1. (1.3.14) Show that every simple graph with at least two vertices has two vertices of equal degree.

2. (1.3.57) Let \(d_1 \geq d_2 \geq \cdots \geq d_n \geq 0 \). Show that if \(d_1 < n \), \(d_1 \leq d_n + 1 \) and \(\sum_i d_i \) is even then \(d_i \) is a graphic sequence.

3. A parallel computer uses a large number of processors in concert. Let \(G \) denote the graph whose vertices are the processors and whose edges represent direct communication links. We’d like \(G \) to have very few edges because too many connections are unwieldy, yet we’d like to have \(G \) be “well-connected”. One good example of such a graph is the \(k \)-dimensional hypercube, \(Q_k \) (see section 1.3.7 and the following in the book). It has \(n = 2^k \) vertices and \((n \log_2(n))/2 = k2^{k-1} \) edges.

 (a) (Vertices in \(Q_k \) are connected by very short paths.) What is \(\text{diam}(Q_k) \)?

 (b) (Vertices in \(Q_k \) are connected by lots of paths.) Given two vertices \(v \) and \(w \) of \(Q_k \), give a formula for the number of distinct shortest paths from \(v \) to \(w \). (Hint: The number will depend on \(d(v, w) \)).

 (c) (A vertex in \(Q_k \) is connected by short paths to lots of vertices.) Given a vertex \(v \), how many vertices are at distance \(i \) from \(v \)?

 (d) Let \(B_k \) denote the graph whose vertices are the subsets of \(\{1, \ldots, k\} \), where two sets \(A, B \) are connected by an edge if and only if \(|A \triangle B| = 1 \). Show that \(B_k \cong Q_k \).

4. Show that if \(G \) is an connected Eulerian graph and \(T \) is a trail such that \(G - E(T) \) is connected, then \(T \) can be extended to an Eulerian circuit. (\(G \) has an Eulerian circuit \(C \) that has \(T \) as an initial segment.)

5. Show that when given a loopless graph \(G \) on the vertex set \(V(G) = \{1, 2, 3, \ldots, n\} \) as input the following algorithm produces a bipartite subgraph \(B \) having at least \(|E(G)|/2 \) edges.

 Given \(G \), let \(X = \{1\}, Y = \emptyset \). For \(i = 2 \) to \(n \), if \(i \) is adjacent to more edges with endpoints in \(X \) than to edges with endpoints in \(Y \) add \(i \) to \(Y \). Otherwise, add \(i \) to \(X \). Output the subgraph \(B \) whose edges are the edges of \(G \) that have one endpoint in \(X \) and one endpoint in \(Y \).