{I tried to illustrate in atlas some of what Timothy talked about at the end of his lecture concerning the Stein complementary series.} atlas> set G=GL(4,C) Variable G: RealForm {Timothy wanted to use the (unique) real parabolic subgroup of GL(4,C) having Levi subgroup GL(2,C) x GL(2,C). Rather than construct it cleverly, I just asked atlas for a list of ALL real parabolic subgroups} atlas> set PP=all_real_parabolics (G) Variable PP: [KGPElt] {and then printed the Levi subgroups of each} atlas> for P@i in PP do prints(i," ",P.Levi) od 0 connected quasisplit real group with Lie algebra 'gl(1,C).gl(1,C).gl(1,C).gl(1,C)' 1 connected quasisplit real group with Lie algebra 'sl(2,C).gl(1,C).gl(1,C).gl(1,C)' 2 connected quasisplit real group with Lie algebra 'sl(2,C).gl(1,C).gl(1,C).gl(1,C)' 3 connected quasisplit real group with Lie algebra 'sl(3,C).gl(1,C).gl(1,C)' 4 connected quasisplit real group with Lie algebra 'sl(2,C).gl(1,C).gl(1,C).gl(1,C)' 5 connected quasisplit real group with Lie algebra 'sl(2,C).sl(2,C).gl(1,C).gl(1,C)' 6 connected quasisplit real group with Lie algebra 'sl(3,C).gl(1,C).gl(1,C)' 7 connected quasisplit real group with Lie algebra 'sl(4,C).gl(1,C)' Value: [(),(),(),(),(),(),(),()] {The winner is i=5, so we call that parabolic P and its Levi factor L. You might wish that you could construct the Langlands decomposition P=MAN, but the groups M and A are NOT real points of complex algebraic groups, so Atlas can't talk about them separately.} atlas> set P=PP[5] Variable P: KGPElt atlas> set L = P.Levi Variable L: RealForm atlas> L Value: connected quasisplit real group with Lie algebra 'sl(2,C).sl(2,C).gl(1,C).gl(1,C)' {Something I didn't do in the seminar but should have is} atlas> simple_roots(L) Value: | 1, 0, 0, 0 | | -1, 0, 0, 0 | | 0, 1, 0, 0 | | 0, -1, 0, 0 | | 0, 0, 1, 0 | | 0, 0, -1, 0 | | 0, 0, 0, 1 | | 0, 0, 0, -1 | {The columns are the simple roots: [1,-1,0,0,0,0,0,0], [0,0,1,-1,0,0,0,0] and minus theta applied to these (same thing in the LAST four coords instead of the first two). In case you don't believe the "-theta" claim,} atlas> (-KGB(G,23).involution)*simple_roots(L) Value: | 0, 0, 0, 1 | | 0, 0, 0, -1 | | 0, 0, 1, 0 | | 0, 0, -1, 0 | | 0, 1, 0, 0 | | 0, -1, 0, 0 | | 1, 0, 0, 0 | | -1, 0, 0, 0 | {Normalized real parabolic induction is accomplished by the atlas function real_induce_irreducible(parameter for L,G).} atlas> set pL=L.trivial Variable pL: Param atlas> pL Value: final parameter(x=3,lambda=[1,-1,1,-1,1,-1,1,-1]/2,nu=[1,-1,1,-1,1,-1,1,-1]/2) atlas> set q=real_induce_irreducible(pL,G) Variable q: ParamPol atlas> q Value: 1*parameter(x=16,lambda=[3,3,-1,-1,1,1,-3,-3]/2,nu=[1,1,-1,-1,1,1,-1,-1]/2) [0] atlas> is_unitary(first_param (q)) Value: true atlas> pL Value: final parameter(x=3,lambda=[1,-1,1,-1,1,-1,1,-1]/2,nu=[1,-1,1,-1,1,-1,1,-1]/2) atlas> set pL1=parameter(KGB(L,3),[1,-1,1,-1,1,-1,1,-1]/2,[1,-1,1,-1,1,-1,1,-1]/2+[1,1,-1,-1,0,0,0,0]) Variable p1: Param atlas> set q1=real_induce_irreducible(pL1,G) Variable q1: ParamPol atlas> set r = first_param (q1) Variable r: Param atlas> is_unitary(r) Value: true atlas> set pL2=parameter(KGB(L,3),[1,-1,1,-1,1,-1,1,-1]/2,[1,-1,1,-1,1,-1,1,-1]/2+[1,1,-1,-1,0,0,0,0]*(3/4)) Variable pL2: Param (overriding previous instance, which had type Param) atlas> set q2=real_induce_irreducible(pL1,G) Variable q2: ParamPol atlas> q2 Value: 1*parameter(x=23,lambda=[3,1,-1,-3,3,1,-1,-3]/2,nu=[7,1,-1,-7,7,1,-1,-7]/8) [0] atlas> is_unitary(first_param (q2)) Value: true atlas> set pL3=parameter(KGB(L,3),[1,-1,1,-1,1,-1,1,-1]/2,[1,-1,1,-1,1,-1,1,-1]/2+[1,1,-1,-1,0,0,0,0]*(3/2)) Variable pL3: Param atlas> set q3=real_induce_irreducible(pL3,G) Variable q3: ParamPol atlas> is_unitary(first_param (q3)) Value: false atlas> set pL4=parameter(KGB(L,3),[1,-1,1,-1,1,-1,1,-1]/2,[1,-1,1,-1,1,-1,1,-1]/2+[1,1,-1,-1,0,0,0,0]*2) Variable pL4: Param atlas> set q4=real_induce_irreducible(p3,G) Variable q4: ParamPol atlas> is_unitary(first_param (q4)) Value: true atlas> print_branch_irr(q4,20) (1+0s)*(KGB element #0,[ -1, 0, 1, 2, 1, 0, -1, -2 ]) (1+0s)*(KGB element #0,[ -1, 0, 1, 1, 2, 0, -1, -2 ]) (1+0s)*(KGB element #0,[ -1, 0, 0, 1, 2, 1, -1, -2 ]) (1+0s)*(KGB element #0,[ 0, 0, 1, 1, 2, 0, -1, -3 ]) (1+0s)*(KGB element #0,[ 0, 0, 0, 1, 2, 1, -1, -3 ]) (1+0s)*(KGB element #0,[ 0, 1, 0, 1, 2, 1, -2, -3 ]) (1+0s)*(KGB element #0,[ 0, 0, 1, 0, 3, 0, -1, -3 ]) (1+0s)*(KGB element #0,[ 0, 0, 0, 0, 3, 1, -1, -3 ]) atlas> print_branch_irr(first_param(q4),20) (1+0s)*(KGB element #0,[ -1, 0, 1, 2, 1, 0, -1, -2 ]) atlas> infinitesimal_character (q4) Value: [ 3, 1, -1, -3, 3, 1, -1, -3 ]/2