pole on any divisor.
Helgason’s theorem (alg geometry picture)

Proposition

\[K \cdot P \text{ is open in } \mathcal{P} : \frac{K}{M} \simeq K \cdot P \subset \mathcal{P} \simeq G/P. \]

Here \(M = \text{cplx pts of } M(\mathbb{R}) = \text{cent in } K \text{ of } A. \)

Follows immediately from Iwasawa decomposition.

Theorem (Borel-Weil, Helgason)

1. Alg repn of \(G = \text{alg secs of equiv vector bdle on } \mathcal{P}. \)
2. Gives \(\{ \text{irr alg reps of } G \} \hookrightarrow \{ \text{irr alg reps of } L \}. \)
3. \(\hat{L} = \{(\delta, \nu) \in \hat{M} \times \hat{A} | \delta = \nu \text{ on } M \cap A\}. \)
4. \(\{ \text{alg secs of } \delta \otimes \nu \text{ on } \mathcal{P} \} \hookrightarrow \{ \text{alg secs of } \delta \text{ on } K/M \}. \)
5. \(\text{Alg rep of } G|_K \hookrightarrow \text{Ind}_M^K(\{ \text{highest wt} \}|_M). \)

Picture: \(\mathcal{P} = \frac{K}{M} \cup \{ \text{divisors} \}. \)

Section on \(K/M \leadsto \text{pole order on each divisor.} \)

Section extends to \(\mathcal{P} \iff \text{no pole on any divisor.} \)
Proposition

\(K \cdot P \) is open in \(\mathcal{P} \): \(K/M \cong K \cdot P \subset \mathcal{P} \cong G/P \). Here \(M = \text{cplx pts of } M(\mathbb{R}) = \text{cent in } K \text{ of } A \).

Follows immediately from Iwasawa decomposition.

Theorem (Borel-Weil, Helgason)

1. Alg repn of \(G = \) alg secs of equiv vector bdle on \(\mathcal{P} \).
2. Gives \(\{ \text{irr alg reps of } G \} \leftrightarrow \{ \text{irr alg reps of } L \} \).
3. \(\hat{L} = \{ (\delta, \nu) \in \hat{M} \times \hat{A} \mid \delta = \nu \text{ on } M \cap A \} \).
4. \(\{ \text{alg secs of } \delta \otimes \nu \text{ on } \mathcal{P} \} \leftrightarrow \{ \text{alg secs of } \delta \text{ on } K/M \} \).
5. \(\{ \text{Alg rep of } G \}|_K \leftrightarrow \text{Ind}_{M}^{K}(\{ \text{highest wt} \}|_M) \)

Picture: \(\mathcal{P} = K/M \cup \{ \text{divisors} \} \).

Section on \(K/M \) \(\sim \) pole order on each divisor.

Section extends to \(\mathcal{P} \leftrightarrow \) no pole on any divisor.
Proposition

\[\mathcal{P} \]

\[K \cdot P \text{ is open in } \mathcal{P} : \mathcal{K}/M \cong K \cdot P \subset \mathcal{P} \cong G/P. \]

Here \(M = \text{cplx pts of } M(\mathbb{R}) = \text{cent in } K \text{ of } A. \)

Follows immediately from Iwasawa decomposition.

Theorem (Borel-Weil, Helgason)

1. Alg repn of \(G \) = alg secs of equiv vector bdle on \(\mathcal{P} \).
2. Gives \(\{ \text{irr alg reps of } G \} \hookrightarrow \{ \text{irr alg reps of } L \} \).
3. \(\hat{L} = \{ (\delta, \nu) \in \hat{M} \times \hat{A} \mid \delta = \nu \text{ on } M \cap A \} \).
4. \(\{ \text{alg secs of } \delta \otimes \nu \text{ on } \mathcal{P} \} \hookrightarrow \{ \text{alg secs of } \delta \text{ on } K/M \} \).
5. \(\{ \text{Alg rep of } G \} \mid_{K} \hookrightarrow \text{Ind}_{M}^{K}(\{ \text{highest wt} \} \mid_{M}) \)

Picture: \(\mathcal{P} = K/M \cup \{ \text{divisors} \} \).

Section on \(K/M \sim \) pole order on each divisor.

Section extends to \(\mathcal{P} \leftrightarrow \text{no pole on any divisor.} \)
Geometric branching law from G to K

Repn of $G =$ alg secs of vector bdle on \mathcal{P}

$\mathcal{P} = K/M \cup \{ \text{divisors } D_1, \ldots, D_r \}$

Divisors correspond to simple restricted roots of A.

Bdle on $\mathcal{P} \rightsquigarrow l_0(\delta) = \text{Ind}_M^K(\delta) =$ secs on K/M.

Bdle on $\mathcal{P} \rightsquigarrow l_j(\tau_j) =$ secs with pole along divisor D_j.

Bundle τ_j depends on δ and on character ν of A.

If ν large on simple root j, then $l_j(\tau_j)$ is small.

Sections on $\mathcal{P} \approx l_0(\delta) - \sum_{j=1}^r l_j(\tau_j)$.

Branching law: describes restr to K of rep of G.

As ν tends to infinity, G representation grows toward $l_0(\delta)$.
Geometric branching law from G to K

Repn of $G = \text{alg secs of vector bdle on } \mathcal{P}$

$\mathcal{P} = K/M \cup \{\text{divisors } D_1, \ldots, D_r\}$

Divisors correspond to simple restricted roots of A.

Bdle on $\mathcal{P} \rightsquigarrow l_0(\delta) = \text{Ind}_{M}^{K}(\delta) = \text{secs on } K/M.$

Bdle on $\mathcal{P} \rightsquigarrow l_j(\tau_j) = \text{secs with pole along divisor } D_j.$

Bundle τ_j depends on δ and on character ν of A.

If ν large on simple root j, then $l_j(\tau_j)$ is small.

Sections on $\mathcal{P} \approx l_0(\delta) - \sum_{j=1}^{r} l_j(\tau_j)$.

Branching law: describes restr to K of rep of G.

As ν tends to infinity, G representation grows toward $l_0(\delta)$.
Geometric branching law from G to K

Repn of $G = \text{alg secs of vector bdle on } \mathcal{P}$

$$\mathcal{P} = K/M \cup \{\text{divisors } D_1, \ldots, D_r\}$$

Divisors correspond to simple restricted roots of A.

Bdle on $\mathcal{P} \rightsquigarrow I_0(\delta) = \text{Ind}_{M}^{K}(\delta) = \text{secs on } K/M$.

Bdle on $\mathcal{P} \rightsquigarrow I_j(\tau_j) = \text{secs with pole along divisor } D_j$.

Bundle τ_j depends on δ and on character ν of A.

If ν large on simple root j, then $I_j(\tau_j)$ is small.

Sections on $\mathcal{P} \approx I_0(\delta) - \sum_{j=1}^{r} I_j(\tau_j)$.

Branching law: describes restr to K of rep of G.

As ν tends to infinity, G representation grows toward $I_0(\delta)$.
Geometric branching law from G to K

Repn of $G = \text{alg secs of vector bdle on } \mathcal{P}$

$\mathcal{P} = K/M \cup \{\text{divisors } D_1, \ldots, D_r\}$

Divisors correspond to simple restricted roots of A.

Bdle on $\mathcal{P} \rightsquigarrow l_0(\delta) = \text{Ind}^K_M(\delta) = \text{secs on } K/M$.

Bdle on $\mathcal{P} \rightsquigarrow l_j(\tau_j) = \text{secs with pole along divisor } D_j$.

Bundle τ_j depends on δ and on character ν of A.

If ν large on simple root j, then $l_j(\tau_j)$ is small.

Sections on $\mathcal{P} \approx l_0(\delta) - \sum_{j=1}^r l_j(\tau_j)$.

Branching law: describes restr to K of rep of G.

As ν tends to infinity, G representation grows toward $l_0(\delta)$.
Geometric branching law from G to K

Repn of $G = \text{alg secs of vector bdle on } \mathcal{P}$

\[\mathcal{P} = K/M \cup \{ \text{divisors } D_1, \ldots, D_r \} \]

Divisors correspond to simple restricted roots of A.

Bdle on \mathcal{P} \rightsquigarrow $l_0(\delta) = \text{Ind}_{M}^{K}(\delta) = \text{secs on } K/M$.

Bdle on \mathcal{P} \rightsquigarrow $l_j(\tau_j) = \text{secs with pole along divisor } D_j$.

Bundle τ_j depends on δ and on character ν of A.

If ν large on simple root j, then $l_j(\tau_j)$ is small.

