Errata for “Parameters for twisted representations”

Jeffrey D. Adams∗
Department of Mathematics
University of Maryland

David A. Vogan, Jr.†
2-355, Department of Mathematics
MIT, Cambridge, MA 02139

June 29, 2017

1 Introduction

The article [1] describes an algorithm for computing the unitary dual of a real reductive algebraic group $G(\mathbb{R})$. One ingredient in the algorithm is the Kazhdan-Lusztig polynomials defined and computed in [4]. These polynomials are indexed by pairs (J, J') of irreducible representations of $G(\mathbb{R})$.

A second ingredient in the unitarity algorithm is a twisted version of these polynomials introduced in [5]. The setting involves an outer automorphism δ of $G(\mathbb{R})$ of order two, and the corresponding extended group $\delta G(\mathbb{R})$ (containing $G(\mathbb{R})$ as a subgroup of index two). These twisted polynomials are indexed by pairs (\tilde{J}, \tilde{J}') of extensions to $\delta G(\mathbb{R})$ of irreducible representations of $G(\mathbb{R})$. Each δ-fixed irreducible J of $G(\mathbb{R})$ admits exactly two extensions $\tilde{J}_{\pm 1}$ and $\tilde{J}_{\mp 1}$ to $\delta G(\mathbb{R})$. Roughly speaking, the twisted polynomials depend only on the underlying $G(\mathbb{R})$ representations. Precisely, if $\tilde{J}_{\pm 1}$ are the two extensions of a $G(\mathbb{R})$ irreducible J, and $\tilde{J}'_{\pm 1}$ the two extensions of J', then

$$P_{J,J'} = \epsilon \phi P_{\tilde{J}_{\pm 1}, \tilde{J}'_{\pm 1}}.$$

The difficulty is that (despite the misleading notation $\tilde{J}_{\pm 1}$) there is no preferred extension of J to $\delta G(\mathbb{R})$. A representation like J can be specified precisely using (any of various versions of) a Langlands parameter p. The point of the paper [2] was to introduce extended parameters E ([2, Definition 5.4]). An extended parameter consists of a Langlands parameter p and some additional
data (for which there are up to equivalence exactly two choices). The Langlands parameter specifies an irreducible $J(p)$ for $G(\mathbb{R})$. The equivalence class of E specifies precisely one extension $J(E)$ to $\delta G(\mathbb{R})$.

Given this precise specification of extended group representations, the algorithm of [5] could be formulated in terms of extended parameters E. This formulation was also presented in [2], and it is there that (at least one) error arose.

Here is the nature of the error. The algorithms of [5] involve various linear maps T_κ defined on \mathbb{Z}_q-linear combinations of extended group representations. These formal linear combinations are subject to the relations

\[\tilde{J}_{i+1} = -\tilde{J}_{i-1}. \]

A typical step in the algorithm involves two to four representations J_i and says something like this: extensions \tilde{J}_i of J_i may be chosen so that

\[T_\kappa(\tilde{J}_1) = \tilde{J}_1 + \tilde{J}_3 + \tilde{J}_4, \quad T_\kappa(\tilde{J}_2) = \tilde{J}_2 + \tilde{J}_3 - \tilde{J}_4 \quad (1.1) \]

(see [5, (7.6)])). If one replaces any \tilde{J}_i by the other extension of J_i, then the sign of the coefficient of the \tilde{J}_i term in each such formula must change.

For each of the cases considered in [5], there is an explanation in [2] of how to choose extended parameters so that the formulas in [5] are true. The error is that for the case 2112 described in [2, Lemma 8.1], the choices are incorrect. More precisely, the formulas [2, (44)] must be replaced by

\[T_\kappa(E_0) = E_0 + F_0 + (-1)^{(\sigma,t)}F'_0 \]
\[T_\kappa(E'_0) = E'_0 + F_0 + (-1)^{(\sigma,t)}F'_0 \]
\[T_\kappa(F_0) = (q^2-1)(E_0 + E'_0) + (q^2-2)F_0 \]
\[T_\kappa(F'_0) = (-1)^{(\sigma,t)}(q^2-1)(E_0 - E'_0) + (q^2-2)F'_0. \quad (1.2) \]

(What has been added is the factors $(-1)^{(\sigma,t)}$.) We will sketch a proof of these corrected formulas in Section 2. For the introduction, we will say a word about the source of the error. All of the formulas in [5] concern behavior of sheaves on G (or rather on some version of G defined over a finite field) in the direction of some very small Levi subgroup L of G: the group L is locally isomorphic to $SL(2)$, $SL(2) \times SL(2)$, or $SL(3)$, in each case times a torus factor. Standard techniques allow one to prove the formulas working in L rather than in G; so one is ultimately making statements about the representation theory of $L(\mathbb{R})$. Standard techniques very often allow one to reduce representation-theory questions about reductive groups to the case of semisimple groups, since the center necessarily acts by scalars in an irreducible representation. This technique was used (correctly) in [5] to prove (1.1). It was used sloppily to justify [2, Lemma 8.1]. The Lemma is true when G is locally isomorphic to $SL(2) \times SL(2)$; but the definitions around extended parameters allow what happens on the center to affect signs. The result is that one can construct
extended parameters for a group locally isomorphic to \(SL(2) \times SL(2) \times \mathbb{C}^\times \) for which [2, Lemma 8.1] fails.

