18.755 fifth problem solutions

1. Let V be the vector space $\mathcal{C}_c^\infty(\mathbb{R})$ of compactly supported smooth functions on the real line. Calculus has a lot to say about two families of linear transformations on V: translation by t

$$ (T_t f)(x) = f(x - t) \quad (t \in \mathbb{R}) $$

and multiplication by exponentials

$$ (M_\xi f)(x) = e^{ix\xi} f(x). $$

It’s very easy to check that each of these families is a group under composition of linear operators:

$$ T_t T_{t'} = T_{t+t'}, \quad T_0 = \text{identity}, $$

and similarly for M. In this way it’s natural to regard each of these families as a one-dimensional Lie group, isomorphic to \mathbb{R}. You may assume all that.

Now let G be the group of linear transformations of V generated by all the T_t and M_ξ.

(1) Prove that G is in a natural way a Lie group.

(2) Calculate $\pi_0(G)$ and $\pi_1(G)$.

(3) Is G diffeomorphic to a group of matrices?

After experimenting with writing formulas for $T_t M_\xi$ and $M_\xi T_t$, you might be led to define another family of linear transformations

$$ (Z_\theta f)(x) = \exp(i\theta) f(x) : $$

just scalar multiplication by $\exp(i\theta)$ (and so depends only on θ modulo integer multiples of 2π). Now define a linear transformation

$$ g(\theta, \xi, t) = Z_\theta M_\xi T_t. \quad \text{(COORDS)} $$

This linear transformation acts on a function f by

$$ (Z_\theta M_\xi T_t f)(x) = \exp(i\theta) \exp(i\xi x)(T_t f)(x) $$

$$ = \exp(i(\theta + x\xi)) f(x - t). $$

If we apply to this new function a second element $g(\theta', \xi', t')$, we get

$$ (g(\theta', \xi', t') g(\theta, \xi, t) f)(x) = \exp(i(\theta' + x\xi')) (g(\theta, \xi, t) f)(x - t') $$

$$ = \exp(i(\theta' + x\xi')) \exp(i(\theta + (x - t')\xi)) f(x - t' - t) $$

$$ = \exp(i((\theta + \theta' - t')\xi + (x(\xi + \xi')) f(x - t' - t) $$

$$ = (g(\theta + \theta' - t'\xi, \xi + \xi', t + t') f)(x). \quad \text{(PROD)} $$
Another way to write this is as a calculation of the group law:

\[g(\theta', \xi', t') g(\theta, \xi, t) = g(\theta' + \theta - t' \xi, \xi' + \xi, t + t'). \]

This calculation shows that the collection of all elements \(g(\theta, \xi, t) \) is closed under multiplication, includes all the elements \(Z_\theta, M_\xi, \) and \(T_t \), and includes the identity \(g(0, 0, 0) \). We also calculate

\[g(\theta, \xi, t)^{-1} = g(-\theta - t \xi, -\xi, -t). \]

These elements therefore constitute the group \(G \). Finally it’s clear (from the formula for the action on \(f \)) that all the elements \(g(\theta, \xi, t) \) are distinct (except for adding multiples of \(2\pi \) to \(\theta \)). The coordinates given in (COORDS) identify \(G \) with the manifold \(\mathbb{R}/2\pi \mathbb{Z} \times \mathbb{R} \times \mathbb{R} \).

The multiplication law is given in these coordinates by the formula in (PROD), which is a smooth function of the six coordinates. Similarly the inverse is a smooth function of the coordinates. So \(G \) is a Lie group, with underlying manifold \(\mathbb{R}^2 \) times a circle. This is (1).

Products of path-connected spaces are path-connected, so \(G \) is path-connected; so \(\pi_0(G) \) is trivial. Since \(\mathbb{R}^2 \) is contractible, \(G \) can be contracted onto a circle; so

\[\pi_1(G) = \pi_1(\text{circle}) = \mathbb{Z}. \]

This is (2).

For (3), suppose we find a complex vector space \(V \) and a continuous inclusion

\[\gamma: G \to GL(V). \]

Each one-parameter group in \(G \) must map to a one-parameter group in \(GL(n, \mathbb{C}) \); so we find linear transformations \(M, T, \) and \(Z \) so that

\[\gamma(T_t) = \exp(tT), \quad \gamma(M_\xi) = \exp(\xi M), \quad \gamma(Z_\theta) = \exp(\theta Z). \]

Because the \(Z_\theta \) is periodic of period \(2\pi \), the third equation forces \(Z \) to be diagonalizable with eigenvalues in \(2\pi i \mathbb{Z} \). If we write choose a basis of eigenvectors, we find integers

\[m_1 < m_2 < \cdots m_r, \quad d_1 > 0, \ldots, d_r > 0 \]

so that \(\gamma(Z_\theta) \) is diagonal with diagonal entries

\[\exp(2\pi i m_1) \ (d_1 \text{ times}), \ldots, \exp(2\pi i m_r) \ (d_r \text{ times}). \]

Because the map \(\gamma \) is assumed one-to-one, the integers \(m_i \) must be relatively prime; in particular, they cannot all be zero.

