18.755 Problem Set 3 solutions

The first two problems refer to the notes GLUE “Gluing manifolds together” on the course web page (near the bottom).

1. Suppose N is constructed from two manifolds $M_1 \supset U_1$ and $M_2 \supset U_2$ as in GLUE, (2.1). Find an example in which N is not a manifold. (The definition of manifold is the one given in class, and appearing in the books of Conlon, Munkres, Warner, ... , and on the wikipedia page “Differentiable manifold.”)

The notes state that N is locally diffeomorphic to open sets in Euclidean space, and the fact that N is separable is an immediate consequence of the separability of M_1 and M_2. The only remaining axiom is Hausdorff; so we must find an example in which N has points n_1 and n_2 that do not have disjoint neighborhoods. If both n_i lie in M_1, then they have disjoint neighborhoods in M_1 since M_1 is Hausdorff; and these will be neighborhoods in N by definition of the topology. Similarly if both lie in M_2.

Perhaps after relabelling, we may assume

$$n_1 \in M_1 \setminus M_2 = M_1 - U_1, \quad n_2 \in M_2 \setminus M_1 = M_2 - U_2.$$

If n_1 has a neighborhood $V_1 \subset M_1$ not meeting U_1, then V_1 and any neighborhood V_2 of n_2 in M_2 must be disjoint. Similarly if n_2 has a neighborhood not meeting U_2. The only possibly difficulty therefore arises if

$$n_1 \in \overline{U_1} - U_1 = \partial U_1, \quad n_2 \in \partial U_2.$$

The Hausdorff condition will fail if and only if for every neighborhood V_i of n_i in M_i,

$$\phi_{12}(V_1 \cap U_1) \text{ meets } V_2 \cap U_2.$$

What this means is that we need a sequence in $n_1^j \in U_1$ converging to the boundary point n_1, such that $\phi_{12}(n_1^j)$ converges in U_2 to the boundary point n_2.

An easy way to achieve this is with $M_1 = M_2 = \mathbb{R}$, $U_1 = U_2 = \mathbb{R}^x$ (the nonzero reals), ϕ_{12} the identity map, and $n_1 = n_2 = 0$. The topological space N looks like \mathbb{R} except that it has two origins 0_1 and 0_2. A neighborhood base at 0_1 is

$$(-\epsilon, 0) \cup \{0_1\} \cup (0, \epsilon) \quad (\epsilon > 0)$$

and a neighborhood base at 0_2 is

$$(-\delta, 0) \cup \{0_2\} \cup (0, \delta) \quad (\delta > 0).$$

Of course any two of these neighborhoods overlap, so N is not Hausdorff.

As long as we are looking at nasty examples, a smooth vector field on N is given by a smooth vector field on \mathbb{R}; its values at 0_1 and 0_2 are necessarily “the same.” Integral curves of the vector field d/dx satisfying an initial condition $\gamma(t_0) = x_0$ are not unique unless $x_0 = 0$; the value at $t = t_0 - x_0$ may be chosen to be either 0_1 or 0_2. (You can find a uniqueness theorem for integral curves claiming to cover this example in a moderately famous differential geometry text. Can’t trust everything you read.)

2. Give an example in which the construction of (4.1) in GLUE does not give a manifold.

According to the analysis in the solution to Problem 1, we are looking for n_1 so that the integral curve $\gamma_{n_1}^1$ in M_1 is not defined at $-\epsilon$, but $\gamma_{n_1}^1$ is defined at $-\epsilon$ for a sequence n_1^j converging to n_1. Then we want to define $n_2^j = \gamma_{n_1}^1(-\epsilon)$, and ask that the sequence n_2^j converge to n_2 so that $\gamma_{n_2}^2$ is not defined at $-\epsilon$.

The easiest way to arrange the first requirement is for the maximal integral curve γ_{n_1} to be defined on $(-\epsilon, b_1)$. Then we can choose $n_1^j = \gamma_{n_1}(1/j)$ (which makes sense at least for large j). The integral curve through n_1^j is defined on $(-\epsilon - 1/j, b_1 - 1/j)$, so these points indeed belong to U_1. Applying ϕ_{12} gives

$$n_2^j = \gamma_{n_1}(-\epsilon + 1/j).$$
If this sequence has a limit point n_2, then it’s not hard to see that the integral curve must actually be defined at $-\epsilon$, satisfying
$$\gamma_{n_1}(-\epsilon) = n_2.$$
This contradicts our original choice of n_1.