One might hope that therefore the result is true for semisimple \(G \), but this also fails: this bad \(SL(2) \times SL(2) \times \mathbb{C}^\times \) example turns up inside \(SO(p,q) \).

Now that we have your attention, we will conclude this introduction with a much more ordinary error: the first formula
\[
\text{sgn}(E,E') = i^\langle (\delta_0-1)\lambda, t' - t \rangle + \langle \delta_0 - 1, \langle \delta, \lambda \rangle + \langle \tau, t' \rangle \rangle - \langle \tau, t' - t \rangle
\]
\[
(1.3) \quad \text{e:6.5badsgn}
\]
from [2, Proposition 6.5] is incorrect: the plus sign between the two terms in the exponent of \(i \) should be a minus. The corrected formula is
\[
\text{sgn}(E,E') = \text{sgn}(E,E') = i^\langle (\delta_0-1)\lambda, t' - t \rangle - \langle \delta_0 - 1, \langle \delta, \lambda \rangle + \langle \tau, t' \rangle \rangle - \langle \tau, t' - t \rangle
\]
\[
(1.4) \quad \text{e:6.5goodsgn}
\]

2 Two copies of \(SL(2) \)

Here is a corrected replacement of [2, Lemma 8.2]. The hypotheses are somewhat different (roughly speaking, more general) from those of the original; after sketching a proof, we will see how this corrected statement leads to (1.2). Notation is as in [2].

Lemma 2.1. Suppose \(\kappa \) is of type \(2112f \) for \(E = (\lambda, \tau, \ell, t) \). Define
\[
\ell^{\text{split}} = \ell + [(\gamma_\alpha - \ell_\alpha - 1)/2] \alpha^\vee + [(\gamma_\beta - \ell_\beta - 1)/2] \beta^\vee.
\]

Suppose that
\[
F = (\lambda', \tau', \ell^{\text{split}}, t)
\]
is an extended parameter of type \(2r21f \) appearing in \(T_\kappa(E) \). Then the coefficient with which it appears is the ratio of the \(z \)-values for these two extended parameters (see [2, Definition 5.5]). Explicitly, this is
\[
-\frac{z(\lambda', \tau', \ell^{\text{split}}, t)}{z(\lambda, \tau, \ell, t)} = i^{\langle (\delta-1)\ell^{\text{split}} - (\tau, \delta - 1)t \rangle} (-1)^{\langle \lambda' - \lambda, t \rangle}.
\]
\[
(2.2a)
\]

Proof. As mentioned in the introduction, the definition of \(T_\kappa \) involves sheaves on a form of \(G \) defined over a finite field. One can make the computation entirely in the Levi subgroup of \(G \) defined by
\[
\kappa = (\alpha, \beta) = (\alpha^\vee \delta(\alpha)).
\]
\[
(2.2a)
\]
We may therefore assume that \(G \) is equal to \(L \). Writing \(Z \) for the identity component of the center of \(G \), this means that
\[
G \text{ is a quotient of } SL(2) \times SL(2) \times Z
\]
\[
(2.2b)
\]
by a finite central subgroup; the first \(SL(2) \) corresponds to \(\alpha \) and the second to \(\beta \). So there is a natural identification of Lie algebras
\[
\mathfrak{g} = \mathfrak{sl}(2) \times \mathfrak{sl}(2) \times \mathfrak{z}.
\]
\[
(2.2c)
\]
We use the standard torus

\[H = \left\{ \left[\begin{array}{cc} x & 0 \\ 0 & x^{-1} \end{array} \right], \left[\begin{array}{cc} y & 0 \\ 0 & y^{-1} \end{array} \right], z \right| x, y \in \mathbb{C}^\times, z \in \mathbb{Z} \right\} \] \hspace{1cm} (2.2d)

(Note that \(H \) is a quotient of \(\mathbb{C}^\times \times \mathbb{C}^\times \times \mathbb{Z} \), not a direct product.) The Lie algebra of \(H \) is identified in this way as

\[\mathfrak{h} = \left\{ (x, y, z) \right| x, y \in \mathbb{C}^\times, z \in \mathbb{Z} \right\}. \] \hspace{1cm} (2.2e)

The pinning is given by the simple root vectors

\[X_\alpha = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right], \quad X_\beta = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right]. \] \hspace{1cm} (2.2g)

The Tits group generators are

\[\sigma_\alpha = \left[\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 1 \end{array} \right], \quad \sigma_\beta = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \end{array} \right]. \] \hspace{1cm} (2.2h)

Here is the strategy of the proof. The terms \(\ell \) and \(\ell^{\text{plit}} \) in our extended parameters define strong involutions \(\xi \) and \(\xi^{\text{plit}} \), and therefore subgroups

\[K_\xi = G^\xi, \quad K_\xi^{\text{plit}} = G^{\xi^{\text{plit}}}. \] \hspace{1cm} (2.3a)

These have index two in the corresponding subgroups of the extended group

\[\delta_0 K_\xi = [\delta_0 G]^\xi, \quad \delta_0 K_\xi^{\text{plit}} = [\delta_0 G]^{\xi^{\text{plit}}}. \] \hspace{1cm} (2.3b)

The hypothesis that \(F \) appears in \(T_\nu(E) \) means in particular that \(\xi^{\text{plit}} \) is conjugate to \(\xi \) by a unique coset \(gK_\xi \).

