
This is the not-really-annual Free Pizza for Graduate Students Lie groups seminar. There won’t be any mathematics interesting to the usual faculty suspects.

One of the most basic results about a semisimple Lie algebra \(g \) is the Weyl character formula. One way to think about it (as explained in Humphreys’ book) is this. Start with a “triangular decomposition” \(g = n^- + h + n \). Here \(h \) is a Cartan subalgebra of \(g \) and \(b = h + n \) is a Borel subalgebra of \(g \).

Now one can attach to each linear functional \(\gamma \in h^* \) two modules for the Lie algebra \(g \). The most interesting is the “irreducible highest weight module” \(L(\gamma) \). The easiest is the “Verma module” \(M(\gamma) \). Each of these modules decomposes under \(h \) into a direct sum of finite-dimensional weight spaces:

\[
L(\gamma) = \sum_{\mu \in h^*} L(\gamma)(\mu),
\]

and similarly for \(M(\gamma) \). The fundamental problem of character theory is to compute \(\dim(L(\gamma)(\mu)) \) for every \(\gamma \) and \(\mu \). Here is a way to approach that problem.

The weight space dimensions for Verma modules are fairly accessible: there is an easy-to-compute integer-valued function \(P \) on \(h^* \) (the Kostant partition function) so that \(\dim M(\gamma)(\mu) = P(\mu - \gamma) \). As is explained in Humphreys, every \(L(\gamma) \) can be written as a finite integer combination of various Verma modules \(M(\gamma') \):

\[
L(\gamma) = \sum_{\gamma' \in h^*} c(\gamma', \gamma)M(\gamma').
\]

Now we can write

\[
\dim L(\gamma)(\mu) = \sum_{\gamma' \in h^*} c(\gamma', \gamma)P(\mu - \gamma').
\]

So we know these dimensions as soon as we know the integers \(c(\gamma', \gamma) \).

I’ll explain what these integers have to do with Lie algebra cohomology; what this formalism has to do with the Weyl character formula; and finally how Kazhdan-Lusztig theory lets you compute the integers \(c(\gamma', \gamma) \).