May 2, 2011

18.01 Problem Set 11 solutions

Part II: 15 points

1. (10 points) This problem is about the functions x^me^{-x}, with m a non-negative integer.

1a) Calculate the average value A_0 of e^{-x} over the interval $[0,1]$.

By definition this is

$$
\int_0^1 e^{-x} \, dx = [-e^{-x}]_0^1 = -e^{-1} + e^0 = 1 - e^{-1} \approx .632
$$

b) Calculate the average value A_1 of xe^{-x} over the interval $[0,1]$.

By definition this is $\int_0^1 xe^{-x} \, dx$. This is a good candidate for integration by parts, with $u = x$ (since the derivative of x is simpler than x) and $dv = e^{-x} \, dx$ (since that’s easy to integrate). This gives $du = dx$, $v = -e^{-x}$, so

$$
\int_0^1 xe^{-x} \, dx = \left[-xe^{-x} \right]_0^1 + \int_0^1 e^{-x} \, dx = -e^{-1} + \int_0^1 e^{-x} \, dx.
$$

The last integral we calculated in (a) was $A_0 = 1 - e^{-1}$, so the average value is

$$
A_1 = -e^{-1} + A_0 = 1 - 2e^{-1} \approx .264.
$$

c) Calculate the average value A_2 of x^2e^{-x} over the interval $[0,1]$.

By definition this is $\int_0^1 x^2e^{-x} \, dx$. Again we can integrate by parts, with $u = x^2$ (since the derivative of x^2 is simpler than x^2) and $dv = e^{-x} \, dx$. We find $du = 2xdx$, $v = -e^{-x}$, and

$$
\int_0^1 x^2e^{-x} \, dx = \left[-x^2e^{-x} \right]_0^1 + 2 \int_0^1 e^{-x} \, dx = -e^{-1} + 2A_1.
$$

Plugging in the value of A_1 from (b) gives

$$
A_2 = 2 - 5e^{-1} \approx .1606.
$$

d) Prove a reduction formula of the form

$$
\int x^m e^{-x} \, dx = C_m x^m e^{-x} + D_m \int x^{m-1} e^{-x} \, dx.
$$

Integrate by parts: use $u = x^m$, $dv = e^{-x} \, dx$, so that $du = mx^{m-1} \, dx$ and $v = -e^{-x}$. The formula is

$$
\int x^m e^{-x} \, dx = -x^m e^{-x} + m \int x^{m-1} e^{-x} \, dx.
$$

e) Explain how to calculate the average value A_m of x^me^{-x} over $[0,1]$ from A_{m-1}.

Applying the reduction formula gives

$$
\int_0^1 x^m e^{-x} \, dx = -x^m e^{-x} \bigg|_0^1 + m \int_0^1 x^{m-1} e^{-x} \, dx = -e^{-1} + m \int_0^1 x^{m-1} e^{-x} \, dx.
$$
In terms of the average values we are interested in, this says
\[A_m = mA_{m-1} - e^{-1}. \]

f) Show that there are integers \(a_m \) and \(b_m \) with the property that
\[A_m = a_m - \frac{b_m}{e}. \]

Explain how to calculate \(a_m \) and \(b_m \) from \(a_{m-1} \) and \(b_{m-1} \).

Certainly \(A_0 \) and \(A_1 \) and \(A_2 \) are shaped like this. We proceed by induction: suppose that \(A_{m-1} = a_{m-1} - \frac{b_{m-1}}{e} \), with \(a_{m-1} \) and \(b_{m-1} \) (positive) integers. According to (e),
\[A_m = mA_{m-1} - \frac{1}{e} = ma_{m-1} - \frac{mb_{m-1} + 1}{e}. \]
This answer has the shape that we want, with
\[a_m = ma_{m-1}, \quad b_m = mb_{m-1} + 1. \]
That’s all you needed to say. In fact you can easily calculate \(a_m \) and \(b_m \) using these formulas and the starting conditions (from (a))
\[a_0 = 1, \quad b_0 = 1. \]
The answers are
\[a_m = m!, \quad b_m = m! + m(m-1) \cdot \cdots \cdot 2 + m(m-1) \cdots 3 + \cdots + m(m-1) + m + 1. \]

g) **Explain why \(A_m \) is between \(\frac{1}{(m+1)!} \) and \(\frac{1}{e(m+1)!} \).**

What makes this question hard is thinking that it has something to do with parts (a)–(f). On the interval from 0 to 1, \(e^{-x} \) decreases from 1 to \(e^{-1} \). The function \(x^m e^{-x} \) is therefore always between \(x^m \) and \(x^m / e \). The average values therefore satisfy
\[\text{(average value of } x^m \text{)} \geq A_m \geq \text{(average value of } x^m / e \text{)}. \]
The first average value is
\[\int_0^1 x^m dx = \left[\frac{x^{m+1}}{m+1} \right]_0^1 = \frac{1}{m+1}, \]
and the last is \(\frac{1}{e(m+1)!} \).

2. **(5 points) Explain why \(e - (1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{m!}) \) is between \(\frac{1}{(m+1)!} \) and \(\frac{e}{(m+1)!} \).** (This means, for instance, that the error in the approximation
\[e \approx 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{15!} \]
is at most \(e/15! \approx 2 \times 10^{-12}. \)) Parts (f) and (g) of Problem 1 (together with the formulas written there for \(a_m \) and \(b_m \)) say that
\[\frac{1}{e(m+1)!} \leq \frac{m! + m(m-1) \cdot \cdots \cdot 2 + m(m-1) \cdots 3 + \cdots + m(m-1) + m + 1}{e} \leq \frac{1}{m+1}. \]
Multiplying this by \(e/m! \) gives
\[\frac{1}{(m+1)!} \leq \left[e - (1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{(m-1)!} + \frac{1}{m!}) \right] \leq \frac{e}{(m+1)!}. \]
Actually the first formula is interesting if you just multiply it by \(e \) it says
\[\frac{1}{m+1} \leq e \cdot m! - [m! + m(m-1) \cdot \cdots \cdot 2 + m(m-1) \cdots 3 + \cdots + m(m-1) + m + 1] \leq \frac{e}{m+1}. \]
The expression in square brackets is an integer, so these inequalities (for \(m+1 > e \) tell you that \(e \cdot m! \) is not an integer: the reason is that it differs from an integer by something positive but less than 1. Since \(e \cdot m! \) can never be an integer (for any big \(m \)), it follows that \(e \) must be an irrational number.