Sections on $\mathcal{P} \cong l_0(\delta) - \sum_{j=1}^{r} l_j(\tau_j)$.

Branching law: describes restr to K of rep of G.

As ν tends to infinity, G representation grows toward $l_0(\delta)$.
Geometric branching law from G to K

Repn of $G = \text{alg secs of vector bdle on } \mathcal{P}$

$\mathcal{P} = K/M \cup \{\text{divisors } D_1, \ldots, D_r\}$

Divisors correspond to simple restricted roots of A.

Bdle on $\mathcal{P} \rightsquigarrow l_0(\delta) = \text{Ind}_{M}^{K}(\delta) = \text{secs on } K/M$.

Bdle on $\mathcal{P} \rightsquigarrow l_j(\tau_j) = \text{secs with pole along divisor } D_j$.

Bundle τ_j depends on δ and on character ν of A.

If ν large on simple root j, then $l_j(\tau_j)$ is small.

Sections on $\mathcal{P} \approx l_0(\delta) - \sum_{j=1}^{r} l_j(\tau_j)$.

Branching law: describes restr to K of rep of G.

As ν tends to infinity, G representation grows toward $l_0(\delta)$.
Geometric branching law from G to K

Repn of $G =$ alg secs of vector bdle on \mathcal{P}

$\mathcal{P} = K/M \cup \{\text{divisors } D_1, \ldots, D_r\}$

Divisors correspond to simple restricted roots of A.

Bdle on $\mathcal{P} \leadsto I_0(\delta) = \text{Ind}_{M}^{K}(\delta) = \text{secs on } K/M$.

Bdle on $\mathcal{P} \leadsto I_j(\tau_j) =$ secs with pole along divisor D_j.

Bundle τ_j depends on δ and on character ν of A.

If ν large on simple root j, then $I_j(\tau_j)$ is small.

Sections on $\mathcal{P} \approx I_0(\delta) - \sum_{j=1}^{r} I_j(\tau_j)$.

Branching law: describes restr to K of rep of G.

As ν tends to infinity, G representation grows toward $I_0(\delta)$.
Geometric branching law from G to K

Repn of $G = \text{alg secs of vector bdle on } \mathcal{P}$

$\mathcal{P} = K/M \cup \{\text{divisors } D_1, \ldots, D_r\}$

Divisors correspond to simple restricted roots of A.

Bdle on $\mathcal{P} \ni l_0(\delta) = \text{Ind}_M^K(\delta) = \text{secs on } K/M$.

Bdle on $\mathcal{P} \ni l_j(\tau_j) = \text{secs with pole along divisor } D_j$.

Bundle τ_j depends on δ and on character ν of A.

If ν large on simple root j, then $l_j(\tau_j)$ is small.

Sections on $\mathcal{P} \approx l_0(\delta) - \sum_{j=1}^r l_j(\tau_j)$.

Branching law: describes restr to K of rep of G.

As ν tends to infinity, G representation grows toward $l_0(\delta)$.
Geometric branching law from G to K

Repn of G = alg secs of vector bdle on \mathcal{P}

$\mathcal{P} = K/M \cup \{\text{divisors } D_1, \ldots, D_r\}$

Divisors correspond to simple restricted roots of A.

Bdle on $\mathcal{P} \leadsto l_0(\delta) = \text{Ind}_{M}^{K}(\delta) = \text{secs on } K/M.$

Bdle on $\mathcal{P} \leadsto l_j(\tau_j) = \text{secs with pole along divisor } D_j.$

Bundle τ_j depends on δ and on character ν of A.

If ν large on simple root j, then $l_j(\tau_j)$ is small.

Sections on $\mathcal{P} \approx l_0(\delta) - \sum_{j=1}^{r} l_j(\tau_j).$

Branching law: describes restr to K of rep of $G.$

As ν tends to infinity, G representation grows toward $l_0(\delta).$
Terms in the branching law

\[(\text{fin diml rep of } G)|_K \approx l_0(\delta) - \sum_{j=1}^{r} l_j(\tau_j).\]

What do the terms on the right mean?

Classical picture:

\[l_0(\delta) = \text{Ind}_{K}^{G} (\mathbb{R}) (\delta) = \left(\text{Ind}_{P(\mathbb{R})}^{G(\mathbb{R})} (\delta \otimes \nu \otimes 1) \right)|_{K(\mathbb{R})},\]

restr to \(K(\mathbb{R})\) of principal series rep of \(G(\mathbb{R})\).

\(l_0\) = inf-diml rep \(l_0\), containing \(F\) as a subrep.

Geometry: \(G(\mathbb{R})/P(\mathbb{R}) = P(\mathbb{R})\) is nice real subvariety of \(G/P = P\).

\[l_0 = \text{analytic sections of bundle on } P(\mathbb{R})\]

\(F = \text{sections extending holomorphically to } P\).

Later \(l_j\) are \(G(\mathbb{R})\) reps \(\leftrightarrow\) other pieces of \(l_0\).
Terms in the branching law

\[(\text{fin diml rep of } G)|_K \approx l_0(\delta) - \sum_{j=1}^{r} l_j(\tau_j).\]

What do the terms on the right mean?

Classical picture:

\[l_0(\delta) = \text{Ind}_{M(\mathbb{R})}^{K(\mathbb{R})}(\delta) = \left(\text{Ind}_{P(\mathbb{R})}^{G(\mathbb{R})}(\delta \otimes \nu \otimes 1)\right)|_{K(\mathbb{R})},\]

restr to \(K(\mathbb{R})\) of principal series rep of \(G(\mathbb{R})\).

\(l_0 = \text{inf-diml rep of } l_0\), containing \(F\) as a subrep.

Geometry: \(G(\mathbb{R})/P(\mathbb{R}) = \mathcal{P}(\mathbb{R})\) is nice real subvariety of \(G/P = \mathcal{P}\).

\(l_0 = \text{analytic sections of bundle on } \mathcal{P}(\mathbb{R})\)

\(F = \text{sections extending holomorphically to } \mathcal{P}\).

Later \(l_j\) are \(G(\mathbb{R})\) reps \(\leftrightarrow\) other pieces of \(l_0\).
Terms in the branching law

\[(\text{fin diml rep of } G)|_K \cong \ i_0(\delta) - \sum_{j=1}^{r} i_j(\tau_j).\]

What do the terms on the right mean?

Classical picture:

\[i_0(\delta) = \text{Ind}_{M(\mathbb{R})}^{K(\mathbb{R})}(\delta) = \left(\text{Ind}_{P(\mathbb{R})}^{G(\mathbb{R})}(\delta \otimes \nu \otimes 1) \right)|_K(\mathbb{R}),\]

restr to \(K(\mathbb{R})\) of principal series rep of \(G(\mathbb{R})\).

\(i_0 = \) inf-diml rep \(i_0\), containing \(F\) as a subrep.

Geometry: \(G(\mathbb{R})/P(\mathbb{R}) = \mathcal{P}(\mathbb{R})\) is nice real subvariety of \(G/P = \mathcal{P}\).

\[F = \text{analytic sections of bundle on } \mathcal{P}(\mathbb{R}).\]

Later \(i_j\) are \(G(\mathbb{R})\) reps \(\leftrightarrow\) other pieces of \(i_0\).
Branching to maximal compact subgroups

David Vogan

Introduction

Helgason's thm

classically

Helgason's thm

and alg geometry

Zuckerman's thm

From K to G and back again

Summary

Terms in the branching law

$$(\text{fin diml rep of } G)|_K \approx l_0(\delta) - \sum_{j=1}^{r} l_j(\tau_j).$$

What do the terms on the right mean?

Classical picture:

$$l_0(\delta) = \text{Ind}_{M(\mathbb{R})}^{K(\mathbb{R})}(\delta) = \left(\text{Ind}_{P(\mathbb{R})}^{G(\mathbb{R})}(\delta \otimes \nu \otimes 1)\right)|_{K(\mathbb{R})},$$

restr to $K(\mathbb{R})$ of principal series rep of $G(\mathbb{R})$.

$l_0 = \text{inf-diml rep } l_0$, containing F as a subrep.

Geometry: $G(\mathbb{R})/P(\mathbb{R}) = \mathcal{P}(\mathbb{R})$ is nice real subvariety of $G/P = \mathcal{P}$.

$$l_0 = \text{analytic sections of bundle on } \mathcal{P}(\mathbb{R})$$

$F = \text{sections extending holomorphically to } \mathcal{P}.$

Later l_j are $G(\mathbb{R})$ reps \leftrightarrow other pieces of l_0.
Terms in the branching law

\[(\text{fin diml rep of } G)|_K \approx l_0(\delta) - \sum_{j=1}^{r} l_j(\tau_j).\]

What do the terms on the right mean?

