Let g be a complex semisimple Lie algebra, and G the identity component of its automorphism group. A “finite maximal torus” for G is a maximal abelian subgroup A of G that is also finite. Such subgroups have been classified in many cases (including all the classical simple Lie algebras). Each gives rise to a grading

$$g = \sum_{\xi \in A} g_{\xi}$$

according to the characters by which A acts on g. The roots of A in g, $R(\mathfrak{g}, A)$ are the characters ξ for which $g_{\xi} \neq 0$.

This decomposition behaves formally much like the usual root decomposition, but the finiteness of A makes two great differences: the trivial eigenspace g_1 is zero; and each space g_{ξ} is the Lie algebra of a torus (rather than a unipotent subgroup).

Just as combinatorial study of the classical root system reveals interesting subgroups of G, so a study of the finite geometries $R(\mathfrak{g}, A)$ reveals (quite different) subgroups of G.

I will discuss the classification of finite maximal tori in the classical case, and some interesting examples for the exceptional groups.