18.212 Problem Set 2 (due Monday, April 10, 2023)

Each problem is 10 points.

Problem 1. Construct a bijection between 213-avoiding permutations of size n and Dyck paths with $2 n$ steps.

Problem 2. For any n, calculate the number of permutations $w \in S_{n}$ that avoid 2 patterns 123 and 4321 (i.e., w should be both 123 -avoiding and 4321-avoiding).

Problem 3. Let U and D be the up and down operations acting on the space $\mathbb{R}[\mathbb{Y}]$ of formal linear combinations of Young diagrams. Show that the coefficient of \emptyset (the empty Young diagram) in $(U+D)^{2 n}(\emptyset)$ equals $(2 n-1)!!:=1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 n-1)$.

Problem 4. Let $A(n)$ be the number of partitions $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq\right.$ $\cdots \geq \lambda_{l}$) of n such that λ_{i} is not divisible by 3 for any i. Let $B(n)$ be the number of partitions $\mu=\left(\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{l}\right)$ of n such that $\mu_{i} \neq \mu_{i+2}$ for any i. (In other words, μ cannot have 3 equal parts.) Prove bijectively that $A(n)=B(n)$.

Problem 5. In class, we defined the Fibonacci lattice \mathbb{F} and labelled its elements by 12 -compositions, i.e., compositions $c=\left(c_{1}, \ldots, c_{l}\right)$ with all parts c_{i} equal 1 or 2 . This construction of \mathbb{F} is based on a recursive procedure. Find an explicit non-recursive description of the covering relation $c \lessdot c^{\prime}$ in \mathbb{F}, where c and c^{\prime} are 12 -compositions.

Problem 6. The q-Pochhammer symbol is defined as follows:

$$
(x ; q)_{n}:=(1-x)(1-x q)\left(1-x q^{2}\right) \cdots\left(1-x q^{n-1}\right)
$$

and $(x ; q)_{0}=1$. Prove the identity

$$
(x ; q)_{n}=\sum_{k=0}^{n} q^{k(k-1) / 2}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}(-x)^{k}
$$

Problem 7. Let $(q ; q)_{n}:=(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)$, and also define $(q ; q)_{\infty}:=\prod_{k=1}^{\infty}\left(1-q^{k}\right)$.

Let us fix a nonnegative integer r. Prove the identity

$$
\frac{1}{(q ; q)_{\infty}}=\sum_{k \geq 0} \frac{q^{k(k+r)}}{(q ; q)_{k}(q ; q)_{k+r}}
$$

Hint for problems 6 and 7: Try to interpret the identities in terms of partitions.

Bonus problems:

Problem 8. Prove the identity:

$$
\prod_{k \geq 1} \frac{\left(1-q^{k}\right)}{\left(1+q^{k}\right)}=1+2 \sum_{n \geq 1}(-1)^{n} q^{n^{2}}
$$

Problem 9. The lattice of non-crossing partitions $N C_{n}$ is the poset whose elements are non-crossing set partitions of $[n]$ ordered by refinement. ($N C_{n}$ is a subposet of the partition lattice Π_{n}.) Find the number of saturated chains $\left(\hat{0} \lessdot a_{1} \lessdot a_{2} \lessdot \cdots \lessdot a_{n-2} \lessdot \hat{1}\right)$ in $N C_{n}$.