Classical picture:

\[l_0(\delta) = \text{Ind}_{M(\mathbb{R})}^{K(\mathbb{R})}(\delta) = \left(\text{Ind}_{P(\mathbb{R})}^{G(\mathbb{R})}(\delta \otimes \nu \otimes 1) \right)|_{K(\mathbb{R})},\]

restr to \(K(\mathbb{R})\) of principal series rep of \(G(\mathbb{R})\).

\(l_0 = \text{inf-diml rep } l_0\), containing \(F\) as a subrep.

Geometry: \(G(\mathbb{R})/P(\mathbb{R}) = \mathcal{P}(\mathbb{R})\) is nice real subvariety of \(G/P = \mathcal{P}\).

\(l_0 = \) analytic sections of bundle on \(\mathcal{P}(\mathbb{R})\).

\(F = \) sections extending holomorphically to \(\mathcal{P}\).

Later \(l_j\) are \(G(\mathbb{R})\) reps \(\leftrightarrow\) other pieces of \(l_0\).
Branching to maximal compact subgroups

David Vogan

Introduction

Helgason’s thm classically

Helgason’s thm and alg geometry

Zuckerman’s thm

From \(K \) to \(G \) and back again

Summary

Terms in the branching law

\[(\text{fin diml rep of } G)|_K \approx l_0(\delta) - \sum_{j=1}^{r} l_j(\tau_j).\]

What do the terms on the right mean?

Classical picture:

\[l_0(\delta) = \text{Ind}_{M(\mathbb{R})}^{K(\mathbb{R})}(\delta) = \left(\text{Ind}_{P(\mathbb{R})}^{G(\mathbb{R})}(\delta \otimes \nu \otimes 1) \right)|_{K(\mathbb{R})},\]

restr to \(K(\mathbb{R}) \) of principal series rep of \(G(\mathbb{R}) \).

\(l_0 \) = inf-diml rep \(l_0 \), containing \(F \) as a subrep.

Geometry: \(G(\mathbb{R})/P(\mathbb{R}) = \mathcal{P}(\mathbb{R}) \) is nice real subvariety of \(G/P = \mathcal{P} \).

\[l_0 = \text{analytic sections of bundle on } \mathcal{P}(\mathbb{R}).\]

\(F = \) sections extending holomorphically to \(\mathcal{P} \).

Later \(l_j \) are \(G(\mathbb{R}) \) reps \(\lhd \) other pieces of \(l_0 \).
Terms in the branching law

\[(\text{fin diml rep of } G)|_K \approx l_0(\delta) - \sum_{j=1}^{r} l_j(\tau_j).\]

What do the terms on the right mean?

Classical picture:

\[l_0(\delta) = \text{Ind}^{K(\mathbb{R})}_{M(\mathbb{R})}(\delta) = \left(\text{Ind}^{G(\mathbb{R})}_{P(\mathbb{R})}(\delta \otimes \nu \otimes 1)\right)|_K(\mathbb{R}),\]

restr to \(K(\mathbb{R})\) of principal series rep of \(G(\mathbb{R})\).

\(l_0 = \text{inf-diml rep } l_0\), containing \(F\) as a subrep.

Geometry: \(G(\mathbb{R})/P(\mathbb{R}) = \mathcal{P}(\mathbb{R})\) is nice real subvariety of \(G/P = \mathcal{P}\).

\[l_0 = \text{analytic sections of bundle on } \mathcal{P}(\mathbb{R})\]

\(F = \text{sections extending holomorphically to } \mathcal{P}\).

Later \(l_j\) are \(G(\mathbb{R})\) reps \(\leftrightarrow\) other pieces of \(l_0\).
Setting for Zuckerman’s theorem

First replace \mathcal{P} by $B = \text{Borel subgroups of } G$, complete flag variety for G.

Proposition (Wolf, Beilinson-Bernstein)

1. K acts on B with finitely many orbits.
2. Unique open orbit \leftrightarrow Borel subgp of Iwasawa P.
3. General orbit \leftrightarrow pair (H, Δ^+) mod $G(\mathbb{R})$ conjugation.
 - $H(\mathbb{R}) = \text{Cartan in } G(\mathbb{R})$, $\Delta^+ = \text{pos roots for } H$ in G.
4. Std rep $I(\tau)$ restr to K on ξ_{τ} (\mathbb{R}).
 - $\xi = \text{orbit of } \xi$ on ξ_{τ}, ξ equiv line bundle on Z.
 - Bundle $\xi \leftrightarrow \text{alg char of } H \cap K$.

Bundle must be “positive” (as in Borel-Weil).
Setting for Zuckerman’s theorem

First replace \mathcal{P} by $\mathcal{B} = \text{Borel subgroups of } G$,

complete flag variety for } G.

Proposition (Wolf, Beilinson-Bernstein)

1. K acts on \mathcal{B} with finitely many orbits.
2. Unique open orbit \sim Borel subgp of Iwasawa P.
3. General orbit \sim pair (H, Δ^+) mod $G(\mathbb{R})$ conjugation.

 \[H(\mathbb{R}) = \text{Cartan in } G(\mathbb{R}), \quad \Delta^+ = \text{pos roots for } H \text{ in } G. \]
4. Std rep $l(\tau)$ restr to $K \sim (Z, \xi)$

 \[Z = \text{orbit of } K \text{ on } \mathcal{B}, \xi \text{K-eqvt line bdle on } Z. \]

Bundle $\xi \sim$ alg char of $H \cap K$.

Bundle must be “positive” (as in Borel-Weil).
Setting for Zuckerman’s theorem

First replace \mathcal{P} by $\mathcal{B} =$ Borel subgroups of G, complete flag variety for G.

Proposition (Wolf, Beilinson-Bernstein)

1. K acts on \mathcal{B} with finitely many orbits.
2. Unique open orbit \leftrightarrow Borel subgp of Iwasawa P.
3. General orbit \leftrightarrow pair (H, Δ^+) mod $G(\mathbb{R})$ conjugation.

 $H(\mathbb{R}) = \text{Cartan in } G(\mathbb{R})$, $\Delta^+ = \text{pos roots for } H \text{ in } G$.
4. Std rep $I(\tau)$ restr to $K \leftrightarrow \tau = (Z, \xi)$

 $Z = \text{orbit of } K \text{ on } \mathcal{B}$, ξ K-eqvt line bdle on Z.

Bundle $\xi \leftrightarrow \text{alg char of } H \cap K$.

Bundle must be “positive” (as in Borel-Weil).
Setting for Zuckerman’s theorem

First replace \mathcal{P} by $\mathcal{B} =$ Borel subgroups of G, complete flag variety for G.

Proposition (Wolf, Beilinson-Bernstein)

1. K acts on \mathcal{B} with finitely many orbits.
2. Unique open orbit \rightsquigarrow Borel subgp of Iwasawa P.
3. General orbit \rightsquigarrow pair (H, Δ^+) mod $G(\mathbb{R})$ conjugation.

 $H(\mathbb{R}) =$ Cartan in $G(\mathbb{R})$, $\Delta^+ =$ pos roots for H in G.
4. Std rep $I(\tau)$ restr to $K \rightsquigarrow \tau = (Z, \xi)$

 $Z =$ orbit of K on \mathcal{B}, ξ K-eqvt line bdle on Z.

Bundle $\xi \rightsquigarrow$ alg char of $H \cap K$.

Bundle must be “positive” (as in Borel-Weil).
Setting for Zuckerman’s theorem

First replace \(\mathcal{P} \) by \(\mathcal{B} = \) Borel subgroups of \(G \), complete flag variety for \(G \).

Proposition (Wolf, Beilinson-Bernstein)

1. \(K \) acts on \(\mathcal{B} \) with finitely many orbits.
2. Unique open orbit \(\leadsto \) Borel subgp of Iwasawa \(P \).
3. General orbit \(\leadsto \) pair \((H, \Delta^+) \mod \text{G(} \mathbb{R} \text{)} \) conjugation.
 \(H(\mathbb{R}) = \) Cartan in \(\text{G(} \mathbb{R} \text{)} \), \(\Delta^+ = \) pos roots for \(H \) in \(G \).
4. Std rep \(I(\tau) \) restr to \(K \) \(\leadsto \) \(\tau = (Z, \xi) \)
 \(Z = \) orbit of \(K \) on \(\mathcal{B} \), \(\xi \) \(K \)-eqvt line bdle on \(Z \).

Bundle \(\xi \leadsto \) alg char of \(H \cap K \).

