HW 8 Hints and Solutions
22.1.2 \(\sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} \). Weierstrass M-test with \(M_k = \frac{R^{2k+1}}{(2k+1)!} \).
Note \(|(-1)^k \frac{x^{2k+1}}{(2k+1)!}| \leq M_k \) on \([-R, R]\) and \(\sum_{k=0}^{\infty} M_k \) converges. In fact even \(\sum_{k=0}^{\infty} \frac{R^k}{k!} = e^R \) converges.
22.2.2 (a) \(f_n(x) = \frac{x}{x+n} \rightarrow f(x) = 0 \) on \([0, R]\) Indeed \(|f_n(x) - f(x)| = \frac{x}{x+n} \leq R/n \) so the convergence is uniform.
(b) \(|\cos(x/n) - 1| = |\cos(x/n) - \cos(0/n)| = |-(1/n)\sin(c/n)(x-0)| \) where \(c \) is between 0 and \(x \). At any rate \(|\sin(c/n)| \leq 1 \) and \(|\cos(x/n) - 1| \leq R/n \) if \(|x| < R \). Thus \(\cos(x/n) \rightarrow 1 \) uniformly for \(|x| < R \).
(c) Weierstrass M-test with \(M_n = 1/n^2 \).
(d) same as (c) with \(M_n = 1/n^2 \).
22.3.1 Since the terms of the series are continuous and since the series converges uniformly by Weierstrass M-test with \(M_n = 1/(n-1)^2 \), the series is continuous.
22.4.2 \(e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} \) converges on \((\infty, \infty)\) thus \(e^{-t^2/2} = \sum_{k=0}^{\infty} (-1)^k \frac{t^{2k}}{2^k k!} \) converges on \((\infty, \infty)\). For any fixed \(R > 0 \), the convergence of this series is uniform on \([-R, R] \). Use the Weierstrass M test with \(M_k = \frac{R^{2k}}{2^k k!} \).
(\(\sum_{k=0}^{\infty} M_k = e^{M^2/2} \) converges)! Thus for any \(x \) with \(|x| \leq R \) we can integrate the series term by term, so that \(e^f(x) = \int_0^x e^{-t^2/2} dt = \int_0^x \sum_{k=0}^{\infty} (-1)^k \frac{t^{2k}}{2^k k!} dt = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{2^k k!} \). Since \(R \) was arbitrary we have \(erf(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2^k k!(2k+1)} \) on \((\infty, \infty)\).
22.4.3 \(f(x) = \sum_{n=1}^{\infty} u_n(x) \) where \(u_n(x) = \frac{\cos(nx)}{(n-1)!} \). Let \(M_n = 1/(n-1)! \).
We have \(|u_n(x)| \leq M_n \) on the interval \([0, \pi/2]\) (or any compact interval for that matter), and \(\sum_{n=1}^{\infty} M_n = e \) converges. Thus by the Weierstrass M-test, the series for \(f(x) \) converges uniformly. This means we can perform the integration \(\int_0^{\pi/2} f(x) dx \) term-by-term, which gives \(\int_0^{\pi/2} f(x) dx = \sum_{n=1}^{\infty} \int_0^{\pi/2} u_n(x) dx = \sum_{n=1}^{\infty} \frac{\sin(n\pi/2)}{n!} \).
22.5.1 We are assuming the series for \(f(x) \) is convergent. What remains to apply Theorem 22.5A is to show is that the series for \(f'(x) \) is convergent. But the Weierstrass M-test with \(M_n = na_n \) will give this since we are assuming \(\sum M_n \) converges.
22.6.3 Plugging in \(y(x) = \sum_{n=0}^{\infty} a_n x^n \) into \(y' - y = e^x \) we get \(\sum_{n=0}^{\infty} ((n+1)a_{n+1} - a_n)x^n = \sum_{n=0}^{\infty}(1/n!)x^n \). Thus \((n+1)a_{n+1} - a_n = 1/n! \) for \(n \geq 0 \). If \(a_n = b_n/n! \) then this becomes \(b_{n+1} - b_n = 1 \) for \(n \geq 0 \). Since \(y(0) = a_0 = 0 \), \(b_0 = 0 \) and this solves to \(b_n = n \). Thus \(a_n = b_n/n! = 1/(n-1)! \) for \(n \geq 1 \),
and \(a_0 = 0 \). Thus \(y(x) = \sum_{n=1}^{\infty} \frac{x^n}{(n-1)!} = xe^x \).

22.6.2 Let \(f(x) \) be the series, then \(f'(x) = xg(x) \) where \(g(x) = \sum_{n=1}^{\infty} \frac{x^n}{n} \).

But then \(g'(x) = \sum_{n=1}^{\infty} x^{n-1} = 1/(1 + x) \). Thus \(g(x) = \log(1 + x) + C \), but \(C = 0 \). So \(f'(x) = x \log(1 + x) \). Thus after some pain, \(f(x) = x/2 - x^2/4 - (1/2) \log(1 + x) + (1/2)x^2 \log(1 + x) + K \). Since \(f(0) = 0 \) we have \(K = 0 \).