So we need to find a more subtle way to arrange matters: roughly, that γ_{n_1} should not be defined close to $-\epsilon$, even though nearby integral curves are defined. One possibility is to choose
$$M = \mathbb{R}^2 \setminus \{0\}, \quad X = \frac{\partial}{\partial x}.$$

Then the maximal integral curves are
$$\gamma_{x_0,y_0}(t) = (x_0 + t, y_0) \begin{cases}
 t \in (-\infty, \infty), & (y_0 \neq 0) \\
 t \in (-x_0, \infty), & (y_0 = 0, x_0 > 0) \\
 t \in (-\infty, -x_0), & (y_0 = 0, x_0 < 0).
\end{cases}$$

Then
$$U_1 = U_{\geq -\epsilon} = \mathbb{R}^2 - [0, \epsilon] \times \{0\}, \quad U_2 = V_{\leq \epsilon} = \mathbb{R}^2 - [-\epsilon, 0] \times \{0\}.$$

We have
$$\partial U_1 = (0, \epsilon] \times \{0\}, \quad \partial U_2 = (-\epsilon, 0) \times \{0\}.$$

All of the pairs
$$n_1, n_2 = n_1 - (\epsilon, 0)$$

lack disjoint neighborhoods. The space N consists of \mathbb{R}^2 with two copies of the interval $(0, \epsilon) \times \{0\}$.

3. Suppose that V is a finite-dimensional real vector space, and that
$$\alpha: \mathbb{R} \times V \to V$$
is a continuous (not necessarily smooth) action of \mathbb{R} on V by linear transformations. It is equivalent to assume that
$$A: \mathbb{R} \to GL(V), \quad A(t)v = \alpha(t, v)$$
is a continuous group homomorphism. Prove that there is a linear map $T \in \text{Hom}(V, V)$ with the property that
$$A(t) = \exp(tT).$$

According to the hint, we would like to prove that $t \mapsto A(t)$ is a smooth map. Suppose we know that. Because $GL(V)$ is an open subset of the vector space $\text{Hom}(V, V)$, we have
$$T_g GL(V) = \text{Hom}(V, V) \quad (g \in GL(V)).$$

The differential of $A(t)$ at $t = 0$ (which exists by the assumed smoothness of A) is
$$T = \lim_{t \to 0} \frac{A(t) - A(0)}{t - 0} \in \text{Hom}(V, V).$$

The differential at $t = s$ is
$$\lim_{t \to 0} \frac{A(t + s) - A(s)}{t - 0} = \left(\lim_{t \to 0} \frac{A(t) - A(0)}{t - 0} \right) A(s) = TA(s) \in \text{Hom}(V, V).$$
Therefore $A(s)$ satisfies the differential equation
\[
\frac{dA}{dt}(t) = TA(t), \quad A(0) = I;
\]
the solution (almost by definition of the exponential) is
\[
A(t) = \exp(tT).
\]

So it is indeed enough to prove that $A(t)$ is smooth. A map into \mathbb{R}^N is smooth if and only if all the N (real-valued) coordinates of the map are smooth. Therefore a map into matrices is smooth if and only if each matrix entry is smooth, and this is true if and only if each column is a smooth function. The columns of $A(t)$ (once we choose a basis of V) are the functions $A(t)e_i$, and the other functions $A(t)v$ are linear combinations of the column functions. This proves that $A(t)$ is smooth if and only if each $A(t)v$ is smooth.

Let us call a vector $w \in V$ smooth if the function $A(t)w$ is smooth. (Of course this property of w depends enormously on the function $A(t)$, and the terminology obscures this; but it’s the standard terminology.) Since the maps $A(t)$ are each linear, it follows immediately that the collection of smooth vectors is a subspace of V.

The hint asked you to prove that for any $v \in V$ and $\phi \in C^\infty_c(\mathbb{R})$, the vector
\[
\omega(v, \phi) = \int_{-\infty}^{\infty} \phi(t)A(t)v \, dt
\]
is smooth. This can be done more or less along the lines of one of the problems last week. We have
\[
A(s)\omega(v, \phi) = \int_{-\infty}^{\infty} \phi(t)A(s)A(t)v \, dt
= \int_{-\infty}^{\infty} \phi(t)A(s+t)v \, dt
= \int_{-\infty}^{\infty} \phi(t'-s)A(t')v \, dt'
\]
(The first equality (taking the linear map inside the integral) is easy; the second is the fact that A is a homomorphism; and the third is change of variable.) Now the last formula writes $A(s)\omega$ as an integral with a parameter s; and you can differentiate this formula in s under the integral sign (just like last week). The conclusion is that $A(s)w$ is a smooth function of s, and therefore that w belongs to the subspace of smooth vectors in V.