The extended parameters \(E \) and \(F \) define

\[J(E) = \text{irreducible } (\mathfrak{g}, \delta_0 K_\xi)-\text{module} \]
\[I(F) = \text{standard } (\mathfrak{g}, \delta_0 K_\xi^{\text{plit}})-\text{module} \]
\[I(F)^{\text{new}} = \text{standard } (\mathfrak{g}, \delta_0 K_\xi)-\text{module}; \] \hspace{1cm} (2.3c)
the last is obtained by twisting $I(F)$ by $\text{Ad}(g)$.

So what is the representation-theoretic interpretation of the coefficient of F in $T_\kappa(E)$? The multiplicity matrix m (giving multiplicities of irreducibles J as composition factors of standard modules I) is essentially defined by

$$I = \sum_{J \text{ irreducible}} m(J, I) J. \quad (2.3d) \quad \{e:\text{multform}\}$$

The inverse matrix M writes an irreducible representation J' as an integer combinations of standard representations I':

$$J' = \sum_{I' \text{ standard}} M(I', J') I'. \quad (2.3e) \quad \{e:\text{charform}\}$$

That the matrices m and M are inverses is more or less a definition.

Suppose now that E and F are representation parameters differing by a single link, which is an ascent from E to F. The entries indexed by (E, F) are just one off the diagonal of these upper triangular unipotent matrices; so the inverse relationship gives

$$m(J(E), I(\pm F)_{\text{new}}) = -M(I(E), J(\pm F)_{\text{new}}). \quad (2.3f) \quad \{e:\text{linkinverse}\}$$

The Kazhdan-Lusztig polynomials actually compute dimensions of stalks of some perverse cohomology sheaves, and the character formulas (2.3e) involve those dimensions with a $(-1)^{\text{codimension}}$ factor. The conclusion is that

$$M(I(E), J(F)_{\text{new}}) - M(I(E), J(-F)_{\text{new}}) = (-1)^{l(F)-l(E)} P^{\text{tw}}_{E,F}(1). \quad (2.3g) \quad \{e:\text{KLchar}\}$$

Here $I(-F)_{\text{new}}$ means $I(F)_{\text{new}}$ tensored with the nontrivial character of $\delta_0 G/G$, the other extension of the standard representation to the extended group.

The (twisted) Kazhdan-Lusztig algorithm in our case says that

$$P^{\text{tw}}_{E,F} = \text{coeff. of } F \text{ in } T_\kappa(E). \quad (2.3h) \quad \{e:\text{Tkappachar}\}$$

Combining the last three equations gives

$$\text{coeff. of } F \text{ in } T_\kappa(E) = -(-1)^{l(F)-l(E)} \left[m(J(E), I(F)_{\text{new}}) - m(J(E), I(-F)_{\text{new}}) \right]. \quad (2.3i) \quad \{e:\text{Tkappamult2}\}$$

In our present case of length difference 2, this is

$$\text{coeff. of } F \text{ in } T_\kappa(E) = -m(J(E), I(F)_{\text{new}}) + m(J(E), I(-F)_{\text{new}}). \quad (2.3j) \quad \{e:\text{Tkappamult2}\}$$

It turns out that exactly one of the two multiplicities on the right is nonzero, and that one is 1; so determining the sign of F in $T_\kappa(E)$ means determining whether or not $J(E)$ appears in $I(F)_{\text{new}}$. If $J(E)$ does appear, the sign is -1; if it does not, the sign is $+1$.

Up to this point, the reduction to $SL(2) \times SL(2)$ is unimportant: we could have said the same words on the larger group G. But our determination of the multiplicity will use special facts about $SL(2)$. Here they are.
Lemma 2.4. Suppose we are in the setting (2.2).

1. The discrete series \((g, \delta_0 K_\xi)\)-module \(J(E)\) is uniquely determined by its infinitesimal character and (unique) lowest \(\delta_0 K_\xi\)-type.

2. If we define
 \[
 \delta_0 K_\xi^# = \langle K_\xi^0, (\delta_0 H)^\xi \rangle = (\delta_0 H)^\xi,
 \]

 then this lowest \(\delta_0 K_\xi\)-type is
 \[
 \text{Ind}_{\delta_0 K_\xi}^{\delta_0 K_\xi^#} (\Lambda(E) \otimes \omega(\alpha, \beta)).
 \]

 Here \(\Lambda(E)\) is the character of the extended torus \((\delta_0 H)^\xi\) defined by \(E\), and \(\omega(\alpha, \beta)\) means the character by which \(\delta_0 H\) acts on the exterior algebra element \(X_\alpha \wedge X_\beta\).

