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The General Linear Group

Definition: Let F be a field. Then the general linear group GLn(F ) is the group of invert-
ible n× n matrices with entries in F under matrix multiplication.

It is easy to see that GLn(F ) is, in fact, a group: matrix multiplication is associative; the
identity element is In, the n×n matrix with 1’s along the main diagonal and 0’s everywhere
else; and the matrices are invertible by choice. It’s not immediately clear whether GLn(F )
has infinitely many elements when F does. However, such is the case. Let a ∈ F , a 6= 0.
Then a · In is an invertible n × n matrix with inverse a−1 · In. In fact, the set of all such
matrices forms a subgroup of GLn(F ) that is isomorphic to F× = F \{0}.

It is clear that if F is a finite field, then GLn(F ) has only finitely many elements. An
interesting question to ask is how many elements it has. Before addressing that question
fully, let’s look at some examples.

Example 1: Let n = 1. Then GLn(Fq) ∼= F×q , which has q − 1 elements.

Example 2: Let n = 2; let M = ( a b
c d ). Then for M to be invertible, it is necessary and

sufficient that ad 6= bc. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily,
and d can be anything but a−1bc. This gives us (q − 1)3(q − 2) matrices. If exactly one of
the entries is 0, then the other three entries can be anything nonzero, for a total of 4(q− 1)3

matrices. Finally, if exactly two entries are 0, then these entries must be opposite each other
for the matrix to be invertible, and the other two entries can be anything nonzero, for a total
of 2(q − 1)2 matrices. So that gives us

(q − 1)3(q − 2) + 4(q − 1)3 + 2(q − 1)2

= (q − 1)2 [(q − 1)(q − 2) + 4(q − 1) + 2]

= (q − 1)2[q2 + q]

= (q2 − 1)(q2 − q)

In general, calculating the size of GLn(Fq) by directly calculating the determinant, then
determining what values of the entries make the determinant nonzero, is tedious and error-
prone. Thankfully, there’s an easier way to determine whether a matrix is invertible. One
of the basic properties of determinants is that the determinant of a matrix is nonzero if and
only if the rows of the matrix are linearly independent. Armed with this result, we’re ready
to determine how many elements GLn(Fq) has.
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Proposition 1: The number of elements in GLn(Fq) is
∏n−1

k=0(q
n − qk).

Proof: We will count the n × n matrices whose rows are linearly independent. We do so
by building up a matrix from scratch. The first row can be anything other than the zero
row, so there are qn − 1 possibilities. The second row must be linearly independent from
the first, which is to say that it must not be a multiple of the first. Since there are q mul-
tiples of the first row, there are qn − q possibilities for the second row. In general, the ith

row must be linearly independent from the first i − 1 rows, which means that it can’t be
a linear combination of the first i − 1 rows. There are qi−1 linear combinations of the first
i − 1 rows, so there are qn − qi−1 possibilities for the ith row. Once we build the entire
matrix this way, we know that the rows are all linearly independent by choice. Also, we can
build any n× n matrix whose rows are linearly independent in this fashion. Thus, there are
(qn − 1)(qn − q) · · · (qn − qn−1) =

∏n−1
k=0(q

n − qk) matrices.

Now we’ll consider an interesting subgroup of GLn(F ). The determinant function,
det : GLn(F ) → F× is a homomorphism; it maps the identity matrix to 1, and it is mul-
tiplicative, as desired. We define the special linear group, SLn(F ), to be the kernel of this
homomorphism. Put another way, SLn(F ) = {M ∈ GLn(F ) | det(M) = 1}.

Proposition 2: The number of elements in SLn(Fq) is
(∏n−1

k=0(q
n − qk)

)
\(q − 1).

Proof: Consider the homomorphism det : GLn(F ) → F×. This map is surjective; that is,
the image of GLn(F ) under det is the whole space F×. This is true because, for instance,
the matrix 

a 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


is an invertible n × n matrix of determinant a. Since SLn(Fq) is the kernel of the homo-
morphism, it follows from the First Isomorphism Theorem that GLn(Fq)\SLn(Fq) ∼= F×.
Therefore,

|SLn(Fq)| =
|GLn(Fq)|
|F×|

=

∏n−1
k=0(q

n − qk)

q − 1
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Now, in order to talk about two more subgroups of GLn(F ), we need to define the notion
of the center of a group.

Definition: The center of a group G, denoted Z(G), is the set of h ∈ G such that
∀g ∈ G, gh = hg.

Proposition 3: Z(G) is a subgroup of G.
Proof: 1 is in Z(G) because ∀g ∈ G, 1 · g = g · 1 = g. Let h1, h2 ∈ Z(G). Then ∀g ∈ G,

h1h2g = h1(h2g) = h1(gh2) = (h1g)h2 = gh1h2,

so h1h2 ∈ Z(G). Finally, if h ∈ Z(G), then ∀g ∈ G,

hg = gh

h−1hgh−1 = h−1ghh−1

gh−1 = h−1g

so h−1 ∈ Z(G).

Now let’s look at the centers of GLn(F ) and SLn(F ).

Proposition 4: Z(GLn(F )) = {a · In | a ∈ F×}; Z(SLn(F )) = {a · In | a ∈ F×, an = 1}
Proof idea: For M to be in Z(GLn(F )), it must commute with every N ∈ G. In particular,
M commutes with the elementary matrices. Multiplying M on the left by an elementary
matrix corresponds to performing an elementary row operation; multiplying M on the right
by an elementary matrix corresponds to performing an elementary column operation. So,
for instance, multiplying the ith row of M by a gives you the same matrix as multiplying
the ith column of M by a. This implies that the matrix is diagonal. Then, since swapping
the ith and jth row of M gives you the same matrix as swapping the ith and jth column of
M , then the ith entry along the diagonal must equal the jth entry along the diagonal, for all
i and j. Therefore, M must be a multiple of In. Finally, it is easy to see that all nonzero
multiples of In do commute with all N ∈ G. So the proposition is proved for Z(GLn(F )).
The proof for Z(SLn(F )) is similar.