We are asked to show that every vector in V is smooth. It’s enough to show that every vector in V is of the form $\omega(v, \phi)$ for some $v \in V$ and $\phi \in C^\infty_c(\mathbb{R})$. If $w = 0$, then $w = \omega(0, \phi)$, and we are done; so assume $w \neq 0$. The equation
\[
w = \int_{-\infty}^{\infty} \phi(t)A(t)v \, dt
\]
is a painful equation to solve for v and ϕ. So we look just for an approximate solution. Fix a norm (like Euclidean length in some basis $\| \cdot \|$ on V) giving a corresponding operator norm on $\text{Hom}(V, V)$ satisfying
\[
\|Sv\| \leq \|S\| \cdot \|v\|.
\]
Given w and any $\epsilon > 0$, we want to find v so that
\[
\left\| \int_{-\infty}^{\infty} \phi(t)A(t)v \, dt - w \right\| \leq \epsilon.
\]
We will actually achieve this using \(v = w \); all the magic is in choosing \(\phi \). If \(w = 0 \), then \(\omega(0, \phi) = w \) for any \(\phi \); so we assume henceforth that \(w \neq 0 \). First choose \(\delta \) so small that

\[
\|A(t) - I\| = \|A(t) - A(0)\| < \epsilon / \|w\| \quad (|t| < \delta).
\]

(Recall that we are assuming \(w \neq 0 \).) Such a \(\delta \) exists because \(A \) is assumed to be continuous. Now

\[
\|A(t)w - w\| < \left(\frac{\epsilon}{\|w\|} \right) \|w\| = \epsilon.
\]

Next, choose \(\phi \in C^\infty_c(\mathbb{R}) \) so that

1. \(\phi \geq 0 \),
2. \(\phi \) is supported on \([-\delta, \delta]\), and
3. \(\int_{-\infty}^{\infty} \phi(t) \ dt = 1 \).

Then

\[
w = \int_{-\infty}^{\infty} \phi(t)A(0)w \ dt,
\]

so

\[
\left\| \int_{-\infty}^{\infty} \phi(t)A(t)w \ dt - w \right\| = \left\| \int_{-\infty}^{\infty} \phi(t)(A(t) - A(0))w \ dt \right\|
\]

\[
= \left\| \int_{-\delta}^{\delta} \phi(t)(A(t) - A(0))w \ dt \right\|
\]

\[
\leq \int_{-\delta}^{\delta} \phi(t) \| (A(t) - A(0))w \| \ dt
\]

\[
< \int_{-\delta}^{\delta} \phi(t) \epsilon \ dt = \epsilon.
\]

That is, we have shown that \(w \) may be approximated within any \(\epsilon > 0 \) by a smooth vector.

The smooth vectors are a linear subspace of \(V \), and no proper subspace of \(V \) can be dense. (This argument mostly works for infinite-dimensional \(V \); the most important difference in that case is that proper subspaces can be dense.) Consequently the smooth vectors must be all of \(V \), as we wished to show.

4. Suppose \(T \) is an \(n \times n \) real matrix. Find necessary and sufficient conditions on \(T \) for the one-parameter group

\[\{ \exp(tT) \mid t \in \mathbb{R} \} \]

to be a closed subgroup of \(GL(n, \mathbb{R}) \). Here is the answer: \(\exp(\mathbb{R}T) \) is not closed if and only if \(T \) is diagonalizable as a complex matrix; and all the nonzero eigenvalues are purely imaginary numbers \(iy_j \); and some ratio \(y_j / y_k \) is irrational.

The proof requires some detailed understanding of Jordan canonical form for real matrices. I will just quote a useful version of this, without helping you find a reference for exactly this statement.

