1. (a) Fix l. We prove the statement by induction on k. The case $k = 1$ is trivial. A sequence of length $l + 1$ is either decreasing or contains an increasing subsequence of length 2. Now we assume that the theorem has been proved for all $1 \leq k < K$. Assume that we have a sequence s of length $Kl + 1$ with no decreasing subsequence of length $l + 1$. Consider all the members of the sequence s that occur as an endpoint of an increasing subsequence of maximum length. These endpoints must form a decreasing subsequence and so, by assumption, there are at most l of them. Removing these endpoints from s gives a sequence s' of $\geq (K - 1)l + 1$ elements. By assumption, s' does not contain a decreasing subsequence of length $l + 1$, so by induction, it must contain an increasing subsequence i of length $\geq K$. Since i does not involve any endpoints, it is not an increasing sequence of maximum length in s. Thus i extends to an increasing sequence of length $\geq K + 1$ in s.

Another way. For each $1 \leq n \leq kl + 1$ let a_n be the nth element of the sequence and let $i_n(d_n)$ be the length of the longest possible increasing(decreasing) subsequence ending in a_n. If the theorem is false then we have an example of a sequence, where $1 \leq i_n \leq k$ and $1 \leq d_n \leq l$ for all $1 \leq n \leq kl + 1$. By the pigeonhole principle, this means there exist $m < n$ such that $(i_m, d_m) = (i_n, d_n)$. This is a contradiction though. If $a_m < a_n$, $i_m < i_n$ because there is an increasing subsequence of length i_m ending in a_m which when followed by a_n becomes an increasing subsequence of length $i_m + 1$ ending in a_n. Similarly if $a_m > a_n$ then $d_m < d_n$. (Now you could show that a $klm + 1$-sequence has a $k + 1$-increasing, $l + 1$-decreasing, or a $m + 1$-constant subsequence.)

(b) $s = (l, l - 1, l - 2, \ldots, 1, 2l, 2l - 1, \ldots, l + 1, \ldots, kl, kl - 1, \ldots, kl - l + 1)$ but there are many possibilities. Can you enumerate them? I am not sure if this is an doable problem.

2. (a) If $n \geq m^2 + 1$ then you can divide the square into an $m \times m$ grid of smaller squares. One of these smaller $(1/m) \times (1/m)$ squares will receive at least two shots. The largest distance that could possibly separate these two of these shots is the diameter of the
square or $\sqrt{2}/m$. Since this analysis works if $m \leq \sqrt{n-1}$ we have an upper bound of $\sqrt{2}/\lfloor \sqrt{n-1} \rfloor$ as claimed.

(b) Same thing, but here we need $n \geq 2m^2 + 1$ in order to ensure that a small square gets at least three shots. The area A of the triangle that these three points form is smaller than the area of the largest possible triangle contained in an $(1/m) \times (1/m)$ square, or $1/(2m)$. Thus if $m \leq \lfloor \sqrt{(n-1)/2} \rfloor$, we have $A < 1/(2m)$ which gives the claimed upper bound.

3. Let the edges of $K_ω$ be colored red or blue. We iteratively construct a subgraph $\{w_1, w_2, \ldots \}$ having the property that the color of the edge $\{w_i, w_j\}$ with $i < j$ depending only on w_i. First let $\{v_1, v_2, \ldots,\} = \{1, 2, \ldots,\}$. There must be an infinite subsequence of $\{v_2, \ldots,\}$ connected to v_1 by red edges.

Fix $v_1 = 1$. If v_1, \ldots, v_i have already been fixed, we show how to produce v_{i+1}. Let $R_i (B_i)$ be the set of vertices (not including v_1, \ldots, v_{i-1}) that are adjacent to v_i through a red (blue) edge. Note, that either the set R_i or B_i is infinite. If R_i is infinite throw away B_i, otherwise throw away R_i. In either case, infinitely many vertices remain besides v_1, \ldots, v_i and v_i is connected to all of them through edges of the same color. Let v_{i+1} be the first vertex that remains, and continue.

4. Given a red-blue coloring c on $E(K_{n,n})$, where $K_{n,n}$ has bipartition $X \cup Y$, $X = \{x_1, \ldots, x_n\}$, $Y = \{y_1, \ldots, y_n\}$, place the following coloring on $E(K_n)$: $c(\{i, j\}) = c(\{x_i, y_j\}), i < j$. If $n \geq R(2k, 2k)$ we have a monochromatic clique of size $2k$ in K_n, on vertices $i_1 < \cdots < i_k < j_1 < \cdots < j_k$. But this means $\{x_{i_m}, y_{j_n}\}, 1 \leq m, n \leq k$ are all monochromatic. So we have a monochromatic $K_{k,k}$ if $n \geq R(2k, 2k)$.

Another approach, one that avoids $R(k, k)$. Pick x_1, notice x_1 will be adjacent to at least half of the vertices in Y through red edges or at least half of the vertices in Y through blue edges. Restrict attention to this “monochromatic” subset of Y of size $\geq n/2$. Similarly x_2 will be adjacent to $\geq 1/2$ of these points monochromatically, restrict attention to these $\geq n/4$ points and continue. After $2k - 1$ rounds, we will have x_1, \ldots, x_{2k-1} adjacent to a subset Y' of $n/2^{2k-1}$ points in Y such that the color of an edge depends only on its endpoint x_i. Since there are
2k − 1 of these points x_i in all, at least k of them must determine the same color. So as long as $n/2^{2k−1} \geq k$ we have a monochromatic $K_{k,k}$.

