1. Let $e = \{v, w\}$ be an edge of the unique cycle C of G. Remove e from G to get a graph G'. G' has no cycles. (If it did, then G' and hence G would contain a cycle C' that does not contain e and is hence different from C, a contradiction.) G' is also connected. (Look at any two vertices x and y. Since G is connected there is an x-y walk W in G. Since e is on the cycle C, G contains two v-w paths, one that uses e and one that does not. Thus W doesn’t need to use the edge e and hence is in G'.) Thus G' is a tree and has $n - 1$ edges. So G has n edges.

2. Because $\chi(W_n) = 1 + \chi(C_n)$, $\chi(W_n) = 3$ if n is even and 4 if n is odd. A proper coloring of C_n can be extended to a proper coloring of W_n by giving vertex a a distinct color from the ones already used, so $\chi(W_n) \leq 1 + \chi(C_n)$. On the other hand, a proper coloring of W_n is also a proper coloring of C_n and so must use $\chi(C_n)$ colors on $\{1, \ldots, n\}$ and one more distinct color for vertex a, since it is connected to all the others. Thus $\chi(W_n) \geq 1 + \chi(C_n)$.

3. Let $A = \{(i, j, k) : i + j + k \text{ odd}\}$, $B = \{(i, j, k) : i + j + k \text{ even}\}$. If $e = \{(i, j, k), (i', j', k')\}$ is an edge (i, j, k) and (i', j', k') differ in exactly one coordinate and differ in that coordinate by exactly 1. Thus if e is an edge we have $i + j + k = i' + j' + k' + 1$ or $i' + j' + k' - 1$. So e has one end point in A and the other in B. Thus G is bipartite and has no odd cycles.

4. Since column i has no repeats it must use $n - k$ distinct numbers from $\{1, 2, \ldots, n\}$ and hence k numbers must be missing. Thus a_i is connected to k vertices b_j. On the other hand, since each row is a permutation, color j is used in each row, and since the columns have no repeats, it must be used in a different column each time. Since color j is used in $n - k$ columns and is missing from k columns, b_j is connected to k vertices a_i. By the result in class, G has a perfect matching (see page 11 of the class notes on matchings). But a perfect matching in G is an assignment to each a_i, a distinct b_j such that $\{a_i, b_j\}$ is an edge. Thus each column i gets a distinct number j that was missing from column i. Thus we get a row that is a permutation of $\{1, \ldots, n\}$ such that each column still has no repeats. So M' is extended by one
more row to a partial latin square with $k - 1$ rows missing. Repeat this process until no rows are missing.