3. Write \(H^{\text{new}} = \text{Ad}(g)(H)\), with \(g\) defined after (2.3b), and \(\Lambda(F^{\text{new}})\) for the corresponding one-dimensional character of \((\delta_0 H^{\text{new}})^\xi\). Then
 \[
 I(F^{\text{new}})|_{\delta_0 K_\xi} = \text{Ind}_{\delta_0 H^{\text{new}} \cap (\delta_0 K_\xi^\# \Lambda(F^{\text{new}}))}^{\delta_0 K_\xi^#} (\Lambda(F^{\text{new}})).
 \]

4. The discrete series representation \(J(E)\) is a composition factor of the principal series representation \(I(F^{\text{new}})\) if and only if
 \[
 \text{Hom}_{(\delta_0 H^{\text{new}} \cap (\delta_0 K_\xi^\# \Lambda(F^{\text{new}})))}^{\delta_0 K_\xi^#} (\Lambda(E) \otimes \omega(\alpha, \beta), \Lambda(F^{\text{new}})) \neq 0.
 \]

Proof. Part (1) is a well-known general fact about discrete series representations for reductive groups; the extension to \(\delta_0\)-fixed discrete series for extended groups is routine. Part (2) is equally general. (For general \(G\) or \(\delta_0 G\) the inducing representation is the lowest \(K_\xi^\#\)- or \(\delta_0 K_\xi^\#\)-type. The highest \((\delta_0 H)^\xi\)-weight of that representation is \(\Lambda(E)\) tensored with the top exterior power of \(n/n \cap k\).)

Part (3) is a general fact about principal series representations attached to split maximal tori.

For (4), because the infinitesimal characters of \(J(E)\) and \(I(F^{\text{new}})\) are both given by the (unwritten) parameter \(\gamma\), we just need (by (1)) to determine whether the lowest \(\delta_0 K_\xi\)-type of \(J(E)\) appears in \(I(F^{\text{new}})\). Using (2), this amounts to deciding the nonvanishing of

\[
\text{Hom}_{\delta_0 K_\xi}^{\delta_0 K_\xi^#} (\Lambda(E) \otimes (\alpha + \beta), I(F^{\text{new}})).
\]

(2.5a)

Because \(\delta_0 K_\xi^#\) meets both cosets of the inducing subgroup in (3), we get

\[
I(F^{\text{new}})|_{\delta_0 K_\xi^#} = \text{Ind}_{(\delta_0 H^{\text{new}}) \cap \delta_0 K_\xi^#}^{\delta_0 K_\xi^#} (\Lambda(F^{\text{new}}))
\]

(2.5b)
Another application of Frobenius reciprocity says that we are left with deciding the nonvanishing of

\[\text{Hom}(\delta_0 H^\text{new}) \cap (\delta_0 H) \xi (\Lambda(E) \otimes \omega(\alpha, \beta), \Lambda(F^\text{new})) , \]

(2.5c)
as we wished to show.

There is one dangerous point about the lemma and the notation used. The roots \(\alpha \) and \(\beta \) are well-defined characters of \(H \) and therefore of its subgroup \(H^\xi \); and \(H^\xi \) acts on \(\omega(\alpha, \beta) \) by \(\alpha + \beta \). But it is not so obvious how \(\delta_0 \) acts. As an automorphism of \(H \), \(\delta_0 \) preserves the pair of roots \(\{ \alpha, \beta \} \); so one might think that it should act trivially. But of course \(\delta_0 \) interchanges the root vectors \(X_\alpha \) and \(X_\beta \) of (2.2g), and therefore acts by \(-1\) on their exterior product:

\[(\omega(\alpha, \beta))(\delta_0) = -1. \]

(2.6)

In order to prove Lemma 2.1, we will write down everything explicitly, in order to compute \((\delta_0 H^\text{new}) \cap (\delta_0 H) \xi \) and determine whether the two characters agree there.

We are concerned with multiplying \(\xi_0 \) and \(\delta_0 \) by torus elements (and, eventually, Tits group elements). This involves the map

\[e : g \to G, \quad e(L) = \exp(2\pi i L). \]

(2.7b)

For \(L \in \mathfrak{h} \), in the coordinates of (2.2e), this is

\[e(L) = (\exp(\pi i L_\alpha), \exp(\pi i L_\beta), e(L_Z)). \]

(2.7c)

If \(L \) is half-integral (so that \(2L_\alpha \) and \(2L_\beta \) are integers) this is

\[e(L) = \begin{bmatrix} i^{2L_\alpha} & 0 & 0 \\ 0 & i^{-2L_\alpha} & 0 \\ 0 & 0 & i^{-2L_\beta} \end{bmatrix}, e(L_Z). \]

(2.7d)

The strong involution of \(G \) attached to our extended parameter \(E \) is

\[\xi = e((g - \ell)/2) \xi_0 \]

\[= \begin{bmatrix} i^{g_\alpha - \ell_\alpha} & 0 & 0 \\ 0 & i^{g_\beta - \ell_\beta} & 0 \\ 0 & 0 & i^{(g_\alpha - \ell_\alpha) + (g_\beta - \ell_\beta) + (g_Z - \ell_Z)/2} \end{bmatrix} \xi_0. \]

(2.7e)
Because $g_\alpha - \ell_\alpha$ and $g_\beta - \ell_\beta$ are odd (this is the "2i" part of the nature of our extended parameter) the conclusion is that

$$\xi \text{ acts on each } SL(2) \text{ factor by conjugation by } \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}. \quad (2.7f)$$

In particular, the action on the standard torus \mathbb{C}^{\times} is trivial; so

$$H^\xi = (\mathbb{C}^{\times}) \cdot (\mathbb{C}^{\times}) \cdot (\mathbb{Z}^{\delta_0}). \quad (2.7g)$$

(Again this fixed point group is a quotient of the direct product.) The extended parameter E provides also a representative

$$\delta = e(-t/2)\delta^0 = \left[\left(i^{-t_\alpha} 0 \\ 0 i^{t_\alpha} \right), \left(i^{-t_\beta} 0 \\ 0 i^{t_\beta} \right), e(-tZ/2) \right] \delta_0 \quad (2.7h)$$

for the other coset of $(\delta_0 H)^\xi$.

