1. Suppose V is a vector space over a field F, and $U \subset V$ is a subspace. Define

$$GL(U, V) = \{ g \in GL(V) \mid gU = U \}.$$

Prove that there is a short exact sequence

$$1 \to N \to GL(U, V) \to GL(U) \times GL(V/U) \to 1,$$

and that the normal subgroup N satisfies $N \simeq \text{Hom}_F(V/U, U)$ (where the group operation on the right is addition of linear maps).

If $T \in GL(U, V)$, then we can clearly define

$$T_U : U \to U, \quad T_U(u) = T(u) \quad (u \in U)$$

$$T_{V/U} : V/U \to V/U, \quad T_{V/U}(v + U) = Tv + U \quad (v \in V).$$

That these are well-defined linear maps respecting composition is immediate. If I is the identity map on V, then I belongs to $GL(U, V)$, and by definition I_U is the identity map on U, and $I_{V/U}$ is the identity map on V/U. It follows immediately that

$$(T^{-1})_U = (T_U)^{-1}, \quad (T^{-1})_{V/U} = (T_{V/U})^{-1}.$$

Consequently $T_U \in GL(U)$ and $T_{V/U} \in GL(V/U)$. Therefore we can use

$$\pi : GL(U, V) \to GL(U) \times GL(V/U), \quad \pi(T) = (T_U, T_{V/U})$$

as a map in our desired short exact sequence.

To see that π is surjective, choose a subspace $W \subset V$ so that

$$V = U \oplus W.$$

(This requires the axiom of choice if V is infinite-dimensional, but I am going to sweep such issues under the rug.) We get a natural isomorphism

$$W \simeq V/U$$

and therefore

$$V \simeq U \oplus V/U.$$

This isomorphism provides an embedding

$$GL(U) \times GL(V/U) \hookrightarrow GL(V)$$

which is a right inverse for π. It follows in particular that π is surjective (since that is a necessary condition for admitting a right inverse).

Define N to be the kernel of π. We now have the short exact sequence in the problem; what remains is to identify N. By definition

$$N = \{ T \in GL(V) \mid Tu = u \quad (u \in U), \quad Tv = v + \alpha(T)(v) \quad (v \in V) \}.$$
Here \(\alpha(T)(v) \in U \); this is just the statement of what it means for \(T \) to fix the coset \(v + U \). Obviously \(\alpha(T) \) is a linear map:

\[
\alpha(T) \in \text{Hom}_F(V, U) \quad (T \in N).
\]

The first condition on \(T \) in the definition of \(N \) implies that \(\alpha(T)(U) = 0 \); so

\[
\alpha(T) \in \text{Hom}_F(V/U, U) \quad (T \in N).
\]

Conversely, if \(A \in \text{Hom}_F(V/U, U) \), then

\[
\tau(A): V \to V, \quad \tau(A)(v) = v + A(v + U)
\]

is easily seen to belong to \(N \); and

\[
\alpha(\tau(A)) = A, \quad \tau(\alpha(T)) = T \quad (T \in N, A \in \text{Hom}_F(V/U, U)).
\]

Therefore \(\alpha \) is an isomorphism of \(N \) with \(\text{Hom}_F(V/U, U) \). Here’s the calculation that it’s a group homomorphism:

\[
ST(v) = S(Tv) = S(v + \alpha(T)(v))
\]

\[
= [S(v)] + [S(\alpha(T)(v))]
\]

\[
= [v + \alpha(S)(v)] + [\alpha(T)(v) + \alpha(S)(\alpha(T)(v))]
\]

\[
= v + \alpha(S)(v) + \alpha(T)(v) = v + (\alpha(S) + \alpha(T))(v).
\]

Here to get the last equality we use the fact that \(\alpha(T)(v) \in U \), and therefore is annihilated by \(\alpha(S) \). This calculation proves that

\[
\alpha(ST) = \alpha(S) + \alpha(T) \quad (S, T \in N)
\]

as we wished to show.

A group \(S \) is called \textit{solvable} if there is a collection of subgroups

\[
\{e\} = N_0 \subset N_1 \subset \cdots \subset N_r = S
\]

so that \(N_{i-1} \text{ normal in } N_i \) (written \(N_{i-1} \triangleleft N_i \)) and \(N_i/N_{i-1} \) is \textit{abelian} \((1 \leq i \leq r)\).

Subgroups \(H_1 \) and \(H_2 \) are \textit{conjugate} if there is \(g \in G \) such that \(gH_1g^{-1} = H_2 \).