Bundle must be “positive” (as in Borel-Weil).
Setting for Zuckerman’s theorem

First replace \mathcal{P} by $\mathcal{B} =$ Borel subgroups of G, complete flag variety for G.

Proposition (Wolf, Beilinson-Bernstein)

1. K acts on \mathcal{B} with finitely many orbits.
2. Unique open orbit \mapsto Borel subgp of Iwasawa P.
3. General orbit \mapsto pair (H, Δ^+) mod $G(\mathbb{R})$ conjugation.
 $H(\mathbb{R}) =$ Cartan in $G(\mathbb{R})$, Δ^+ = pos roots for H in G.
4. $\text{Std rep } I(\tau)$ restr to K \mapsto (Z, ξ)
 $Z =$ orbit of K on \mathcal{B}, ξ K-eqvt line bdle on Z.

Bundle ξ \mapsto alg char of $H \cap K$.

Bundle must be “positive” (as in Borel-Weil).
Setting for Zuckerman’s theorem

First replace \mathcal{P} by $\mathcal{B} =$ Borel subgroups of G, complete flag variety for G.

Proposition (Wolf, Beilinson-Bernstein)

1. K acts on \mathcal{B} with finitely many orbits.
2. Unique open orbit \leftrightarrow Borel subgp of Iwasawa P.
3. General orbit \leftrightarrow pair $(H, \Delta^+) \mod G(\mathbb{R})$ conjugation. $H(\mathbb{R}) =$ Cartan in $G(\mathbb{R})$, $\Delta^+ =$ pos roots for H in G.
4. Std rep $I(\tau)$ restr to $K \leftrightarrow (Z, \xi)$ $Z =$ orbit of K on \mathcal{B}, ξ K-eqvt line bdle on Z.

Bundle $\xi \leftrightarrow$ alg char of $H \cap K$.

Bundle must be “positive” (as in Borel-Weil).
Setting for Zuckerman’s theorem

First replace \mathcal{P} by $\mathcal{B} = \text{Borel subgroups of } G$, complete flag variety for G.

Proposition (Wolf, Beilinson-Bernstein)

1. K acts on \mathcal{B} with finitely many orbits.
2. Unique open orbit \leftrightarrow Borel subgp of Iwasawa P.
3. General orbit \leftrightarrow pair (H, Δ^+) mod $G(\mathbb{R})$ conjugation.

 $H(\mathbb{R}) = \text{Cartan in } G(\mathbb{R})$, $\Delta^+ = \text{pos roots for } H$ in G.
4. Std rep $l(\tau)$ restr to K \leftrightarrow (Z, ξ)

 $Z = \text{orbit of } K$ on \mathcal{B}, ξ K-eqvt line bdle on Z.

Bundle ξ \leftrightarrow alg char of $H \cap K$.

Bundle must be “positive” (as in Borel-Weil).
Setting for Zuckerman’s theorem

First replace \mathcal{P} by $\mathcal{B} = \text{Borel subgroups of } G$, complete flag variety for G.

Proposition (Wolf, Beilinson-Bernstein)

1. K acts on \mathcal{B} with finitely many orbits.
2. Unique open orbit $\hookrightarrow \text{Borel subgp of Iwasawa } P$.
3. General orbit $\hookrightarrow \text{pair } (H, \Delta^+) \text{ mod } G(\mathbb{R}) \text{ conjugation}$. $H(\mathbb{R}) = \text{Cartan in } G(\mathbb{R}), \Delta^+ = \text{pos roots for } H \text{ in } G$.
4. Std rep $I(\tau)$ restr to $K \iff \tau = (Z, \xi)$ $Z = \text{orbit of } K \text{ on } \mathcal{B}, \xi$ K-eqvt line bdle on Z.

Bundle $\xi \hookrightarrow \text{alg char of } H \cap K$.

Bundle must be “positive” (as in Borel-Weil).
Zuckerman’s theorem

F finite-diml irr rep of $G \leadsto$ line bdle λ on B.

K-orbit $Z \subset B \leadsto$ parameter $\tau(Z, F) = (Z, \lambda|Z)$.

For each K-orbit Z, std rep restr to $K I(\tau(Z, F))$.

Theorem (Zuckerman)

If F any fin-diml irr rep of G (cplx reductive), then

$$F|_K = \sum_{Z \subset B} (-1)^{\text{codim}(Z)} I(\tau(Z, F)).$$

Sum is over orbits of K (complexified max compact) on flag variety B.

1st term (codim 0) \leadsto princ series $\leftrightarrow M$ rep F^N.

Next terms (codim 1) \leadsto poles on divisors $\mathcal{P} - K/M$.

Higher terms correct for double counting.
Zuckerman’s theorem

If F any finite-diml irr rep of G (cplx reductive), then

$$F|_K = \sum_{Z \subset B} (-1)^{\text{codim}(Z)} I(\tau(Z, F)).$$

Sum is over orbits of K (complexified max compact) on flag variety B.

1st term (codim 0) \rightsquigarrow princ series $\leftrightarrow M$ rep F^N.

Next terms (codim 1) \rightsquigarrow poles on divisors $\mathcal{P} - K/M$.

Higher terms correct for double counting.
Zuckerman’s theorem

F finite-diml irr rep of $G \rightsquigarrow$ line bdle λ on \mathcal{B}.

K-orbit $Z \subset \mathcal{B} \rightsquigarrow$ parameter $\tau(Z, F) = (Z, \lambda|Z)$.

For each K-orbit Z, std rep restr to K $I(\tau(Z, F))$.

Theorem (Zuckerman)

If F any fin-diml irr rep of G (cplx reductive), then

$$F|_K = \sum_{Z \subset \mathcal{B}} (-1)^{\text{codim}(Z)} I(\tau(Z, F)).$$

Sum is over orbits of K (complexified max compact) on flag variety \mathcal{B}.

1st term (codim 0) \rightsquigarrow princ series $\leftrightarrow M$ rep F^N.

Next terms (codim 1) \rightsquigarrow poles on divisors $\mathcal{P} - K/M$.

Higher terms correct for double counting.
Zuckerman’s theorem

If \(F \) any fin-diml irr rep of \(G \) (cplx reductive), then

\[
F|_K = \sum_{Z \subset B} (-1)^{\text{codim}(Z)} I(\tau(Z, F)).
\]

Sum is over orbits of \(K \) (complexified max compact) on flag variety \(B \).

1st term (codim 0) \(\leadsto \) princ series \(\leftrightarrow M \) rep \(F^N \).

Next terms (codim 1) \(\leadsto \) poles on divisors \(\mathcal{P} - K/M \).

Higher terms correct for double counting.
Zuckerman’s theorem

If F any fin-diml irr rep of G (cplx reductive), then

$$F|_K = \sum_{Z \subset \mathcal{B}} (-1)^{\text{codim}(Z)} I(\tau(Z, F)).$$

Sum is over orbits of K (complexified max compact) on flag variety \mathcal{B}.

1st term (codim 0) \leadsto princ series $\leftrightarrow M$ rep F^N.

Next terms (codim 1) \leadsto poles on divisors $\mathcal{P} - K/M$.

Higher terms correct for double counting.
Zuckerman’s theorem

If F any finite-diml irr rep of G (cplx reductive), then

$$F|_K = \sum_{Z \subset B} (-1)^{\text{codim}(Z)} I(\tau(Z, F)).$$

Sum is over orbits of K (complexified max compact) on flag variety B.

1st term (codim 0) \rightsquigarrow princ series $\leftrightarrow M$ rep F^N.

Next terms (codim 1) \rightsquigarrow poles on divisors $\mathcal{P} - K/M$.

Higher terms correct for double counting.
Zuckerman’s theorem

\[F \text{ finite-diml irr rep of } G \leadsto \text{line bdle } \lambda \text{ on } B. \]

\[K\text{-orbit } Z \subset B \leadsto \text{parameter } \tau(Z, F) = (Z, \lambda|Z). \]

For each \(K \)-orbit \(Z \), std rep restr to \(K \) \(I(\tau(Z, F)) \).

Theorem (Zuckerman)

If \(F \) any fin-diml irr rep of \(G \) (cplx reductive), then

\[
F|_K = \sum_{Z \subset B} (-1)^{\text{codim}(Z)} I(\tau(Z, F)).
\]

Sum is over orbits of \(K \) (complexified max compact) on flag variety \(B \).

1st term (codim 0) \(\leadsto \) princ series \(\leftrightarrow M \text{ rep } F^N \).

Next terms (codim 1) \(\leadsto \) poles on divisors \(P - K/M \).