Our next task is to write down H^{new}. This is meant to be a pinned torus in G chosen so that the strong involution $\xi(F)$, when defined with respect to the new pinned torus, is equal to ξ. We could write down such a pinned torus in one fell swoop, but it is perhaps a bit clearer to write down a simple choice that almost works. This is

$$H^{\text{split}} = \left\{ \left[\begin{array}{cc} \cosh(a) & \sinh(a) \\ \sinh(a) & \cosh(a) \end{array} \right], \left[\begin{array}{cc} \cosh(b) & \sinh(b) \\ \sinh(b) & \cosh(b) \end{array} \right], z \right\} \mid a, b \in \mathbb{C}, z \in \mathbb{Z} \right\}. \quad (2.8a)$$

The simple coroots are

$$H^{\text{split}}_\alpha = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right], 0 \right]$$

$$H^{\text{split}}_\beta = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], 0 \right]. \quad (2.8b)$$

The pinning is given by the simple root vectors

$$X^{\text{split}}_\alpha = \left[\begin{array}{cc} \frac{1}{2} & 1 \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right], 0 \right]$$

$$X^{\text{split}}_\beta = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} \frac{1}{2} & 1 \\ 1 & 1 \end{array} \right], 0 \right]. \quad (2.8c)$$

The Tits group generators are

$$\sigma^{\text{split}}_\alpha = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], 1 \right]$$

$$\sigma^{\text{split}}_\beta = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], 1 \right]. \quad (2.8d)$$

The torus H^{split} with this pinning is evidently conjugate to H with the original pinning by an element of G of the form $(d, d, 1)$. This conjugation fixes
ξ_0 (since ξ_0 acts trivially on each SL(2) factor) and δ_0 (since δ_0 interchanges the two SL(2) factors). The distinguished involutions attached to our new Cartan and pinning are therefore unchanged:

\[\xi_0^{\text{split}} = \xi_0, \quad \delta_0^{\text{split}} = \delta_0. \]

(2.8e)

The equation analogous to (2.7d) says that for \(L \in \mathfrak{h} \) half-integral,

\[e(L) = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}^{2L_\alpha}, \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}^{2L_\beta}, e(L_Z). \]

(2.8f) \{\text{esplit}\}

In order to compute this, it is helpful to notice that for \(m \in \mathbb{Z} \),

\[\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}^m = \begin{cases} \begin{pmatrix} (-1)^{m/2} & 0 \\ 0 & (-1)^{m/2} \end{pmatrix} & \text{(m even)} \\ \begin{pmatrix} 0 & i^m \\ i^m & 0 \end{pmatrix} & \text{(m odd)} \end{cases} \]

(2.8g)

The strong involution attached to the extended parameter \(F \) is therefore

\[\xi^{\text{split}} = e((g - r^{\text{split}})/2)\sigma_\alpha^{\text{split}}\sigma_\beta^{\text{split}}\xi_0 \\
= \left[\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, e((g_Z - \ell_Z)/2) \right] \xi_0 \]

(2.8h) \{\text{xisplit}\}

The extended parameter \(F \) provides also a representative

\[\delta^{\text{split}} = e(-\ell/2)\sigma_0 = \left[\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}^{-\ell_\alpha}, \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}^{-\ell_\beta}, e(-\ell_Z/2) \right] \delta_0 \]

(2.8i) \{\text{deltasplit}\}

for the other coset of \((\delta_0 H)\xi\).

To get into the classical representation-theoretic picture, we need to conjugate \(\xi^{\text{split}} \) (by an element of \(H^{\text{split}} \)) to \(\xi \). The elements are written at (2.7e) and (2.8h). The key to the calculation is

\[\text{Ad} \left(\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \right) \left(\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \right) = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}. \]

Writing

\[2a = g_\alpha - \ell_\alpha - 1, \quad 2b = g_\beta - \ell_\beta - 1 \]

(2.8j)

(so that \(a \) and \(b \) are integers) we get

\[\text{Ad} \left(\left[\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}^a, \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}^b \right] \right) (\xi^{\text{split}}) = \xi. \]

(2.8k)
Conjugating δ_{split} in the same way gives
\[
\delta_{\text{new}} = \text{Ad} \left(\begin{bmatrix} 0 & i & 0 \\ i & 0 & 0 \end{bmatrix} a - b - t_{\alpha} , \begin{bmatrix} 0 & i & 0 \\ i & 0 & 0 \end{bmatrix} b - a - t_{\beta} , e(-t_{Z}/2) \right) \delta_0
\]

(2.8l)

Because $(1 + \theta)t = (\delta - 1)\ell$ and $g_{\alpha} = g_{\beta}$, one finds that
\[
t_{\alpha} = -t_{\beta} = (\ell_{\beta} - \ell_{\alpha})/2 = a - b;
\]
so the matrix exponents are zero, and we get
\[
\delta_{\text{new}} = [I, I, e(-t_{Z}/2)] \delta_0
\]

(2.8m) \{e:deltarelation\}

We can now complete the proof of Lemma 2.1.

