HW6: due 2 Apr 2003

1. Solve the following recurrence relations (find a formula for a_n):

(a) $a_0 = 1, a_1 = 1, a_n = 3a_{n-1} - 9a_{n-2}; n \geq 2$

$$a_n = (3/4)(1 - 1/3\sqrt{3})(1 + \sqrt{3})^n + (3/4)(1 + 1/3\sqrt{3})(1 - \sqrt{3})^n.$$

Plug $a_n = r^n$ into $a_n = 3a_{n-1} - 9a_{n-2}$. Get $r^2 = 3r - 9$. Get $r = (3/2)(1 \pm \sqrt{3})$. Thus $a_n = A((3/2)(1 + \sqrt{3})^n + B((3/2)(1 - \sqrt{3})^n)$. Plugging in $n = 0$ and $n = 1$ get, $A + B = a_0 = 1$ and $(3/2)(A + B) + (3/2)\sqrt{3}(A - B) = a_1 = 1$. Solving for A, B, get $A = (1/2)(1 - 1/3\sqrt{3})$ and $B = (1/2)(1 + 1/3\sqrt{3})$. Thus $a_n = (1/2)(1 - 1/3\sqrt{3})(3/2)(1 + \sqrt{3})^n + (1/2)(1 + 1/3\sqrt{3})(3/2)(1 - \sqrt{3})^n$.

(b) $a_0 = 1, a_1 = 1, a_n = -4a_{n-2}; n \geq 2$

$$a_n = (1/2 - i/4)(2i)^n + (1/2 + i/4)(-2i)^n.$$

Solve $r^2 + 4 = 0$. Get $r = \pm 2i$. Get $a_n = A(2i)^n + B(-2i)^n$.

Plugging in $n = 0, 1$ get $1 = a_0 = A + B$ and $1 = a_1 = 2i(A - B)$ or $A - B = -i/2$. Thus $A = 1/2 - i/4, B = 1/2 + i/4$, and so $a_n = (1/2 - i/4)(2i)^n + (1/2 + i/4)(-2i)^n$.

2. Find a formula for a_n by using generating functions.

$a_0 = 1, a_1 = 1, a_n = 3a_{n-1} - 2a_{n-2}; n \geq 2$

$a_n = 1$ for all n.

Let $a(x) = \sum_{n=0}^{\infty} a_n x^n$. We have $a(x) = a_0 + a_1 x + \sum_{n=2}^{\infty} a_n x^n = 1 + x + \sum_{n=2}^{\infty} (3a_{n-1} - 2a_{n-2}) = 1 + x + 3x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} - 2x^2 \sum_{n=2}^{\infty} a_{n-2} x^{n-2} = 1 + x + 3x(a(x) - 1) + 2x^2 a(x)$. Solving for $a(x)$ we get $a(x) = (1 - 2x)/(1 - 3x + 2x^2)$. By partial fractions, $(1 - 2x)/(1 - 3x + 2x^2) = (1 - 2x)/((1 - x)(1 - 2x)) = 1/(1 - x)$ so $a(x) = 1/(1 - x) = \sum_{n=0}^{\infty} x^n$. Thus $a_n = 1$.

3. Let a_n be the number of strings of length n that are made of 0’s and 1’s that don’t contain the substring string 10. Find a formula for a_n. Example: $a_1 = 2, a_2 = 3$. (Find a recurrence relation for a_n and solve it.)

$a_n = n + 1$ (for $a_1 = 2, a_n = a_{n-1} + 1$ for $n \geq 2$). Consider how a string of n characters ends. If it ends in a 1, the remaining string of $n - 1$
characters form a string without a 10 and thus there are \(a_{n-1} \) ways of filling them in. On the other hand if the string ends in a 0 it can contain no 1’s at all (otherwise it would contain a 10) so there is only one such string. Thus \(a_n = a_{n-1} + 1 \).

Thus we have the recurrence relation \(a_1 = 2, a_n = a_{n-1} + 1 \) for \(n \geq 2 \). We claim \(a_n = n + 1 \). We prove this by induction on \(n \). Clearly \(a_n = n + 1 \) for \(n = 1 \) since \(a_1 = 2 \). Suppose we have the claim for \(n - 1 \), or \(a_{n-1} = (n - 1) + 1 \) or \(a_{n-1} = n \). Then \(a_n = a_{n-1} + 1 = n + 1 \).

(One can make a simpler argument without getting a recurrence relation. A string is valid if and only if it consists of a string of 0’s followed by a (possibly empty) string of 1’s. There are only \(n + 1 \) possibilities. More formally, one possibility is that the string is all 0’s. If it is not, there are \(n \) possibilities for the position \(j \) of the first 1 and once you know what \(j \) is, you know the rest of the string. Since the string contains no 10, after a 1 occurs, the string must consist entirely of 1’s. Thus the string consists of \(j - 1 \) 0’s followed by \(n - j \) 1’s.)