Deforming subgroups

This is a sketch of a solution of the homework assigned for March 17, to deform a subgroup H to another H_0 of the same dimension, such that H_0 is normal in a parabolic subgroup P.

Write $I_H \subset k[G]$ for the ideal of the subgroup H. I’ll write $\langle E \rangle$ for the ideal generated by a set E of functions. Arguing as in the construction of the quotient variety G/H (text, 5.5) we can find a finite-dimensional subspace $V \subset k[G]$ with the following properties.

1) The space V is stable under left translations λ and right translations ρ:

 \begin{align*}
 [\lambda(g)f](x) &= f(g^{-1}x), \\
 [\rho(g)f](x) &= f(xg).
 \end{align*}

2) The ideal I_H is generated by its intersection with V:

 $I_H(1) = I_H \cap V$, \quad $I_H = \langle I_H(1) \rangle$.

Here is the approximate idea. The ideal of the subgroup $gHg^{-1} = \text{Ad}(g)H$ is

$I_{gHg^{-1}} = \text{Ad}(g)I_H = \langle \text{Ad}(g)I_H(1) \rangle$.

The action of $\text{Ad}(g)$ on functions is $\lambda(g)\rho(g)$, so it preserves the finite-dimensional space V. We consider the action of Ad on the (projective) Grassmann variety $\text{Gr}_d(V)$ of d-dimensional subspaces of V (with $d = \dim I_H(1)$). The ideals of the conjugates of H form a single G-orbit. The isotropy group for this action is clearly the normalizer of H:

$\{gHg^{-1} \mid g \in G\} \simeq \text{Ad}(G)I_H(1) \simeq G/N_G(H) \subset \text{Gr}_d(V)$.

In the closure of this G-orbit there must be a closed G orbit $\text{Ad}(g)W(1)$, with $W(1)$ a d-dimensional subspace of V. Since the Grassmannian is projective, this closed orbit is complete, so its isotropy group $P(1)$ is parabolic.

Approximately H_0 should be the subgroup defined by the ideal $\langle W(1) \rangle$ generated by $W(1)$.

The difficulty is that this ideal may be much smaller than you expect (so that the dimension of the corresponding variety is larger). Even though $W(1)$ is a limit of the corresponding part of the ideals for conjugates of H, it may not be true that the entire ideals (for conjugates of H) converge to $\langle W(1) \rangle$.

I don’t know a really simple way to fix matters, but here is something that seems to work. We may (after enlarging V) assume that it generates $k[G]$. We may then filter $k[G]$ by defining

$k[G]_m = \text{span of products of at most } m \text{ factors in } V$,

so that

$k[G]_0 = k \subset k[G]_1 = k + V \subset k[G]_2 \subset \ldots$

This is an exhaustive increasing filtration which respects multiplication:

$k[G]_m \cdot k[G]_n \subset k[G]_{m+n}$,
and the associated graded ring is a finitely generated commutative algebra over k (the quotient of a polynomial ring in $\dim V$ variables by a homogeneous ideal).

Now we can define

$$I_H(m) = I_H \cap k[G]_m, \quad \dim I_H(m) = d_m.$$

Define a “partial flag variety”

$$X(m) = \{ \text{chains of subspaces } W = \{ W(1) \subset W(2) \subset \cdots \subset W(m) \subset k_m[G] \} \}$$

subject to the requirements

$$\dim W(j) = d_j, \quad W(j) \subset k[G].$$

This is a projective algebraic variety. The choice of V and the construction of the filtration makes $k[G]_m$ stable by ρ, λ, and Ad, so these actions apply to $X(m)$. Forgetting the largest subspace defines a proper morphism

$$\pi(m + 1): X(m + 1) \to X(m).$$

Inside $X(m)$ is the G-orbit

$$Z(m) = \text{Ad}(G)I_H.$$

Since by construction $I_H(1)$ generates I_H, it is very easy to check that all the isotropy groups

$$\{ g \in G \mid \text{Ad}(g)I_H(i) = I_H(i), 1 \leq i \leq m \}$$

are equal to $N_G(H)$; so

$$Z(m) \simeq G/N_G(H), \quad m \geq 1.$$

Each closure $\overline{Z(m)}$ is $\text{Ad}(G)$-stable and closed in the projective variety $X(m)$, and therefore complete. I am going to choose a compatible family of closed G orbits

$$O(m) = \text{Ad}(G)W_0 \subset \overline{Z(m)}.$$

The notation is a little ambiguous. The flag W_0 in the preceding formula consists of m subspaces

$$W_0(i) \quad (1 \leq i \leq m);$$

but the m does not appear in the notation. When I choose another flag W'_0 in $\overline{Z(m + 1)}$, its first m subspaces $W'_0(i)$ will be equal to $W_0(i)$. So calling the new flag W_0 is more or less harmless.