Higher terms correct for double counting.
Zuckerman’s theorem

If F any finite-diml irr rep of G (cplx reductive), then

$$F|_K = \sum_{Z \subset B} (-1)^{\text{codim}(Z)} I(\tau(Z, F)).$$

Sum is over orbits of K (complexified max compact) on flag variety B.

1st term (codim 0) \leadsto princ series $\leftrightarrow M$ rep F_N.
Next terms (codim 1) \leadsto poles on divisors $\mathcal{P} - K/M$.

Higher terms correct for double counting.
Example: $\text{SL}(2, \mathbb{C})$

\[G(\mathbb{R}) = \text{SL}(2, \mathbb{C}), \ K(\mathbb{R}) = \text{SU}(2). \]

$G = \text{SL}(2, \mathbb{C}) \times \text{SL}(2, \mathbb{C}), \ K = \text{SL}(2, \mathbb{C})_{\Delta}.$

Finite diml of $G \rightsquigarrow F_{a,b} = \mathbb{C}^a \otimes \mathbb{C}^b$, ($a$ and b pos ints).

Irr of $K \rightsquigarrow \tau_x =$ highest weight x ($x \in \mathbb{N}$).

Std rep $I(m) =$ sum of reps of K cont. wt m ($m \in \mathbb{Z}$).

Zuckerman formula:

\[
F_{a,b}|_K = I(a - b) - I(a + b) \\
= \sum_{\tau \in \hat{K}} (m_{\tau}(a - b) - m_{\tau}(a + b))_{\tau} \\
= \tau_{|a-b|} + \tau_{|a-b|+2} + \cdots + \tau_{a+b-2}
\]

M representation on highest weight for G is $a - b$.

Helgason’s thm: triv of K appears $\iff a = b$.

Example: $SL(2, \mathbb{C})$

$G(\mathbb{R}) = SL(2, \mathbb{C}), K(\mathbb{R}) = SU(2)$.

$G = SL(2, \mathbb{C}) \times SL(2, \mathbb{C}), K = SL(2, \mathbb{C})_\Delta$.

Finite diml of $G \hookrightarrow F_{a,b} = \mathbb{C}^a \otimes \mathbb{C}^b$, ($a$ and b pos ints).

Irr of $K \hookrightarrow \tau_x = \text{highest weight } x$ ($x \in \mathbb{N}$).

Std rep $l(m) = \text{sum of reps of } K \text{ cont. wt } m$ ($m \in \mathbb{Z}$).

Zuckerman formula:

$$F_{a,b}|_K = l(a - b) - l(a + b)$$

$$= \sum_{\tau \in \hat{K}} (m_\tau (a - b) - m_\tau (a + b)) \tau$$

$$= \tau_{|a-b|} + \tau_{|a-b|+2} + \cdots + \tau_{a+b-2}$$

M representation on highest weight for G is $a - b$.

Helgason’s thm: \text{triv of } K \text{ appears } \Leftrightarrow a = b.$
Example: $SL(2, \mathbb{C})$

$G(\mathbb{R}) = SL(2, \mathbb{C}), K(\mathbb{R}) = SU(2)$.

$G = SL(2, \mathbb{C}) \times SL(2, \mathbb{C}), K = SL(2, \mathbb{C})_{\Delta}$.

Finite diml of $G \leadsto F_{a,b} = \mathbb{C}^a \otimes \mathbb{C}^b$, ($a$ and b pos ints).

Irr of $K \leadsto \tau_x = \text{highest weight } x$ ($x \in \mathbb{N}$).

Std rep $l(m) = \text{sum of reps of } K \text{ cont. wt } m$ ($m \in \mathbb{Z}$).

Zuckerman formula:

$$F_{a,b}|_K = l(a - b) - l(a + b)$$

$$= \sum_{\tau \in \hat{K}} (m_{\tau}(a - b) - m_{\tau}(a + b))\tau$$

$$= \tau_{a-b} + \tau_{a-b+2} + \cdots + \tau_{a+b-2}$$

M representation on highest weight for G is $a - b$.

Helgason's thm: triv of K appears $\Leftrightarrow a = b$.
Example: $SL(2, \mathbb{C})$

\[G(\mathbb{R}) = SL(2, \mathbb{C}), \quad K(\mathbb{R}) = SU(2). \]

\[G = SL(2, \mathbb{C}) \times SL(2, \mathbb{C}), \quad K = SL(2, \mathbb{C})_{\Delta}. \]

Finite diml of $G \leadsto F_{a,b} = \mathbb{C}^a \otimes \mathbb{C}^b$, ($a$ and b pos ints).

Irr of $K \leadsto \tau_x = \text{highest weight } x \ (x \in \mathbb{N})$.

Std rep $l(m) = \text{sum of reps of } K \text{ cont. wt } m \ (m \in \mathbb{Z})$.

Zuckerman formula:

\[
F_{a,b}|_K = l(a - b) - l(a + b) = \sum_{\tau \in \hat{K}} (m_{\tau}(a - b) - m_{\tau}(a + b))\tau
\]

\[= \tau_{|a-b|} + \tau_{|a-b|+2} + \cdots + \tau_{a+b-2} \]

M representation on highest weight for G is $a - b$.

Helgason's thm: triv of K appears $\Leftrightarrow a = b$.
Example: \(SL(2, \mathbb{C}) \)

\[
G(\mathbb{R}) = SL(2, \mathbb{C}), \quad K(\mathbb{R}) = SU(2).
\]

\[
G = SL(2, \mathbb{C}) \times SL(2, \mathbb{C}), \quad K = SL(2, \mathbb{C})_\Delta.
\]

Finite diml of \(G \) \(\rightsquigarrow \) \(F_{a,b} = \mathbb{C}^a \otimes \mathbb{C}^b \), (\(a \) and \(b \) pos ints).

Irr of \(K \) \(\rightsquigarrow \) \(\tau_x = \) highest weight \(x \) (\(x \in \mathbb{N} \)).

Std rep \(l(m) = \) sum of reps of \(K \) cont. wt \(m \) (\(m \in \mathbb{Z} \)).

Zuckerman formula:

\[
F_{a,b}|_K = l(a - b) - l(a + b) = \sum_{\tau \in \hat{K}} (m_\tau(a - b) - m_\tau(a + b))\tau = \tau|_{a-b|} + \tau|_{a-b|+2} + \cdots + \tau_{a+b-2}
\]

\(M \) representation on highest weight for \(G \) is \(a - b \).

Helgason’s thm: \(\text{triv of } K \) appears \(\iff \) \(a = b \).
Example: $SL(2, \mathbb{C})$

$G(\mathbb{R}) = SL(2, \mathbb{C}), K(\mathbb{R}) = SU(2)$.

$G = SL(2, \mathbb{C}) \times SL(2, \mathbb{C}), K = SL(2, \mathbb{C})_\Delta$.

Finite diml of $G \ni F_{a,b} = \mathbb{C}^a \otimes \mathbb{C}^b$, ($a$ and b pos ints).

Irr of $K \ni \tau_x = $ highest weight x ($x \in \mathbb{N}$).

Std rep $l(m) =$ sum of reps of K cont. wt m ($m \in \mathbb{Z}$).

Zuckerman formula:

$$F_{a,b}|_K = l(a - b) - l(a + b)$$

$$= \sum_{\tau \in \hat{K}} (m_\tau(a - b) - m_\tau(a + b))\tau$$

$$= \tau_{a-b} + \tau_{a-b+2} + \cdots + \tau_{a+b-2}$$

M representation on highest weight for G is $a - b$.

Helgason’s thm: triv of K appears $\iff a = b$.
Example: $SL(2, \mathbb{C})$

$G(\mathbb{R}) = SL(2, \mathbb{C}), \ K(\mathbb{R}) = SU(2)$.

$G = SL(2, \mathbb{C}) \times SL(2, \mathbb{C}), \ K = SL(2, \mathbb{C})_\Delta$.

Finite diml of $G \leadsto F_{a,b} = \mathbb{C}^a \otimes \mathbb{C}^b$, $(a$ and b pos ints).

Irr of $K \leadsto \tau_x = highest weight x (x \in \mathbb{N})$.

Std rep $l(m) =$ sum of reps of K cont. wt m $(m \in \mathbb{Z})$.

Zuckerman formula:

$$F_{a,b}|_K = l(a - b) - l(a + b)$$

$$= \sum_{\tau \in \hat{K}} (m_{\tau}(a - b) - m_{\tau}(a + b))\tau$$

$$= \tau_{|a-b|} + \tau_{|a-b|+2} + \cdots + \tau_{a+b-2}$$

M representation on highest weight for G is $a - b$.