According to (2.3j), the coefficient we want is -1 if $J(E)$ is a composition factor of $I(F_{\text{new}})$, and $+1$ otherwise. According to Lemma 2.4(4) this occurrence as a composition factor depends on the agreement of two characters of $(h_{\text{new}}H)^{\xi} \cap (h_{\text{new}}H)^{\xi}$. The two maximal tori H and H_{new} together generate G, so their intersection must be the center $Z(G)$. So
\[
(H_{\text{new}} \cap H)^{\xi} = Z(G)^{\xi}.
\]

The two characters certainly agree here (for example because the underlying discrete series for $G(\mathbb{R})$ is a composition factor of the principal series for $G(\mathbb{R})$). \{se:endproof\}

The other coset is represented by the element δ_{new}; so the question we must finally answer is

\[
\text{do the characters } \Lambda(E) \otimes \omega(\alpha, \beta) \text{ and } \Lambda(F_{\text{new}}) \text{ agree on } \delta_{\text{new}}? \quad (2.9a)
\]

Part of the definition of $\Lambda(F_{\text{new}})$ is that
\[
\Lambda(F_{\text{new}})(\delta_{\text{new}}) = z(F), \quad (2.9b)
\]

and similarly
\[
\Lambda(E)(\delta) = z(E). \quad (2.9c)
\]

The factor in square brackets in (2.8m) belongs to the identity component of the -1 eigenspace of δ on H^{ξ}, so the δ-fixed characters λ and $\omega(\alpha, \beta)$ must be trivial on it:
\[
\Lambda(E) \otimes \omega(\alpha, \beta) \left(\begin{bmatrix} i & 0 & 0 \\ 0 & i^{-1} & 0 \end{bmatrix} t_{\alpha} , \begin{bmatrix} i & 0 & 0 \\ 0 & i^{-1} & 0 \end{bmatrix}^{-t_{\alpha}}, 1 \right) = 1. \quad (2.9d)
\]

Applying (2.6), we get
\[
\Lambda(E) \otimes \omega(\alpha, \beta)(\delta_{\text{new}}) = -z(E). \quad (2.9e)
\]

We get occurrence as a composition factor, and so a coefficient of -1 in T_{κ}, if and only if $z(F)/z(E) = -1$. \qed
The goal here is to look at the 1i cases to see whether there are problems with the formulas from [2].

Lemma 3.1. Suppose α is of type 1i* for $E = (\lambda, \tau, \ell, t)$. Define

$$\ell_{\text{split}} = \ell + \left(\frac{g_\alpha - \ell_\alpha - 1}{2}\right)\alpha^\vee.$$

Suppose that

$$F = (\lambda', \tau', \ell_{\text{split}}, t)$$

is an extended parameter of type 1r* appearing in $T_\alpha(E)$. Then the coefficient with which it appears is the ratio of the z-values for these two extended parameters (see [2, Definition 5.5]). Explicitly, this is

$$z(\lambda', \tau', \ell_{\text{split}}, t)/z(\lambda, \tau, \ell, t) = i^{\left(\tau', (\delta-1)\ell_{\text{split}}\right) - \left(\tau, (\delta-1)\ell\right)} (-1)^{(\lambda'-\lambda, t)}.$$

Proof. As mentioned in the introduction, the definition of T_α involves sheaves on a form of G defined over a finite field. It is very easy to see from that definition that one can make the computation entirely in the Levi subgroup of G defined by

$$\alpha = \vee \delta(\alpha).$$

(3.2a)

We may therefore assume that G is equal to L. Writing Z for the identity component of the center of G, this means that

G is a quotient of $SL(2) \times Z$

(3.2b)

by a finite central subgroup. Accordingly there is a natural identification of Lie algebras

$$\mathfrak{g} = \mathfrak{sl}(2) \times \mathfrak{z}.$$

(3.2c)

We use the standard torus

$$H = \left\{ \left[\begin{array}{cc} x & 0 \\ 0 & x^{-1} \end{array} \right], z \mid x, z \in \mathbb{C}^\times, z \in \mathbb{Z} \right\}$$

(3.2d)

(Note that H is a quotient of $\mathbb{C}^\times \times \mathbb{Z}$, not a direct product.) The Lie algebra of H is identified in this way as

$$\mathfrak{h} \simeq \mathbb{C} \times \mathfrak{z}, \quad L \mapsto (\alpha(L)/2, L_Z) = (L_\alpha/2, L_Z);$$

(3.2e)

here L_Z is the projection of L on \mathfrak{z}. The simple coroot is

$$H_\alpha = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot 0 = (1, 0, 0).$$

(3.2f)
The pinning is given by the simple root vector
\[X_\alpha = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], 0 \] (3.2g)