We have already seen that $\pi(m + 1)$ maps $Z(m + 1)$ isomorphically onto $Z(m)$; so

$$\pi(m + 1): \overline{Z(m + 1)} \to \overline{Z(m)}$$

is a surjective proper map.
Begin by choosing a closed orbit
\[O(1) = \text{Ad}(G)W_0(1) \subset Z(1). \]

Once the closed orbit
\[O(m) = \text{Ad}(G)W_0 \subset Z(m) \]
is chosen, its preimage
\[\pi(m+1)^{-1}(O(m)) \subset Z(m+1) \]
is necessarily a complete subvariety, preserved by Ad (since \(\pi(m+1) \) is proper and respects all the group actions). Consequently there is a closed orbit
\[O(m+1) = \text{Ad}(G)W_0' \subset \pi(m+1)^{-1}(O(m)). \]

We may choose the orbit representative \(W_0' \) to project to \(W_0 \), which means exactly that the first \(m \) subspaces in the flag \(W_0' \) agree with those already chosen.

Because the orbits are closed, the isotropy groups
\[P(m) = \{ g \in G \mid \text{Ad}(g)W_0(i) = W_0(i)(1 \leq i \leq m) \} \]
are all parabolic.

We now consider the increasing family of ideals
\[I_0(m) = \langle W_0(m) \rangle \subset k[G]. \]
Because \(k[G] \) is Noetherian, this family is eventually constant:
\[I_0(m) = I_0(M) \quad (m \geq M). \]

We call this limiting ideal \(I_0 \), and define
\[H_0 = \text{variety of } I_0. \]

Because \(I_0 \) was constructed as a limit of ideals, it is easy to check that
\[I_0 \cap k[G]_m = W_0(m) \quad (1 \leq m < \infty), \]
and in particular that
\[\dim(I_0 \cap k[G]_m) = \dim(I_H \cap k[G]_m) \quad (1 \leq m < \infty). \]

From this knowledge of Hilbert functions we conclude that \(H_0 \) has the same dimension as \(H \).

We want to show that \(H_0 \) is a group. Recall the product morphism
\[\mu: G \times G \to G, \quad \mu(x,y) = xy, \]
and the corresponding algebra homomorphism

\[\mu^*: k[G] \rightarrow k[G] \otimes k[G]. \]

If \(A, B, \) and \(C \) are closed subsets of \(G \), with ideals \(I_A, I_B, \) and \(I_C, \) then the ideal of \(A \times B \)

is \(I_A \otimes k[G] + k[G] \otimes I_B; \) so the condition \(A \cdot B \subseteq C \) is equivalent to

\[\mu^*(I_C) \subseteq I_A \otimes k[G] + k[G] \otimes I_B. \]

In particular, the condition that \(H \) is closed under multiplication is

\[\mu^*(I_H) \subseteq I_H \otimes k[G] + k[G] \otimes I_H. \]

For every positive integer \(m, \) the subspace \(I_H(m) \) is finite-dimensional; so there must be

positive \(N(m) \) so that

\[\mu^*(I_H(m)) \subseteq I_H(N) \otimes k[G]^N + k[G]^N \otimes I_H(N). \]

Because this condition (concerning behavior of subspaces under the fixed linear map \(\mu^* \)

on fixed finite-dimensional spaces like \(k[G]^m \)) is satisfied for all the ideals (and corresponding

flags) \(I_{gHg^{-1}} \), it is satisfied by the limit ideal \(I_0 \) as well. It follows that \(H_0 \) is closed under

multiplication.

Similar arguments show that \(H_0 \) is closed under inversion and contains the identity

of \(G, \) so \(H_0 \) is a subgroup.

The ideal \(I_0 \) may not be radical, so the ideal of \(H_0 \) may be slightly larger than \(I_0; \) but

at any rate it is clear that \(N_G(H_0) \) contains the isotropy group \(P(M) \) of the closed orbit

\(O(M). \) Since \(P(M) \) is parabolic, the larger group \(N_G(H_0) \) is parabolic as well.