Theorem. Suppose \(T \) is a linear transformation on a finite dimensional real vector space \(V \). Then there is a unique decomposition

\[T = T_h + T_e + T_n \]

subject to the requirements

1. the linear transformations \(T_h \), \(T_e \), and \(T_n \) commute with each other;
2. the linear transformation \(T_h \) is diagonalizable with real eigenvalues;
3. the linear transformation \(T_e \) is diagonalizable over \(\mathbb{C} \), with purely imaginary eigenvalues; and
4. the linear transformation \(T_n \) is nilpotent: \(T^n = 0 \) for some \(N > 0 \).
The subscripts \(h, e, \) and \(n \) stand for “hyperbolic,” “elliptic,” and “nilpotent.”

Suppose \(f \) is a continuous map from \(\mathbb{R} \) to a metric space. The image \(f(\mathbb{R}) \) can fail to be closed only if there is an \textit{unbounded} sequence of real numbers \(t_i \) such that \(f(t_i) \) converges in the metric space. (You should think carefully about why this is true: the proof is very short, but maybe not obvious.)

So if the image is not closed, then we can find an unbounded sequence \(t_i \) so that \(\exp(t_i T) \) is convergent in \(GL(n, \mathbb{R}) \), and in particular is a bounded sequence of matrices. By passing to a subsequence, we may assume that all \(t_i \) have the same sign. Since matrix inversion is a homeomorphism, \(\exp(-t_i T) \) is also a (convergent and) bounded sequence of matrices. Perhaps replacing the sequence by its negative, we may assume \(all \ t_i > 0 \).

Now the Jordan decomposition guarantees

\[
\exp(tT) = \exp(tT_h) \exp(tT_e) \exp(tT_n).
\]

In appropriate coordinates the matrix \(T_e \) is block diagonal with blocks

\[
\begin{pmatrix}
0 & y_j \\
-y_j & 0
\end{pmatrix}
\]

(with \(y_j \neq 0 \) and zeros; so \(\| \exp(tT_e) \| \) is bounded. The power series for \(\exp(tT_n) \) ends after the term \(t^N T^N / N! \); so \(\| \exp(tT_n) \| \) has polynomial growth in \(t \).

If \(T_h \) has a positive eigenvalue, then \(\exp(tT_h) \) grows exponentially in \(t \), so the sequence \(\exp(t_i T) \) cannot be bounded. Similarly, if \(T_h \) has a negative eigenvalue, then \(\exp(-t_i T) \) grows exponentially. The conclusion is that if the image is not closed, then \(T_h = 0 \).

In exactly the same way, suppose \(T_n^N \neq 0 \) but \(T_{n+1}^N = 0 \). Then \(\exp(tT_n) \) grows like a polynomial of degree \textit{exactly} \(N \); so (because of the boundedness of \(\exp(tT_e) \)) we conclude that \(\exp(tT) \) also grows like a polynomial of degree \textit{exactly} \(N \). The conclusion is that if the image is not closed, then \(N = 0 \), which means \(T_n = 0 \).

We have shown that the image can fail to be closed only if \(T = T_e \). In this case the image is bounded; so \textit{it is closed if and only if it is compact}. Suppose that the eigenvalues of \(T = T_e \) are \(iy_j \) as above, so that \(\exp(tT) \) has diagonal blocks

\[
\begin{pmatrix}
\cos(ty_j) & \sin(ty_j) \\
-\sin(ty_j) & \cos(ty_j)
\end{pmatrix}
\]

If all the ratios \(y_j / y_1 = p_j / q_j \) are rational, then it’s easy to see that \(\exp(tT) \) is periodic with period (dividing)

\[
(\text{least common multiple of all } q_j)(2\pi / y_1);
\]

so the image is a circle (or a point), and is closed.

Conversely, suppose that the image is compact. More or less the example done in class shows that the group

\[
\begin{pmatrix}
\cos(ty_1) & \sin(ty_1) \\
-\sin(ty_1) & \cos(ty_1)
\end{pmatrix}
\begin{pmatrix}
0 & \\
& 0
\end{pmatrix}
\begin{pmatrix}
\cos(ty_2) & \sin(ty_2) \\
-\sin(ty_2) & \cos(ty_2)
\end{pmatrix}
\]

is compact if and only if \(y_1 / y_2 \) is \textit{rational}. (I’m tired of typing, so I won’t write out a proof.) By projecting the (assumed compact) \{ \(\exp(tT) \) \} on various collections of four coordinates, and using “continuous image of compact is compact,” we deduce that all the ratios \(y_j / y_k \) are rational, as we wished to show.