The Tits group generator is
\[\sigma_\alpha = \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right], 1 \] (3.2h) {e:oneSL2tits}

Here is the strategy of the proof. The terms \(\ell \) and \(\ell^{\text{split}} \) in our extended parameters define strong involutions \(\xi \) and \(\xi^{\text{split}} \), and therefore subgroups
\[K_\xi = G^\xi, \quad K^{\text{split}} = G^{\xi^{\text{split}}}. \] (3.3a)

These have index two in the corresponding subgroups of the extended group
\[\delta_0 K_\xi = [\delta_0 G]^\xi, \quad \delta_0 K^{\text{split}} = [\delta_0 G]^{\xi^{\text{split}}}. \] (3.3b) {e:extK1}

The hypothesis that \(F \) appears in \(T_\alpha(E) \) means in particular that \(\xi^{\text{split}} \) is conjugate to \(\xi \) by a unique coset \(gK_\xi \).

The extended parameters \(E \) and \(F \) define
\[J(E) = \text{irreducible } (\mathfrak{g}, \delta_0 K_\xi)-\text{module} \]
\[I(F) = \text{standard } (\mathfrak{g}, \delta_0 K^{\text{split}})-\text{module} \]
\[I(F)^{\text{new}} = \text{standard } (\mathfrak{g}, \delta_0 K_\xi)-\text{module}; \] (3.3c)

the last is obtained by twisting \(I(F) \) by \(\text{Ad}(g) \). The representation-theoretic interpretation of the results of [5] says that
\[\text{coeff. of } F \text{ in } T_\alpha(E) = m(J(E), I(F)^{\text{new}}) - m(J(E), I(-F)^{\text{new}}). \] (3.3d) {e:Talphamult}

Here \(I(-F^{\text{new}}) \) means \(I(F^{\text{new}}) \) tensored with the nontrivial character of \(\delta_0 G/G \), the other extension of the standard representation to the extended group; and \(m(\cdot, \cdot) \) denotes multiplicity as a composition factor. It turns out that exactly one of these multiplicities is nonzero, and that one is 1; so determining the sign of \(F \) in \(T_\alpha(E) \) means determining whether or not \(J(E) \) appears in \(I(F)^{\text{new}} \).

Up to this point, the reduction to \(SL(2) \) is unimportant: we could have said exactly the same words on the original larger group \(G \). But our determination of the multiplicity will use special facts about \(SL(2) \). Here they are.

Lemma 3.4. Suppose we are in the setting (3.2).

1. The discrete series \((\mathfrak{g}, \delta_0 K_\xi)-\text{module} \) \(J(E) \) is uniquely determined by its infinitesimal character and (unique) lowest \(\delta_0 K_\xi \)-type.

2. If we define
\[\delta_0 K_\xi^\# = \langle K_\xi^0, (\delta_0 H)\xi \rangle = (\delta_0 H)\xi, \]
then this lowest $δ_0 K_ξ$-type is

$$\text{Ind}_{δ_0 K_ξ}^{δ_0 K_ξ^0} (Λ(E) ⊗ α)$$

Here $Λ(E)$ is the character of the extended torus $(δ_0 H)^ξ$ defined by E, and $α$ means the character by which $δ_0 H$ acts on $X_α$.

3. Write $H^{new} = \text{Ad}(g)(H)$, with g defined after (2.3b), and $Λ(F^{new})$ for the corresponding one-dimensional character of $(δ_0 H^{new})^ξ$. Then

$$I(F^{new})|_{δ_0 K_ξ} = \text{Ind}_{(δ_0 H^{new})^ξ}^{δ_0 K_ξ^0} (Λ(F^{new})).$$

4. The discrete series representation $J(E)$ is a composition factor of the principal series representation $I(F^{new})$ if and only if

$$\text{Hom}_{(δ_0 H^{new})^ξ \cap (δ_0 H)^ξ} (Λ(E) ⊗ α, Λ(F^{new})) \neq 0.$$

Proof. Part (1) is a well-known general fact about discrete series representations for reductive groups; the extension to $δ_0$-fixed discrete series for extended groups is routine. Part (2) is equally general; for general G or $δ_0 G$ the inducing representation is the lowest $K_ξ^#$ or $δ_0 K_ξ^#$-type. Part (3) is a general fact about principal series representations attached to split maximal tori; we have just inserted the value of $2ρ$ for our G.

For (4), because the infinitesimal characters of $J(E)$ and $I(F^{new})$ are both given by the (unwritten) parameter $γ$, we just need (by (1)) to determine whether the lowest $δ_0 K_ξ$-type of $J(E)$ appears in $I(F^{new})$. Using (2), this amounts deciding the nonvanishing of

$$\text{Hom}_{(δ_0 H^{new})^ξ \cap (δ_0 H)^ξ} (Λ(E) ⊗ α, Λ(F^{new})) \neq 0.$$ (3.5a)

Because $δ_0 K_ξ^#$ meets both cosets of the inducing subgroup in (3), we get

$$I(F^{new})|_{δ_0 K_ξ^#} = \text{Ind}_{(δ_0 H^{new})^ξ \cap δ_0 K_ξ^#}^{δ_0 K_ξ^#} (Λ(F^{new})).$$ (3.5b)

Another application of Frobenius reciprocity says that we are left with deciding the nonvanishing of

$$\text{Hom}_{(δ_0 H^{new})^ξ \cap (δ_0 H)^ξ} (Λ(E) ⊗ α, Λ(F^{new})),$$ (3.5c)

as we wished to show.

