Part 3

Part 3 – Cycling – 50 minutes

1.	Tour de France	15
2.	Dutch Loop	15+20
3.	Unique cycle	25
4.	Magic bicycle	45
5.	Yellow jersey	65
6.	Wheels of fortune	65

Total: 250 points + time bonus (5 pts/minute)

France/Belgium WPC Test 2011		
Part 3		

1. Tour de France

(15 points)

Draw a closed loop that passes through every cell of the grid exactly once, connecting the centers of adjacent cells (touching by a side), without crossing or touching itself. The letter sequence F-R-A-N-C-E-F-R-A-N-C-E-... repeats along the loop. The gray cells are not part of the loop.

2. Dutch Loop

(15+20 points)

Draw a single closed loop in the grid, passing through each square exactly once. The loop consists of horizontal and vertical line segments, and must not intersect or overlap itself anywhere. The path must make a 90-degree turn on the black circles, and make a straight line on the white circles.

				\bigcirc		
			\bigcirc			
\bigcirc	\bigcirc		\bigcirc	\bigcirc		
		\bigcirc				
\bigcirc					\bigcirc	
			\bigcirc			

France/Belgium WPC Test 2011		
Part 3		

3. Unique cycle

(25 points)

Almost all the cells of the grid come in pairs with strictly identical contents. There are three cells whose contents are unique. Find them.

9 9 2 0	S S S S S S S S	0 10 0	d≫0 (>>>0	\$ \$ \$	S S S S S S S S S S S S S S S S S S S	9 9 2 9
\$~0 \$~0	\$ \$ \$	\$ \$ \$		\$ \$ \$		\$ \$ \$
9 <u>4</u> 9 9 <u>4</u> 9	\$ \$ \$ \$	904 2040	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ \$ \$	\$ \$ \$	\$ \$ \$
d∑0 Q∑Q	40 40		\$ \$ \$	\$ \$ \$	N N N	φ φ Φ
9.040 4.0	A A A	₫\$0 ₽0\$₽	₽ ₽ ₽	Ф Ф Ф	d d d	\$ \$ \$
\$ \$ \$	\$ \$ \$ \$	\$ \$ \$		A A A	IN IN IN IN IN IN IN IN IN IN IN IN IN I	\$ \$ \$
₫~\$0 \$0 \$~\$0	\$~0 \$~0	Q.√D P P		\$ 6 7 6	₽ Q Q	\$*0 \$*0

Part 3

4. Magic bicycle

(45 points)

Place the numbers from 1 to 14 (each exactly once) in the circles, so that the sum of the values on a straight line or on a circle is always the same. Two numbers are already placed.

France/Belgium WPC Test 2011	
Part 3	

5. Yellow jersey

(65 points)

Enter the 28 names below (Tour de France winners from 1952 to 2010) into the grid. All the A's are already placed. All the cells where two words intersect are grayed. All the words are interconnected, and no word which is not in the list (not even a two-letter word) can appear.

CONTADOR	LEMOND	VANIMPE	ANQUETIL
SASTRE	DELGADO	MERCKX	NENCINI
PEREIRO	ROCHE	OCANA	BAHAMONTES
ARMSTRONG	HINAULT	JANSSEN	GAUL
PANTANI	FIGNON	PINGEON	WALKOWIAK
ULLRICH	ZOETEMELK	AIMAR	BOBET
INDURAIN	THEVENET	GIMONDI	COPPI

France/Belgium WPC Test 2011

Part 3

6. Wheels of fortune

(65 points)

Enter digits into the empty circles, so that each large wheel contains each digit from 1 to 8 exactly twice, and two circles containing the same digit are separated by a number of circles equal to that digit: one cell separates the two 1's, two cells separate the two 2's, etc.