Helgason’s thm: triv of K appears $\Leftrightarrow a = b$.
Example: $SL(2, \mathbb{C})$

$G(\mathbb{R}) = SL(2, \mathbb{C}), K(\mathbb{R}) = SU(2)$.

$G = SL(2, \mathbb{C}) \times SL(2, \mathbb{C}), K = SL(2, \mathbb{C})_{\Delta}$.

Finite diml of G $\rightsquigarrow F_{a,b} = \mathbb{C}^a \otimes \mathbb{C}^b$, ($a$ and b pos ints).

Irr of K $\rightsquigarrow \tau_x = \text{highest weight } x$ ($x \in \mathbb{N}$).

Std rep $l(m) = \text{sum of reps of } K \text{ cont. wt } m$ ($m \in \mathbb{Z}$).

Zuckerman formula:

$$F_{a,b}|_K = l(a - b) - l(a + b) = \sum_{\tau \in \hat{K}} (m_{\tau}(a - b) - m_{\tau}(a + b)) \tau$$

$$= \tau_{|a-b|} + \tau_{|a-b|+2} + \cdots + \tau_{a+b-2}$$

M representation on highest weight for G is $a - b$.

Helgason’s thm: triv of K appears $\Leftrightarrow a = b$.
What next?

Helgason thm when fin diml restr to K is spherical led us to Zuckerman thm descr of fin diml restr to K. What’s the next step?

Zuckerman formula (fin diml) $= (\text{alt sum of std reps})$ suggests (any irr rep) $? (\text{integer comb of std reps}).$

Leads to Kazhdan-Lusztig theory, not dull.

But orig Helgason thm suggests instead looking for formulas (irr of K) $? (\text{alt sum of std reps}).$

Application: invert the matrix above to get branching laws (std rep for $G(\mathbb{R})$) $= (\text{sum of irrs of } K)$.

Won’t write theorem for general G (painful notation); pass directly to examples…
What next?

Helgason thm when fin diml restr to K is spherical led us to Zuckerman thm descr of fin diml restr to K. What’s the next step?

Zuckerman formula (fin diml) \equiv (alt sum of std reps) suggests (any irr rep) \equiv (integer comb of std reps). Leads to Kazhdan-Lusztig theory, not dull.

But orig Helgason thm suggests instead looking for formulas (irr of K) \equiv (alt sum of std reps).

Application: invert the matrix above to get branching laws (std rep for $G(\mathbb{R})$) \equiv (sum of irrs of K).

Won’t write theorem for general G (painful notation); pass directly to examples…
What next?

Helgason thm when fin diml restr to K is spherical led us to Zuckerman thm descr of fin diml restr to K. What’s the next step?

Zuckerman formula (fin diml) $= (\text{alt sum of std reps})$ suggests $\text{(any irr rep)} \overset{?}{=} (\text{integer comb of std reps})$. Leads to Kazhdan-Lusztig theory, not dull.

But orig Helgason thm suggests instead looking for formulas $\text{(irr of } K) \overset{?}{=} (\text{alt sum of std reps})$.

Application: invert the matrix above to get branching laws $\text{(std rep for } G(\mathbb{R})) = (\text{sum of irrs of } K)$. Won’t write theorem for general G (painful notation); pass directly to examples…
What next?

Helgason thm when fin diml restr to K is spherical led us to Zuckerman thm descr of fin diml restr to K. What’s the next step?

Zuckerman formula (fin diml) \rightarrow (alt sum of std reps) suggests (any irr rep) \rightarrow (integer comb of std reps). Leads to Kazhdan-Lusztig theory, not dull.

But orig Helgason thm suggests instead looking for formulas (irr of K) \rightarrow (alt sum of std reps).

Application: invert the matrix above to get branching laws (std rep for $G(\mathbb{R})$) \rightarrow (sum of irrs of K).

Won’t write theorem for general G (painful notation); pass directly to examples...
What next?

Helgason thm when fin diml restr to K is spherical led us to Zuckerman thm descr of fin diml restr to K. What’s the next step?

Zuckerman formula (fin diml) $=$ (alt sum of std reps) suggests (any irr rep) \equiv (integer comb of std reps). Leads to Kazhdan-Lusztig theory, not dull.

But orig Helgason thm suggests instead looking for formulas (irr of K) \equiv (alt sum of std reps).

Application: invert the matrix above to get branching laws (std rep for $G(\mathbb{R})$) $=$ (sum of irrs of K).

Won’t write theorem for general G (painful notation); pass directly to examples...
Example: \(SL(2, \mathbb{C}) \)

\[
G(\mathbb{R}) = SL(2, \mathbb{C}), \quad K(\mathbb{R}) = SU(2).
\]

Irr of \(K \) \(\leadsto \) \(\tau_x \) = rep of highest wt \(x \) \((x \in \mathbb{N}) \).

Std rep \(l(m) \) = sum of reps of \(K \) cont. wt \(m \) \((m \in \mathbb{Z}) \).

Write each irr of \(K \) = alt sum of std reps of \(G(\mathbb{R}) \).

\(m + 1 \)-diml irr of \(K \) is \(\tau_m = l(m) - l(m + 2) \).

Invert:

\[
l(m) = (l(m) - l(m + 2)) + (l(m + 2) - l(m + 4)) + (l(m + 4) - l(m + 6)) \cdots
\]

\[
= \tau_m + \tau_{m+2} + \tau_{m+4} \cdots.
\]
Example: $SL(2, \mathbb{C})$

$G(\mathbb{R}) = SL(2, \mathbb{C}), \ K(\mathbb{R}) = SU(2)$.

Irr of $K \leadsto \tau_x = \text{rep of highest wt } x \ (x \in \mathbb{N})$.

Std rep $I(m) = \text{sum of reps of } K \text{ cont. wt } m \ (m \in \mathbb{Z})$.

Write each irr of $K = \text{alt sum of std reps of } G(\mathbb{R})$.

$m + 1$-diml irr of K is $\tau_m = I(m) - I(m+2)$.

Invert:

\[I(m) = (I(m) - I(m+2)) + (I(m+2) - I(m+4)) + (I(m+4) - I(m+6)) \ldots \]

\[= \tau_m + \tau_{m+2} + \tau_{m+4} \cdots \]
Example: $SL(2, \mathbb{C})$

$G(\mathbb{R}) = SL(2, \mathbb{C}), \ K(\mathbb{R}) = SU(2)$.

Irr of $K \rightsquigarrow \tau_x =$ rep of highest wt $x \ (x \in \mathbb{N})$.

Std rep $I(m) =$ sum of reps of K cont. wt $m \ (m \in \mathbb{Z})$.

Write each irr of $K = \text{alt sum of std reps of } G(\mathbb{R})$.

$m + 1$-diml irr of K is $\tau_m = I(m) - I(m+2)$.

Invert:

$$I(m) = (I(m) - I(m+2)) + (I(m+2) - I(m+4)) + (I(m+4) - I(m+6)) \cdots$$

$$= \tau_m + \tau_{m+2} + \tau_{m+4} \cdots$$
Example: $SL(2, \mathbb{C})$

$G(\mathbb{R}) = SL(2, \mathbb{C}), \; K(\mathbb{R}) = SU(2)$.

Irr of $K \sim \tau_x = \text{rep of highest wt } x \; (x \in \mathbb{N})$.

Std rep $I(m) = \text{sum of reps of } K \text{ cont. wt } m \; (m \in \mathbb{Z})$.

Write each irr of $K = \text{alt sum of std reps of } G(\mathbb{R})$.

$m + 1$-diml irr of K is $\tau_m = I(m) - I(m+2)$.

Invert:

$$I(m) = (I(m) - I(m+2)) + (I(m+2) - I(m+4)) + (I(m+4) - I(m+6)) \cdots$$

$$= \tau_m + \tau_{m+2} + \tau_{m+4} \cdots$$
Example: $SL(2, \mathbb{C})$

$G(\mathbb{R}) = SL(2, \mathbb{C})$, $K(\mathbb{R}) = SU(2)$.

Irr of $K \rightsquigarrow \tau_x = \text{rep of highest wt } x$ ($x \in \mathbb{N}$).

Std rep $I(m) = \text{sum of reps of } K \text{ cont. wt } m$ ($m \in \mathbb{Z}$).

Write each irr of $K = \text{alt sum of std reps of } G(\mathbb{R})$.

$m + 1$-diml irr of K is $\tau_m = I(m) - I(m+2)$.