Because \(T_t \) and \(M_\xi \) commute with \(Z_\theta \), it follows that \(T \) and \(M \) must commute with all these matrices \(\gamma(Z_\theta) \). Therefore \(T \) and \(M \) must be block diagonal, with blocks \(T_t \) and \(M_i \) of sizes \(d_i \) (for \(i = 1, \ldots, r \)).

The multiplication formula in \(G \) shows that

\[M_\xi T_t M_{-\xi} T_{-t} = Z_{t \xi}. \]
Because γ is a group homomorphism, it follows that
\[
\exp(\xi M) \exp(tT) \exp(-\xi M) \exp(-tT) = \exp(t\xi Z).
\]
All these matrices are block diagonal; so for each j, we get
\[
\exp(\xi M_j) \exp(tT_j) \exp(-\xi M_j) \exp(-tT_j) = \exp(2\pi t \xi m_j) I_d.
\]
The left side evidently has determinant one (determinant of any commutator is 1),
so (taking determinant of the right side), we get
\[
\exp(2\pi t \xi m_j d_j) = 1 \quad (t, \xi \in \mathbb{R}).
\]
This equation evidently forces $m_j = 0$, which contradicts our earlier discovery
that some m_j must be nonzero. The conclusion is that γ cannot exist: G is not
diffeomorphic to a group of matrices.

Suppose (M, m_0) is a connected manifold with a base point m_0, and (G, e) is a
connected Lie group with (natural) base point the identity. I hope by Monday 3/9
to have defined fundamental groups and universal covering spaces; for this problem
set you can take the definitions to be
\[
\tilde{M} = \text{def} \{ \text{homotopy classes of paths in } M \text{ starting at } m_0 \},
\]
and in particular
\[
\tilde{G} = \text{def} \{ \text{homotopy classes of paths in } G \text{ starting at } e \}.
\]
A convenient notation for paths is
\[
\mu: [0, 1] \to M, \quad \mu(0) = m_0, \quad \gamma: [0, 1] \to G, \quad \gamma(0) = e.
\]
The covering maps are
\[
\pi_M: \tilde{M} \to M, \quad \pi_M(\mu) = \mu(1)
\]
and similarly for \tilde{G}. The group structure on \tilde{G} is defined by the group multiplication
in G, applied pointwise to two paths.

2. With notation as above, suppose that G acts (smoothly) on M. Explain how to define
a natural action of \tilde{G} on \tilde{M}. Explain exactly what you need to check to see
that your definition makes sense. Write carefully some details of this checking (enough to show convincingly that you understand it).

Suppose γ is a path in G (starting at e) representing an element $\tilde{g} \in \tilde{G}$, and μ is
a path in M (starting at m_0) representing an element $\tilde{m} \in \tilde{M}$. We want to define
\[
\tilde{g} \cdot \tilde{m} = \text{homotopy class of path } \gamma \cdot \mu \text{ in } M.
\]
This means the path
\[(\gamma \cdot \mu)(t) = \gamma(t) \cdot \mu(t) \quad (0 \leq t \leq 1).\]

First of all,
\[(\gamma \cdot \mu)(0) = \gamma(0) \cdot \mu(0) = e \cdot m_0 = m_0,\]
so this path starts at \(m_0\) as required. Second, the path is the composition of the continuous map
\[\gamma \times \mu: [0, 1] \to G \times M\]
with the continuous action map
\[G \times M \to M, \quad (g, m) \mapsto g \cdot m;\]
so \(\gamma \cdot \mu\) is continuous.

To see that this is well-defined, suppose \(\gamma_0\) and \(\gamma_1\) are homotopic paths in \(G\), and \(\mu_0\) and \(\mu_1\) are homotopic paths in \(M\). We must show that \(\gamma_0 \cdot \mu_0\) and \(\gamma_1 \cdot \mu_1\) are homotopic paths in \(M\). The hypothesis on \(\gamma_0\) and \(\gamma_1\) means that these two paths have a common endpoint
\[\gamma_0(1) = \gamma_1(1) = g,
\]
and that there is a continuous map
\[h: [0, 1] \times [0, 1] \to G\]
subject to
\[h(0, s) = e, \quad h(1, s) = g \quad (s \in [0, 1]),\]
\[h(t, 0) = \gamma_0(t), \quad h(t, 1) = \gamma_1(t) \quad (t \in [0, 1]).\]
The hypothesis on \(\mu_1\) and \(\mu_2\) means that these two paths have a common endpoint
\[\mu_1(1) = \mu_2(1) = m,\]
and that there is a continuous map
\[j: [0, 1] \times [0, 1] \to M\]
subject to
\[j(0, s) = m_0, \quad j(1, s) = m \quad (s \in [0, 1]),\]
\[j(t, 0) = \mu_0(t), \quad j(t, 1) = \mu_1(t) \quad (t \in [0, 1]).\]
We are required to find a homotopy
\[J: [0, 1] \times [0, 1] \to M\]
from \(\gamma_0 \cdot \mu_0\) to \(\gamma_1 \cdot \mu_1\). We can define
\[J(t, s) = h(t, s) \cdot j(t, s).\]
This is continuous because it is the composition of the continuous map