2. Suppose \(n \geq 1 \) is an integer. Define \(G = GL(n, \mathbb{C}) \) to be the group of all \(n \times n \) invertible complex matrices, and

\[
B = \{g = (g_{ij}) \in G \mid i > j \implies g_{ij} = 0\}
\]

the subgroup of upper triangular matrices.

(1) Prove that \(B \) is solvable.

(2) Prove or give a counterexample: every element \(g \in G \) is conjugate to an element of \(B \).

(3) Prove or give a counterexample: if \(S \) is a solvable subgroup of \(G \), then \(S \) is conjugate to a subgroup of \(B \).
The subgroup B is related to the chain of subspaces of \mathbb{C}^n

$$V_0 = 0 \subset V_1 = \mathbb{C}^1 \subset \cdots \subset V_n = \mathbb{C}^n;$$

V_i is the vectors for which the last $n-i$ coordinates are zero. If we write (e_1, \ldots, e_n) for the standard basis of \mathbb{C}^n, then

$$V_i = \text{span}(e_1, \ldots, e_i).$$

Because the ith column of a matrix g is $g \cdot e_i$, we see that the definition of B amounts to

$$B = \{ g \in GL(n, \mathbb{C}) \mid g \cdot e_i \in \text{span}(e_1, \ldots, e_i),$$

and therefore that

$$B = \{ g \in GL(n, \mathbb{C}) \mid g \cdot V_i = V_i \}. $$

Now we use some of the maps from Problem 1, and define subgroups

$$N_n = B, \quad N_j = \{ g \in B \mid (g-I)V_i \subset V_{i-(n-j)} \quad (j \leq i \leq n) \}. $$

Here for $0 \leq j < n$, N_j consists of upper-triangular matrices with 1s on the diagonal and 0s on the next $n-j-1$ lines above the diagonal. This description shows clearly that

$$\{1\} = N_0 \subset N_1 \subset \cdots \subset N_{n-1} \subset N_n = B.$$

Here is the case $n = 3$:

$$N_3 = \left\{ \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} \mid a_{ii} \neq 0 \right\}$$

$$N_2 = \left\{ \begin{pmatrix} 1 & a_{12} & a_{13} \\ 0 & 1 & a_{23} \\ 0 & 0 & 1 \end{pmatrix} \right\}$$

$$N_1 = \left\{ \begin{pmatrix} 1 & 0 & a_{13} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}$$

$$N_0 = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}$$

Because B preserves each V_i, it is also clear that $N_{j-1} \triangleleft B$, and consequently that $N_{j-1} \triangleleft N_j$. So N_j/N_{j-1} is a group; we just need to see that it’s abelian.

We know that $B|_{V_j} \subset GL(V_{j-1}, V_j)$, so Problem 1 gives a group homomorphism

$$N_0 = B \to \prod_{j=1}^{n} GL(V_j/V_{j-1}) = \prod_{j=1}^{n} \mathbb{C}^\times;$$

the jth coordinate is the jth diagonal entry of a matrix in B. This description of the map shows that it is onto, with kernel precisely N_{n-1}; so N_n/N_{n-1} is abelian (a product of n copies of \mathbb{C}^\times).
In the same way, for \(j \geq 2 \),

\[
B|_{V_j} \subset GL(V_{j-2}, V_j) \to GL(V_j/V_{j-2}) \simeq GL(2, \mathbb{C});
\]
the image is by definition contained in \(GL(V_j/V_{j-2}, V_{j-1}/V_{j-2}) \), the group of \(2 \times 2 \) upper-triangular matrices. The subgroup \(N_{n-1} \) by definition maps to the kernel of

\[
GL(V_j/V_{j-2}, V_{j-1}/V_{j-2}) \to GL(V_j/V_{j-1}) \times GL(V_{j-1}/V_{j-2}),
\]
which we know from Problem 1 is

\[
\text{Hom}_C(V_j/V_{j-1}, V_{j-1}/V_{j-2}) \simeq \mathbb{C}.
\]

Adding these maps, we get

\[
N_{n-1} \to \prod_{j=2}^n \text{Hom}_C(V_j/V_{j-1}, V_{j-1}/V_{j-2}) = \prod_{j=2}^n \mathbb{C};
\]
the \(j \)th coordinate is the \((j-1, j)\) entry of a matrix in \(N_{n-1} \). This description of the map shows that it is onto, with kernel precisely \(N_{n-2} \); so \(N_{n-1}/N_{n-2} \) is abelian (a product of \(n-1 \) copies of \(\mathbb{C} \)).