Invert:

\[I(m) = (I(m) - I(m+2)) + (I(m+2) - I(m+4)) + (I(m+4) - I(m+6)) \cdots \]

\[\begin{align*}
&= \tau_m + \tau_{m+2} + \tau_{m+4} \cdots
\end{align*} \]
Example: $SL(2, \mathbb{C})$

$G(\mathbb{R}) = SL(2, \mathbb{C}), \ K(\mathbb{R}) = SU(2)$.
Irr of $K \rightsquigarrow \tau_x = \text{rep of highest wt } x \ (x \in \mathbb{N})$.
Std rep $l(m) = \text{sum of reps of } K \text{ cont. wt } m \ (m \in \mathbb{Z})$.
Write each irr of $K = \text{alt sum of std reps of } G(\mathbb{R})$.
$m + 1$-diml irr of K is $\tau_m = l(m) - l(m+2)$.
Invert:

$$l(m) = (l(m) - l(m+2)) + (l(m+2) - l(m+4)) + (l(m+4) - l(m+6)) \cdots$$

$$= \tau_m + \tau_{m+2} + \tau_{m+4} \cdots$$
Example: \(SL(2, \mathbb{R}) \)

\[G(\mathbb{R}) = SL(2, \mathbb{R}), \quad K(\mathbb{R}) = SO(2). \]

Chars of \(K \) \(\leadsto \) \(\tau_k \quad (k \in \mathbb{Z}). \)

Princ series \(I^{ps} = \) sph princ series restr to \(K \).

Hol disc series \(I^+ (m) \quad (m \in \mathbb{N} \text{ HC param}). \)

Antihol disc series \(I^- (m) \quad (m \in -\mathbb{N} \text{ HC param}). \)

Write each irr of \(K = \) alt sum of std reps of \(G(\mathbb{R}). \)

\[\tau_0 = I^{ps} - I^+ (0) - I^- (0) \]

\[\tau_m = I^+ (m - 1) - I^+ (m + 1) \quad (m > 0). \]

\[\tau_m = I^- (m + 1) - I^- (m - 1) \quad (m < 0). \]

Invert:

\[I^{ps} = (I^{ps} - I^+ (0) - I^- (0)) + (I^+ (0) - I^+ (2)) + (I^- (0) - I^- (-2)) + \cdots \]

\[= \tau_0 + \tau_2 + \tau_{-2} + \cdots \]

\[I^+ (m) = (I^+ (m) - I^+ (m+2)) + (I^+ (m+2) - I^+ (m+4)) + \cdots \]

\[= \tau_{m+1} + \tau_{m+3} + \cdots \quad (m \in \mathbb{N}) \]
Example: $SL(2, \mathbb{R})$

$G(\mathbb{R}) = SL(2, \mathbb{R}), K(\mathbb{R}) = SO(2)$.

Chars of $K \sim \tau_k \ (k \in \mathbb{Z})$.

Princ series $I^{ps} = \text{sph princ series restr to } K$.

Hol disc series $I^+(m) \ (m \in \mathbb{N} \text{ HC param})$.

Antihol disc series $I^-(m) \ (m \in \mathbb{N} \text{ HC param})$.

Write each irr of K = alt sum of std reps of $G(\mathbb{R})$.

$\tau_0 = I^{ps} - I^+(0) - I^-(0)$

$\tau_m = I^+(m-1) - I^+(m+1) \ (m > 0)$.

$\tau_m = I^-(m+1) - I^-(m-1) \ (m < 0)$.

Invert:

$I^{ps} = (I^{ps} - I^+(0) - I^-(0)) + (I^+(0) - I^+(2)) + (I^-(0) - I^-(2)) + \cdots$

$= \tau_0 + \tau_2 + \tau_{-2} + \cdots$

$I^+(m) = (I^+(m) - I^+(m+2)) + (I^+(m+2) - I^+(m+4)) + \cdots$

$= \tau_{m+1} + \tau_{m+3} + \cdots \quad (m \in \mathbb{N})$
Example: $SL(2, \mathbb{R})$

$G(\mathbb{R}) = SL(2, \mathbb{R}), \ K(\mathbb{R}) = SO(2)$.

Chars of $K \leadsto \tau_k \ (k \in \mathbb{Z})$.

Princ series $I^{ps} = \text{sph princ series restr to } K$.

Hol disc series $I^+(m) \ (m \in \mathbb{N} \ \text{HC param})$.

Antihol disc series $I^-(m) \ (m \in -\mathbb{N} \ \text{HC param})$.

Write each irr of $K = \text{alt sum of std reps of } G(\mathbb{R})$.

- $\tau_0 = I^{ps} - I^+(0) - I^-(0)$
- $\tau_m = I^+(m-1) - I^+(m+1) \ (m > 0)$
- $\tau_m = I^-(m+1) - I^-(m-1) \ (m < 0)$

Invert:

$$I^{ps} = (I^{ps} - I^+(0) - I^-(0)) + (I^+(0) - I^+(2)) + (I^-(0) - I^-(2)) + \cdots$$

$$= \tau_0 + \tau_2 + \tau_{-2} + \cdots$$

$$I^+(m) = (I^+(m) - I^+(m+2)) + (I^+(m+2) - I^+(m+4)) + \cdots$$

$$= \tau_{m+1} + \tau_{m+3} + \cdots \quad (m \in \mathbb{N})$$
Example: \(SL(2, \mathbb{R}) \)

\[G(\mathbb{R}) = SL(2, \mathbb{R}), \quad K(\mathbb{R}) = SO(2). \]

Chars of \(K \) \(\sim \) \(\tau_k \) \((k \in \mathbb{Z}) \).

Princ series \(I^{ps} = \) sph princ series restr to \(K \).

Hol disc series \(I^+(m) \) \((m \in \mathbb{N} \) HC param).

Antihol disc series \(I^-(m) \) \((m \in -\mathbb{N} \) HC param).

Write each irr of \(K = \) alt sum of std reps of \(G(\mathbb{R}) \).

\[
\begin{align*}
\tau_0 &= I^{ps} - I^+(0) - I^-(0) \\
\tau_m &= I^+(m-1) - I^+(m+1) \quad (m > 0) \\
\tau_m &= I^-(m+1) - I^-(m-1) \quad (m < 0).
\end{align*}
\]

Invert:

\[
\begin{align*}
I^{ps} &= (I^{ps} - I^+(0) - I^-(0)) + (I^+(0) - I^+(2)) + (I^-(0) - I^-(2)) + \cdots \\
&= \tau_0 + \tau_2 + \tau_{-2} + \cdots. \\
I^+(m) &= (I^+(m) - I^+(m+2)) + (I^+(m+2) - I^+(m+4)) + \cdots \\
&= \tau_{m+1} + \tau_{m+3} + \cdots \quad (m \in \mathbb{N}).
\end{align*}
\]
Example: \(SL(2, \mathbb{R}) \)

\[
G(\mathbb{R}) = SL(2, \mathbb{R}), \quad K(\mathbb{R}) = SO(2).
\]

Chars of \(K \) \(\rightsquigarrow \) \(\tau_k \) \((k \in \mathbb{Z}) \).

Princ series \(I^{ps} = \) sph princ series restr to \(K \).

Hol disc series \(I^+(m) \) \((m \in \mathbb{N} \) HC param).

Antihol disc series \(I^-(m) \) \((m \in -\mathbb{N} \) HC param).

Write each irr of \(K = \) alt sum of std reps of \(G(\mathbb{R}) \).

\[
\tau_0 = I^{ps} - I^+(0) - I^-(0)
\]

\[
\tau_m = I^+(m - 1) - I^+(m + 1) \quad (m > 0).
\]

\[
\tau_m = I^-(m + 1) - I^-(m - 1) \quad (m < 0).
\]

Invert:

\[
I^{ps} = (I^{ps} - I^+(0) - I^-(0)) + (I^+(0) - I^+(2)) + (I^-(0) - I^-(2)) + \cdots
\]

\[
= \tau_0 + \tau_2 + \tau_{-2} + \cdots.
\]

\[
I^+(m) = (I^+(m) - I^+(m+2)) + (I^+(m+2) - I^+(m+4)) + \cdots
\]

\[
= \tau_{m+1} + \tau_{m+3} + \cdots \quad (m \in \mathbb{N}).
\]
Example: $SL(2, \mathbb{R})$

$$G(\mathbb{R}) = SL(2, \mathbb{R}), \ K(\mathbb{R}) = SO(2).$$

Chars of $K \rightsquigarrow \tau_k \quad (k \in \mathbb{Z}).$

Princ series $l^{ps} = \text{sph princ series restr to } K.$

Hol disc series $l^+(m) \quad (m \in \mathbb{N} \text{ HC param}).$

Antihol disc series $l^-(m) \quad (m \in -\mathbb{N} \text{ HC param}).$

Write each irr of $K = \text{alt sum of std reps of } G(\mathbb{R}).$

$$\tau_0 = l^{ps} - l^+(0) - l^-(0)$$

$$\tau_m = l^+(m - 1) - l^+(m + 1) \quad (m > 0).$$

$$\tau_m = l^-(m + 1) - l^-(m - 1) \quad (m < 0).$$

Invert:

$$l^{ps} = (l^{ps} - l^+(0) - l^-(0)) + (l^+(0) - l^+(2)) + (l^-(0) - l^-(2)) + \cdots$$

$$= \tau_0 + \tau_2 + \tau_{-2} + \cdots.$$

$$l^+(m) = (l^+(m) - l^+(m+2)) + (l^+(m+2) - l^+(m+4)) + \cdots$$

$$= \tau_{m+1} + \tau_{m+3} + \cdots \quad (m \in \mathbb{N})$$
Example: $SL(2, \mathbb{R})$

$G(\mathbb{R}) = SL(2, \mathbb{R}), K(\mathbb{R}) = SO(2)$.