5. [3] Let T be an tree having a vertices (a tree is a connected graph containing no cycles).

(a) Fix $a \geq 2$. We prove the statement by induction on $b \geq 2$. If $b = 2$ then we have $n \geq a$ vertices, and so either there is a blue edge (K_2) or a red copy of K_a and thus of T. Suppose now the statement has been proved for $b = B−1$. We now prove it for $b = B$. Suppose, for sake of contradiction, that we have $n = (a−1)(B−1) + 1$ vertices but no red T and no blue K_B. Suppose a vertex v has blue degree (number of blue edges adjacent to the v) $\geq (a−1)(B−2) + 1$. By induction, the endpoints of these edges contain a red T or a blue $K_{B−1}$. By assumption, neither outcome is allowed (a blue $K_{B−1}$ together with v forms a blue K_B.) Thus every vertex has blue degree $\leq (a−1)(B−2)$ or, what is the same, red degree $\geq a−1$. We claim that this means there is a red T which is a contradiction, completing the proof.

In fact we claim that a graph in which every degree is $\geq a−1$ contains every possible tree T on a vertices. Clearly this is true for $a = 2$. Suppose the claim has been proven for $a = A−1$, we now prove it for $a = A$. Let G be a graph with $\delta \geq A−1$. Let T be a tree on A vertices. Pick a leaf v of T and remove it to get a tree T' on $A−1$ vertices. Remove a vertex x from G. The resulting graph G' has $\delta \geq A−2$. Thus G' contains a copy of T'. Let w be the vertex in T' adjacent to v. Notice that $\deg_{T'}(w) \leq A−2$. Thus either w is adjacent to x, in which case T' together with x form a copy of T in G, or w is not adjacent to x, in which case $\deg_{G'}(w) \geq A−1$, and so there is a neighbor x' of w in G' outside of T', in which case T' together with x' is a copy of T.

(b) Consider a union of $b−1$ disjoint copies of red $K_{a−1}$'s. Color the remaining edges blue.

6. For positive integers k, r let $W(k, r)$ be the least N such that any r-coloring of $[N]$ contains a monochromatic k-term arithmetic progression (these are the so-called Vander Waerden numbers, the existence of which is given by Vander Waerden’s Theorem).
We claim that

$$\{(x, y) \in \mathbb{N}^2 : 1 \leq x \leq W(k, r), 1 \leq y \leq W(k, r^{W(k,r)})\}$$

contains a two-dimensional arithmetic progression of order k. This follows from two applications of the definition of the Vander Waerden numbers. First, we define a coloring

$$g : \{0 \leq a \leq W(k, W(k, r^{W(k,r)}))\} \rightarrow [r]^{W(k,r)},$$

(recall that $[r]^{W(k,r)}$ is the set of all functions from $[W(k, r)]$ to $[r]$) by setting $g(a)(x) = f(x, a)$. In other words, we ‘color’ the row $y = a$ with the coloring that row $y = a$ gets under f. It then follows that there exists a_2 and d_2 such that

$$g(a_2) = g(a_2 + d_2) = \cdots = g(a_2 + (k-1)d_2)$$

from which it follows that

$$f(x, a_2) = f(x, a_2 + d_2) = \cdots = f(x, a_2 + (k-1)d_2) \quad (1)$$

for $1 \leq x \leq W(k, r)$. Now, we define a coloring $h : 1 \leq a \leq W(k, r) \rightarrow [r]$ by setting $h(a) = f(a, a_2)$. For this coloring there exists a_1 and d_1 such that

$$h(a_1) = h(a_1 + d_1) = \cdots = h(a_1 + (k-1)d_1)$$

which implies

$$f(a_1, a_2) = f(a_1 + d_1, a_2) = \cdots = f(a_1 + (k-1)d_1, d_2). \quad (2)$$

It follows from (1) and (2) that $(a_1, a_2), d_1$ and d_2 define a monochromatic two-dimensional arithmetic progression of order k in $[1, W(k, r)] \times [1, r^{W(k,r)}]$ with respect to the original coloring f.

7. Let $n \geq HJ(r, t^m)$ and set $N = mn$. Let

$$\varphi : [t]^m \rightarrow [t^m]$$

be an arbitrary fixed bijection. We identify $[t]^N$ and $[t^m]^n$ by identifying the vector

$$(x_1, \ldots, x_m, x_{m+1}, \ldots, x_{2m}, \ldots, x_{(n-1)m+1}, \ldots, x_{nm})$$
in \([t]^N\) with the vector
\[
(\varphi(x_1, \ldots, x_m), \varphi(x_{m+1}, \ldots, x_{2m}), \ldots; \varphi(x_{(n-1)m+1}, \ldots x_{nm}))
\]
in \([t^m]^n\). Given a coloring
\[
\sigma: [t]^N \rightarrow [r],
\]
this identification gives a coloring
\[
\sigma': [t^m]^n \rightarrow [r]
\]
in the natural way. It follows from the Hales Jewett-Theorem that \(\sigma'\) has a monochromatic line. In other words, there exists a partition \(X \cup Y = [n]\) and an element \(v_x \in t^m\) for each \(x \in X\) such that \(\sigma'\) is constant on the set of vectors that agree with \((v_x : x \in X)\) on \(X\) and are constant on \(Y\).

For \(i = 1, \ldots, m\) let
\[
I_i = \{m(x - 1) + i : x \in X\}
\]
and
\[
I_0 = \bigcup_{y \in Y} \{m(y - 1) + j : j = 1, \ldots, m\}.
\]
These sets of coordinates define a monochromatic \(m\)-space in \([t]^N\).