\[h \times j : [0, 1] \times [0, 1] \to G \times M \]

with the continuous action map. Since \(h(0, s) = e \), \(h(1, s) = g \), \(j(0, s) = m_0 \), and \(j(1, s) = m \), we find

\[J(0, s) = h(0, s) \cdot j(0, s) = e \cdot m_0 = m_0 \]

and

\[J(1, s) = h(1, s) \cdot j(1, s) = g \cdot m, \]

as required. Similarly, we find that

\[J(t, 0) = \gamma_0(t) \cdot \mu_0(t), \quad J(t, 1) = \gamma_1(t) \cdot \mu_1(t), \]

as required. This proves that the action is well-defined on homotopy classes of paths. Along the way we saw that in terms of the covering maps

\[\pi_G : \tilde{G} \to G, \quad \text{class of } \gamma \mapsto \gamma(1) \]

and similarly for \(M \), we have

\[\pi_M(\tilde{g} \cdot \tilde{m}) = \pi_G(\tilde{g}) \cdot \pi_M(\tilde{m}). \]

Because of this formula, we can say that we have “lifted” the action of \(G \) on \(M \) to an action of \(\tilde{G} \) on \(\tilde{M} \).

We should check that the well-defined map \(\tilde{G} \times \tilde{M} \to \tilde{M} \) is actually a group action. So suppose \(\gamma_1 \) and \(\gamma_2 \) are paths in \(G \) (starting at \(e \)), and \(\mu \) is a path in \(M \) (starting at \(m_0 \)). Write \([\cdot]\) for a homotopy class of paths. Then

\[[\gamma_1] \cdot ([\gamma_2] \cdot [\mu]) = [\gamma_1] \cdot [\gamma_2 \cdot \mu] \quad \text{(def of action on } \tilde{M}) \]

\[= [\gamma_1 \cdot (\gamma_2 \cdot \mu)] \quad \text{(def of action on } \tilde{M}) \]

\[= [(\gamma_1 \cdot \gamma_2) \cdot \mu] \quad \text{(since } G \text{ acts on } M) \]

\[= [\gamma_1 \cdot \gamma_2] \cdot [\mu] \quad \text{(def of action on } \tilde{M}) \]

\[= ([\gamma_1] \cdot [\gamma_2]) \cdot [\mu] \quad \text{(def of group law in } \tilde{G}). \]

3. Suppose that \(G \) is the circle group

\[G = \{ \exp(2\pi i \theta) \mid \theta \in \mathbb{R} \} \simeq \mathbb{R} / \mathbb{Z}. \]

You may assume that every path starting at the origin in \(G \) is homotopic to a (unique) path

\[\gamma_\theta(t) = \exp(2\pi i t \theta) \quad (0 \leq t \leq 1), \]

so that the universal covering group is

\[\tilde{G} = \{ \gamma_\theta \mid \theta \in \mathbb{R} \} \simeq \mathbb{R}. \]

(1) Find an action of \(G \) on a manifold \(M \) so that the action of \(\tilde{G} \) on \(\tilde{M} \) is faithful that no nontrivial element of \(\tilde{G} \) acts trivially on \(\tilde{M} \).

(2) Find a faithful action of \(G \) on a manifold \(N \) so that the action of \(\tilde{G} \) on \(\tilde{N} \) descends to \(G \); that is, that every element of \(\mathbb{Z} \subset \tilde{G} \) acts trivially on \(\tilde{N} \).

(3) Is it possible for the action of \(G \) on \(M \) in the first part not to be faithful?
For (1), you can take $M = G$, with the action of left multiplication. Then the action of \tilde{G} on $\tilde{M} = \tilde{G}$ is still left multiplication, and is therefore faithful.

For (2), let G act by multiplication on the disk

$$N = \{ z \in \mathbb{C} \mid |z|^2 \leq 1 \};$$

the formula is

$$\exp(2\pi i \theta) \cdot z = \exp(2\pi i \theta)z.$$

The only element of G fixing the point $1 \in N$ is 1, so the action is faithful. The disk is contractible, and therefore simply connected, so $\tilde{N} = N$. Because of the compatibility of the covering action with the covering maps, it follows that the covering action is

$$\gamma_\theta \cdot z = \exp(2\pi i \theta)z,$$

which of course descends to the original action of G on N.

For (3), let G act on $M_2 = G$ by the squaring map:

$$\exp(2\pi i \theta) \cdot \exp(2\pi i \phi) = \exp(2\pi i (2\theta + \phi)).$$

(This is an action because G is abelian; if G were not abelian, you’d get into trouble proving that you had an action because

$$g^2 \cdot h^2 \neq (gh)^2$$

whenever g and h don’t commute.) The action is not faithful, because the formula shows that $-1 = \exp(\pi i)$ acts trivially on M_2. But the universal covering action is still the squaring action

$$\gamma_\theta \cdot \gamma_\phi = \gamma_{2\theta + \phi},$$

and this is a faithful action of \mathbb{R} on \mathbb{R}.

The point of this problem is that there is no obvious simple statement to be made about faithfulness of universal cover actions.