Chars of $K \rightsquigarrow \tau_k \quad (k \in \mathbb{Z})$.

Princ series $l^{ps} = \text{sph princ series restr to } K$.

Hol disc series $l^+(m) \quad (m \in \mathbb{N} \text{ HC param}).$

Antihol disc series $l^-(m) \quad (m \in -\mathbb{N} \text{ HC param}).$

Write each irr of $K = \text{alt sum of std reps of } G(\mathbb{R})$.

$\tau_0 = l^{ps} - l^+(0) - l^-(0)$

$\tau_m = l^+(m - 1) - l^+(m + 1) \quad (m > 0)$

$\tau_m = l^-(m + 1) - l^-(m - 1) \quad (m < 0)$

Invert:

$l^{ps} = (l^{ps} - l^+(0) - l^-(0)) + (l^+(0) - l^+(2)) + (l^-(0) - l^-(2)) + \cdots$

$= \tau_0 + \tau_2 + \tau_{-2} + \cdots$

$l^+(m) = (l^+(m) - l^+(m+2)) + (l^+(m+2) - l^+(m+4)) + \cdots$

$= \tau_{m+1} + \tau_{m+3} + \cdots \quad (m \in \mathbb{N})$
Example: $SL(2, \mathbb{R})$

$G(\mathbb{R}) = SL(2, \mathbb{R}), \ K(\mathbb{R}) = SO(2)$.

Chars of $K \rightsquigarrow \tau_k$ \hspace{1mm} ($k \in \mathbb{Z}$).

Princ series $I^{ps} =$ sph princ series restr to K.

Hol disc series $I^+(m)$ \hspace{1mm} ($m \in \mathbb{N}$ HC param).

Antihol disc series $I^-(m)$ \hspace{1mm} ($m \in -\mathbb{N}$ HC param).

Write each irr of $K =$ alt sum of std reps of $G(\mathbb{R})$.

$\tau_0 = I^{ps} - I^+(0) - I^-(0)$

$\tau_m = I^+(m-1) - I^+(m+1)$ \hspace{1mm} ($m > 0$).

$\tau_m = I^-(m+1) - I^-(m-1)$ \hspace{1mm} ($m < 0$).

Invert:

$I^{ps} = (I^{ps} - I^+(0) - I^-(0)) + (I^+(0) - I^+(2)) + (I^-(0) - I^-(2)) + \cdots$

$= \tau_0 + \tau_2 + \tau_2 + \cdots$

$I^+(m) = (I^+(m) - I^+(m+2)) + (I^+(m+2) - I^+(m+4)) + \cdots$

$\quad = \tau_{m+1} + \tau_{m+3} + \cdots \quad (m \in \mathbb{N})$
Example: $SL(2, \mathbb{R})$

$G(\mathbb{R}) = SL(2, \mathbb{R}), \ K(\mathbb{R}) = SO(2)$.

Chars of $K \rightsquigarrow \tau_k \quad (k \in \mathbb{Z})$.

Princ series $l^{ps} = \text{sph princ series restr to } K$.

Hol disc series $l^+(m) \ (m \in \mathbb{N} \ \text{HC param})$.

Antihol disc series $l^-(m) \ (m \in -\mathbb{N} \ \text{HC param})$.

Write each irr of $K = \text{alt sum of std reps of } G(\mathbb{R})$.

$\tau_0 = l^{ps} - l^+(0) - l^-(0)$

$\tau_m = l^+(m - 1) - l^+(m + 1) \ (m > 0)$.

$\tau_m = l^-(m + 1) - l^-(m - 1) \ (m < 0)$.

Invert:

$l^{ps} = (l^{ps} - l^+(0) - l^-(0))+(l^+(0)-l^+(2))+ (l^-(0)-l^-(2))+\cdots$

$= \tau_0 + \tau_2 + \tau_{-2} + \cdots$.

$l^+(m) = (l^+(m) - l^+(m+2))+(l^+(m+2)-l^+(m+4))+\cdots$

$= \tau_{m+1} + \tau_{m+3} + \cdots \quad (m \in \mathbb{N})$
Example: \(SL(2, \mathbb{R}) \)

\[G(\mathbb{R}) = SL(2, \mathbb{R}), \ K(\mathbb{R}) = SO(2). \]

Chars of \(K \) \(\rightsquigarrow \) \(\tau_k \) \((k \in \mathbb{Z}) \).

Princ series \(l^\text{ps} = \text{sph princ series restr to } K \).

Hol disc series \(l^+(m) \) \((m \in \mathbb{N} \text{ HC param}) \).

Antihol disc series \(l^-(m) \) \((m \in -\mathbb{N} \text{ HC param}) \).

Write each irr of \(K = \text{alt sum of std reps of } G(\mathbb{R}). \)

\newline

\[\tau_0 = l^\text{ps} - l^+(0) - l^-(0) \]

\[\tau_m = l^+(m-1) - l^+(m+1) \quad (m > 0) \]

\[\tau_m = l^-(m+1) - l^-(m-1) \quad (m < 0) \]

Invert:

\[l^\text{ps} = (l^\text{ps} - l^+(0) - l^-(0)) + (l^+(0) - l^+(2)) + (l^-(0) - l^-(2)) + \cdots \]

\[= \tau_0 + \tau_2 + \tau_{-2} + \cdots \]

\[l^+(m) = (l^+(m) - l^+(m+2)) + (l^+(m+2) - l^+(m+4)) + \cdots \]

\[= \tau_{m+1} + \tau_{m+3} + \cdots \quad (m \in \mathbb{N}) \]
Summary

- **Helgason’s theorem** on spherical fin-diml reps connects Borel-Weil picture of fin-diml reps. to inf-diml reps.
- Zuckerman’s theorem extends this to description of fin-diml rep as alt sum of “standard” inf-diml reps.
- Variation on this theme writes any fin-diml of K as alt sum of standard inf-diml reps.
- Inverting these formulas writes standard inf-diml as sum of irrs of K.
Summary

- **Helgason’s theorem** on spherical fin-diml reps connects Borel-Weil picture of fin-diml reps. to inf-diml reps.
- **Zuckerman’s theorem** extends this to description of fin-diml rep as alt sum of “standard” inf-diml reps.
- Variation on this theme writes any fin-diml of K as alt sum of standard inf-diml reps.
- Inverting these formulas writes standard inf-diml as sum of irrs of K.
Summary

- **Helgason’s theorem** on spherical fin-diml reps connects Borel-Weil picture of fin-diml reps. to inf-diml reps.

- **Zuckerman’s theorem** extends this to description of fin-diml rep as alt sum of “standard” inf-diml reps.

- **Variation on this theme** writes any fin-diml of K as alt sum of standard inf-diml reps.

- **Inverting these formulas** writes standard inf-diml as sum of irrs of K.
Summary

- **Helgason’s theorem** on spherical fin-diml reps connects Borel-Weil picture of fin-diml reps. to inf-diml reps.
- **Zuckerman’s theorem** extends this to description of fin-diml rep as alt sum of “standard” inf-diml reps.
- **Variation on this theme** writes any fin-diml of K as alt sum of standard inf-diml reps.
- **Inverting these formulas** writes standard inf-diml as sum of irrs of K.

Branching to maximal compact subgroups

- David Vogan
- Introduction
- Helgason’s thm classically
- Helgason’s thm and alg geometry
- Zuckerman’s thm
- From K to G and back again

Summary
Branching to maximal compact subgroups

David Vogan

Introduction
Helgason's thm classically
Helgason's thm and alg geometry
Zuckerman's thm
From K to G and back again

Summary