In order to prove Lemma 3.1, we will write down everything explicitly, in order to compute $(δ_0 H^{new})^ξ \cap (δ_0 H)^ξ$ and determine whether the two characters agree there.
Write $\xi_{0,Z}$ and $\delta_{0,Z}$ for the restrictions to Z of the (commuting) distinguished involutions of $[2, (11a)]$; then

$$\xi_{0}(g,z) = (g,\xi_{0,Z}(z)), \quad \delta_{0}(g,z) = (g,\delta_{0,Z}(z)). \quad (3.6a)$$

(Here (and below) we have imprecisely written (g,z) to mean on the left (of each formula in (3.6a)) a choice of preimage in $SL(2) \times Z$ of an element of G, and on the right the image in G. Another way to make the formulas precise is to note that the automorphisms ξ_{0} and δ_{0} lift uniquely to $SL(2) \times Z$.)

We are concerned with multiplying ξ_{0} and δ_{0} by torus elements (and, eventually, Tits group elements). This involves the map

$$e(L) = \exp(2\pi iL) : g \to G. \quad (3.6b)$$

For $L \in h$, in the coordinates of (3.2e), this is

$$e(L) = (\exp(\pi iL_{\alpha}), e(L_{Z})). \quad (3.6c)$$

If L is half-integral (so that $2L_{\alpha}$ is an integer) this is

$$e(L) = \left[\begin{array}{cc} i^{2L_{\alpha}} & 0 \\ 0 & i^{-2L_{\alpha}} \end{array} \right] e(L_{Z}). \quad (3.6d)$$

The strong involution of G attached to our extended parameter E is

$$\xi = e((g - \ell)/2)\xi_{0}
= \left[\begin{array}{cc} i^{g_{\alpha} - \ell_{\alpha}} & 0 \\ 0 & i^{-(g_{\alpha} - \ell_{\alpha})} \end{array} \right] e((gZ - \ellZ)/2) \xi_{0}. \quad (3.6e)$$

Because $g_{\alpha} - \ell_{\alpha}$ is odd (this is the “i” part of the nature of our extended parameter) the conclusion is that

$$\xi \text{ acts on the } SL(2) \text{ factor by conjugation by } \left[\begin{array}{cc} i & 0 \\ 0 & -i \end{array} \right]. \quad (3.6f)$$

In particular, the action on the standard torus \mathbb{C}^{\times} is trivial; so

$$H^{\xi} = \mathbb{C}^{\times} \times Z^{\xi_{0}}. \quad (3.6g)$$

The extended parameter E provides also a representative

$$\delta = e(-t/2)\delta^{0} = \left[\begin{array}{cc} i^{-t_{\alpha}} & 0 \\ 0 & i^{t_{\alpha}} \end{array} \right] e(-tZ/2) \delta_{0} \quad (3.6h)$$

for the other coset of $(\delta_{0}H)^{\xi}$. The defining equation $(1 + \theta)t = (\delta - 1)\ell$ tells us that $t_{\alpha} = 0$, so

$$\delta = e(-t/2)\delta^{0} = [I, e(-tZ/2)] \delta_{0}. \quad (3.6i) \quad (e:deltaonecpt)$$

Now it is clear (because we are just going to be conjugating by $SL(2)$) that this element δ is also the representative defined by F for H^{split} and for H^{new}.
\[\delta_{\text{new}} = [I, e(-tZ/2)] \delta_0 = \delta. \]

(3.6j) \{e:deltaonerelation\}

We can now complete the proof of Lemma 3.1. According to (3.3d), the coefficient we want is +1 if \(J(E) \) is a composition factor of \(I(F_{\text{new}}) \), and \(-1\) otherwise. According to Lemma 3.4(4) this occurrence as a composition factor depends on the agreement of two characters of \((\delta_0 H_{\text{new}})^\xi \cap (\delta_0 H)^\xi \). The two maximal tori \(H \) and \(H_{\text{new}} \) together generate \(G \), so their intersection must be the center \(Z(G) \). So
\[(H_{\text{new}} \cap H)^\xi = Z(G)^\xi. \]

The two characters certainly agree here (for example because the underlying discrete series for \(G(\mathbb{R}) \) is a composition factor of the principal series for \(G(\mathbb{R}) \)).

The other coset is represented by the element \(\delta_{\text{new}} \); so the question we must finally answer is whether or not the two characters \(\Lambda(E) + \alpha \) and \(\Lambda(F_{\text{new}}) \) agree on \(\delta_{\text{new}} = \delta \). Because the character \(\alpha \) is trivial on \(\delta \), the character \(\Lambda(E) + \alpha \) takes the value \(z(E) \) on \(\delta_{\text{new}} \). In the same way the character \(\Lambda(F_{\text{new}}) \) takes the value \(z(F) \) on \(\delta_{\text{new}} \). We get occurrence as a composition factor, and so a coefficient of 1 in \(T_\alpha \), if and only if \(z(F)/z(E) = 1 \).

\[\square \]

References

