18.704	Gabe Cunningham
2/18/05	gcasey@mit.edu

The General Linear Group

Definition: Let F be a field. Then the general linear group $GL_n(F)$ is the group of invertible $n \times n$ matrices with entries in F under matrix multiplication.

It is easy to see that $GL_n(F)$ is, in fact, a group: matrix multiplication is associative; the identity element is I_n , the $n \times n$ matrix with 1's along the main diagonal and 0's everywhere else; and the matrices are invertible by choice. It's not immediately clear whether $GL_n(F)$ has infinitely many elements when F does. However, such is the case. Let $a \in F$, $a \neq 0$. Then $a \cdot I_n$ is an invertible $n \times n$ matrix with inverse $a^{-1} \cdot I_n$. In fact, the set of all such matrices forms a subgroup of $GL_n(F)$ that is isomorphic to $F^{\times} = F \setminus \{0\}$.

It is clear that if F is a finite field, then $GL_n(F)$ has only finitely many elements. An interesting question to ask is how many elements it has. Before addressing that question fully, let's look at some examples.

Example 1: Let n = 1. Then $GL_n(\mathbb{F}_q) \cong \mathbb{F}_q^{\times}$, which has q - 1 elements.

Example 2: Let n = 2; let $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then for M to be invertible, it is necessary and sufficient that $ad \neq bc$. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily, and d can be anything but $a^{-1}bc$. This gives us $(q-1)^3(q-2)$ matrices. If exactly one of the entries is 0, then the other three entries can be anything nonzero, for a total of $4(q-1)^3$ matrices. Finally, if exactly two entries are 0, then these entries must be opposite each other for the matrix to be invertible, and the other two entries can be anything nonzero, for a total of $2(q-1)^2$ matrices. So that gives us

$$(q-1)^{3}(q-2) + 4(q-1)^{3} + 2(q-1)^{2}$$

= $(q-1)^{2} [(q-1)(q-2) + 4(q-1) + 2]$
= $(q-1)^{2} [q^{2} + q]$
= $(q^{2} - 1)(q^{2} - q)$

In general, calculating the size of $GL_n(\mathbb{F}_q)$ by directly calculating the determinant, then determining what values of the entries make the determinant nonzero, is tedious and errorprone. Thankfully, there's an easier way to determine whether a matrix is invertible. One of the basic properties of determinants is that the determinant of a matrix is nonzero if and only if the rows of the matrix are linearly independent. Armed with this result, we're ready to determine how many elements $GL_n(\mathbb{F}_q)$ has. **Proposition 1:** The number of elements in $GL_n(\mathbb{F}_q)$ is $\prod_{k=0}^{n-1}(q^n-q^k)$.

Proof: We will count the $n \times n$ matrices whose rows are linearly independent. We do so by building up a matrix from scratch. The first row can be anything other than the zero row, so there are $q^n - 1$ possibilities. The second row must be linearly independent from the first, which is to say that it must not be a multiple of the first. Since there are q multiples of the first row, there are $q^n - q$ possibilities for the second row. In general, the i^{th} row must be linearly independent from the first i - 1 rows, which means that it can't be a linear combination of the first i - 1 rows. There are q^{i-1} linear combinations of the first i - 1 rows, so there are $q^n - q^{i-1}$ possibilities for the i^{th} row. Once we build the entire matrix this way, we know that the rows are all linearly independent by choice. Also, we can build any $n \times n$ matrix whose rows are linearly independent in this fashion. Thus, there are $(q^n - 1)(q^n - q) \cdots (q^n - q^{n-1}) = \prod_{k=0}^{n-1} (q^n - q^k)$ matrices.

Now we'll consider an interesting subgroup of $GL_n(F)$. The determinant function, $det : GL_n(F) \to F^{\times}$ is a homomorphism; it maps the identity matrix to 1, and it is multiplicative, as desired. We define the *special linear group*, $SL_n(F)$, to be the kernel of this homomorphism. Put another way, $SL_n(F) = \{M \in GL_n(F) \mid det(M) = 1\}$.

Proposition 2: The number of elements in $SL_n(\mathbb{F}_q)$ is $\left(\prod_{k=0}^{n-1}(q^n-q^k)\right)\setminus(q-1)$. **Proof:** Consider the homomorphism $det: GL_n(F) \to F^{\times}$. This map is surjective; that is, the image of $GL_n(F)$ under det is the whole space F^{\times} . This is true because, for instance, the matrix

$\int a$	0		0
0	1		0
:	÷	۰.	:
$\int 0$	0		1)

is an invertible $n \times n$ matrix of determinant a. Since $SL_n(\mathbb{F}_q)$ is the kernel of the homomorphism, it follows from the First Isomorphism Theorem that $GL_n(\mathbb{F}_q) \setminus SL_n(\mathbb{F}_q) \cong F^{\times}$. Therefore,

$$|SL_n(\mathbb{F}_q)| = \frac{|GL_n(\mathbb{F}_q)|}{|F^{\times}|} = \frac{\prod_{k=0}^{n-1}(q^n - q^k)}{q - 1}$$

18.704	Gabe Cunningham
2/18/05	gcasey@mit.edu

Now, in order to talk about two more subgroups of $GL_n(F)$, we need to define the notion of the center of a group.

Definition: The *center* of a group G, denoted Z(G), is the set of $h \in G$ such that $\forall g \in G, gh = hg$.

Proposition 3: Z(G) is a subgroup of G. **Proof:** 1 is in Z(G) because $\forall g \in G, 1 \cdot g = g \cdot 1 = g$. Let $h_1, h_2 \in Z(G)$. Then $\forall g \in G$,

$$h_1h_2g = h_1(h_2g) = h_1(gh_2) = (h_1g)h_2 = gh_1h_2,$$

so $h_1h_2 \in Z(G)$. Finally, if $h \in Z(G)$, then $\forall g \in G$,

$$hg = gh$$
$$h^{-1}hgh^{-1} = h^{-1}ghh^{-1}$$
$$gh^{-1} = h^{-1}g$$

so $h^{-1} \in Z(G)$.

Now let's look at the centers of $GL_n(F)$ and $SL_n(F)$.

Proposition 4: $Z(GL_n(F)) = \{a \cdot I_n \mid a \in F^{\times}\}; Z(SL_n(F)) = \{a \cdot I_n \mid a \in F^{\times}, a^n = 1\}$ **Proof idea:** For M to be in $Z(GL_n(F))$, it must commute with every $N \in G$. In particular, M commutes with the elementary matrices. Multiplying M on the left by an elementary matrix corresponds to performing an elementary row operation; multiplying M on the right by an elementary matrix corresponds to performing an elementary column operation. So, for instance, multiplying the i^{th} row of M by a gives you the same matrix as multiplying the i^{th} column of M by a. This implies that the matrix is diagonal. Then, since swapping the i^{th} and j^{th} row of M gives you the same matrix as swapping the i^{th} and j^{th} column of M, then the i^{th} entry along the diagonal must equal the j^{th} entry along the diagonal, for all i and j. Therefore, M must be a multiple of I_n . Finally, it is easy to see that all nonzero multiples of I_n do commute with all $N \in G$. So the proposition is proved for $Z(GL_n(F))$. The proof for $Z(SL_n(F))$ is similar.