18.212 PROBLEM SET 2 (due Monday, April 10, 2023)

Each problem is 10 points.

Problem 1. Construct a bijection between 213-avoiding permutations of size n and Dyck paths with 2n steps.

Problem 2. For any n, calculate the number of permutations $w \in S_n$ that avoid 2 patterns 123 and 4321 (i.e., w should be both 123-avoiding and 4321-avoiding).

Problem 3. Let U and D be the up and down operations acting on the space $\mathbb{R}[\mathbb{Y}]$ of formal linear combinations of Young diagrams. Show that the coefficient of \emptyset (the empty Young diagram) in $(U + D)^{2n}(\emptyset)$ equals $(2n-1)!! := 1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)$.

Problem 4. Let A(n) be the number of partitions $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_l)$ of n such that λ_i is not divisible by 3 for any i. Let B(n) be the number of partitions $\mu = (\mu_1 \ge \mu_2 \ge \cdots \ge \mu_l)$ of n such that $\mu_i \ne \mu_{i+2}$ for any i. (In other words, μ cannot have 3 equal parts.) Prove bijectively that A(n) = B(n).

Problem 5. In class, we defined the Fibonacci lattice \mathbb{F} and labelled its elements by 12-compositions, i.e., compositions $c = (c_1, \ldots, c_l)$ with all parts c_i equal 1 or 2. This construction of \mathbb{F} is based on a recursive procedure. Find an explicit non-recursive description of the covering relation $c \leq c'$ in \mathbb{F} , where c and c' are 12-compositions.

Problem 6. The *q*-Pochhammer symbol is defined as follows:

$$(x;q)_n := (1-x)(1-xq)(1-xq^2)\cdots(1-xq^{n-1}),$$

and $(x;q)_0 = 1$. Prove the identity

$$(x;q)_n = \sum_{k=0}^n q^{k(k-1)/2} \begin{bmatrix} n \\ k \end{bmatrix}_q (-x)^k.$$

Problem 7. Let $(q;q)_n := (1-q)(1-q^2)\cdots(1-q^n)$, and also define $(q;q)_{\infty} := \prod_{k=1}^{\infty} (1-q^k)$. Let us fix a nonnegative integer r. Prove the identity

$$\frac{1}{(q;q)_{\infty}} = \sum_{k \ge 0} \frac{q^{k(k+r)}}{(q;q)_k (q;q)_{k+r}}.$$

Hint for problems 6 and 7: Try to interpret the identities in terms of partitions.

Bonus problems:

Problem 8. Prove the identity:

$$\prod_{k\geq 1} \frac{(1-q^k)}{(1+q^k)} = 1 + 2\sum_{n\geq 1} (-1)^n q^{n^2}.$$

Problem 9. The lattice of non-crossing partitions NC_n is the poset whose elements are non-crossing set partitions of [n] ordered by refinement. $(NC_n \text{ is a subposet of the partition lattice } \Pi_n.)$ Find the number of saturated chains $(\hat{0} \leqslant a_1 \leqslant a_2 \leqslant \cdots \leqslant a_{n-2} \leqslant \hat{1})$ in NC_n .