A precisely parallel argument shows that for any \(i, n-1 \geq i \geq 1 \),

\[
N_i/N_{i-1} \simeq \mathbb{C}^i,
\]
an abelian group. This proves (1).

For (2), the statement is true; you learn in linear algebra that any \(n \times n \) complex matrix is conjugate to an upper triangular matrix.

For (3), the statement is false. Suppose \(n = 2 \), and let \(S \) be the group of order 8 generated by the two matrices

\[
A = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.
\]

This is the quaternion group of order eight; \(A \) corresponds to the element usually called \(i \) and \(B \) to the matrix usually called \(j \), and they satisfy the defining relations

\[
A^4 = B^4 = I, \quad ABA^{-1} = B^{-1} \neq B.
\]

To say that \(S \) is conjugate to a subgroup of \(B \) is to say that there is a chain of subspaces \(W_0 \subset W_1 \subset W_2 \) with \(\text{dim} W_i = i \) and

\[
AW_i = W_i, \quad BW_i = W_i.
\]

Of course we can and must take \(W_0 = \{0\} \), \(W_2 = \mathbb{C}^2 \); the only problem is finding the line \(W_1 \) that is an eigenspace for each of \(A \) and \(B \). The only eigenspaces for \(A \) are the coordinate axes, and neither is an eigenspace for \(B \). So there is no \(W_1 \).

3. Let \(G = SL(2, \mathbb{R}) \), the group of \(2 \times 2 \) real matrices of determinant 1.
 (1) Prove that the subgroups

\[
H_1 = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \mid t \in \mathbb{R} \right\}, \quad H_2 = \left\{ \begin{pmatrix} 1 & 0 \\ s & 1 \end{pmatrix} \mid s \in \mathbb{R} \right\}
\]

are conjugate.

(2) Find as many non-conjugate connected subgroups \(H \subset G \) as you can. You should prove that your subgroups are not conjugate.
For (1), let \(g = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \). Then \(gH_1g^{-1} = H_2 \).

For (2), here are examples:

1. \(S_1 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\} \), the trivial subgroup.

2. \(S_2 = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \mid t \in \mathbb{R} \right\} \), a commutative group of unipotent matrices (all eigenvalues equal to 1).

3. \(S_3 = \left\{ \begin{pmatrix} s & 0 \\ 0 & s^{-1} \end{pmatrix} \mid 0 < s \in \mathbb{R} \right\} \), a commutative group of hyperbolic matrices (diagonalizable with real eigenvalues).

4. \(S_4 = \left\{ \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \mid \theta \in \mathbb{R} \right\} \), a commutative group of elliptic matrices (complex eigenvalues of absolute value 1).

5. \(S_5 = \left\{ \begin{pmatrix} s & t \\ 0 & s^{-1} \end{pmatrix} \mid t \in \mathbb{R}, \ 0 < s \in \mathbb{R} \right\} \), a noncommutative proper subgroup of \(G \).

6. \(S_6 = G \).

The descriptors given for each subgroup are unchanged by conjugation; this gives proofs that the subgroups are not conjugate. Connectedness is easy for cases 1)–5) (where the subgroup is written as a continuous image of a connected set like \(\mathbb{R} \) or \(\mathbb{R}^+ \)). That \(G \) itself is connected is not quite obvious; you might think about how to prove that.

These are in fact all the connected subgroups of \(G \) up to conjugacy. We don’t yet have tools to prove that, but soon.

How could you have thought of these examples? Well, if you take \(\mathbb{R} = U \subset V = \mathbb{R}^2 \), then (in the notation of Problem 1)

\[
GL(U, V) = \left\{ \begin{pmatrix} s_1 & t \\ 0 & s_2 \end{pmatrix} \mid 0 \neq s_i \in \mathbb{R}, \ t \in \mathbb{R} \right\}.
\]

The intersection with \(SL(2, \mathbb{R}) \) is

\[
SL(U, V) = \left\{ \begin{pmatrix} s & t \\ 0 & s^{-1} \end{pmatrix} \mid 0 \neq s \in \mathbb{R}, \ t \in \mathbb{R} \right\}.
\]

This group is homeomorphic to \(\mathbb{R}^+ \times \mathbb{R} \) and is therefore not connected. In a topological group \(H \), the smallest connected set containing the identity element is always a subgroup (called the identity component of \(H \)); so from \(SL(U, V) \) we get \(S_5 \).

The group \(N \) of Problem 1 is \(S_2 \), and \(S_3 \) is the identity component of \(GL(U) \times GL(W) \) (appearing in the solution of Problem 1). Hard to imagine how to invent \(S_4 \), but perhaps you’ve seen it before.