Problem 1.

a) In the xy-plane, let $F = Pi + Qj$. Give in terms of P and Q the line integral representing the flux of F across a simple closed curve C, with outward-pointing normal.

b) Let $F = axi + byj$. How should the constants a and b be related if the flux of F over any simple closed curve C is equal to the area inside C?

Problem 2.

A solid hemisphere of radius 1 has its lower flat base on the xy-plane and center at the origin. Its density function is $\delta = z$. Find the force of gravitational attraction it exerts on a unit point mass at the origin.

Problem 3.

Evaluate $\int_C (y - x)dz + (y - z)dx$ over the line segment C from $P : (1, 1, 1)$ to $Q : (2, 4, 8)$.

Problem 4.

Consider a solid sphere of radius a with center at the origin; let H be its solid upper hemisphere (i.e., the part above the xy-plane). Set up a triple integral in spherical coordinates which gives the average distance of a point in H from the xy-plane. (Give integrand, limits, and the constant factor in front, but do not evaluate.)

Problem 5.

Let C be a solid right circular cone having base radius 1 and vertex angle 60°. Set up an integral in cylindrical coordinates which represents the moment of inertia of C about its central axis; assume the density $\delta = 1$. (Place the cone so its axis is the x-axis and its vertex is at the origin; supply integrand and limits, but do not evaluate.)

Problem 6.

a) Let $F = ay^2i + 2y(x + z)j + (by^2 + z^2)k$. For what values of the constants a and b will F be conservative? Show work.

b) Using these values, find a function $f(x, y, z)$ such that $F = \nabla f$.

c) Using these values, give the equation of a surface S having the property: $\int_C F \cdot dr = 0$ for any two points P and Q on the surface S.

Problem 7.

Let S be the surface formed by the part of the graph of the paraboloid $z = x^2 + y^2$ lying below the plane $z = 1$, and let $F = xi + yj + (1 - 2z)k$.

Calculate the flux of F across S, taking the outward direction (i.e., the one pointing away from the z-axis) as the one for which the flux is positive. Do this two ways:

a) by a method which calculates $\int_S F \cdot dS$ directly;

b) by using the divergence theorem.

Problem 8.

Let S be the infinite circular cylindrical surface given by the equation $x^2 + y^2 = 1$ having the whole z-axis as its central axis, and let $F = (xz - y)i + xyj + zk$.

a) Calculate $\nabla \times F$ (i.e., curl F).

b) Deduce that $\iint_R \nabla \times F \cdot \mathbf{n} \, dS = 0$ for any finite portion R of the surface S.

c) Let C be any closed curve on S going once around S (and oriented as in the picture). Show by using the result of part (b) and Stokes' theorem that $\oint_C F \cdot dr$ always has a constant value independent of C, and determine this value.

Problem 9.

Let $\phi(x, y, z)$ be a function with continuous second partial derivatives. Prove that $\nabla \times \nabla \phi = 0$.

Problem 10.

An xz-cylinder in 3-space is a surface given by an equation $f(x, z) = 0$ in x and z alone; its section by any plane $y = c$ perpendicular to the y-axis is always the same xz-cylinder. (See picture.)

Show that if $F = x^2i + y^2j + xzk$, then $\iint_S F \cdot \mathbf{n} \, dS = 0$ for any simple closed curve C lying on an xz-cylinder. (Use Stokes' theorem.)