18.212 PROBLEM SET 1 (due Friday, March 10, 2023)

Each problem is 10 points.

Problem 1. Find an explicit formula for the number of Dyck paths of size n (i.e., Dyck paths with n up steps and n down steps) that start with 3 (or more) up steps.

For example, for n = 3, there is only one such Dyck path UUUDDD; and, for n = 4, there are 4 paths: UUUUDDDD, UUUDUDDD, UUUDDUDD, UUUDDDDUD. (Here U and D denote up and down steps.)

Problem 2. In class, we mentioned that both binary trees on n vertices and plane trees on n + 1 vertices are counted by the Catalan number C_n . Here "binary trees" are not necessarily "complete binary trees." A binary tree can have vertices with only one (left or right) child.

Prove bijectively that the number binary trees on n vertices equals the number of plane trees on n + 1 vertices.

(You'll get a slightly reduced credit -2 points for a non-bijective proof, e.g., a proof based on recurrence relations.)

Problem 3. Prove bijectively that, for any $1 \le k \le n$, the number of non-crossing set partitions of [n] with k blocks equals the number of non-crossing set partitions of [n] with n - k + 1 blocks.

(Again, -2 points for a non-bijective proof.)

Problem 4. Recall that the *major index* of a permutation $w = w_1 w_2 \cdots w_n$ is defined as

$$\operatorname{maj}(w) := \sum_{i: w_i > w_{i+1}} i.$$

Define the modular major index $modmaj(w) \in \{0, 1, ..., n-1\}$ as the reside of $maj(w) \mod n$.

Prove bijectively that, for any $i, j \in \{0, 1, \dots, n-1\}$,

 $\#\{w \in S_n \mid \text{modmaj}(w) = i\} = \#\{w \in S_n \mid \text{modmaj}(w) = j\}.$

(-2 points for a non-bijective proof)

Problem 5. Find a bijective proof of the formula

$$\sum_{k=0}^{n} c(n,k) x^{k} = x(x+1) \dots (x+n-1)$$

using a bijection. Here c(n, k) is the signless Stirling number of the first kind, i.e., the number of permutations $w \in S_n$ with exactly k cycles.

(Here is one possible approach to this problem: Assume that x is a positive integer. Give combinatorial interpretations of both sides of this equation; and construct a bijection between these combinatorial objects.)

Problem 6. Recall that the number of *exceedances* of a permutation $w = w_1 w_2 \dots w_n$ is defined as $exc(w) := \{i \in [n] \mid w_i > i\}$. Define the number of *weak exceedances* as $wexc(w) := \{i \in [n] \mid w_i \ge i\}$.

Prove bijectively that, for any $k \ge 0$,

$$#\{w \in S_n \mid \exp(w) = k\} = #\{w \in S_n \mid \exp(w) = k+1\}.$$

(-2 points for a non-bijective proof)

Bonus Problems:

Problem 7. Recall that the Stirling number of the second kind S(n, k) equals the number of set partition on [n] with k blocks; and the Eulerian number A(n, k) equals the number of permutations in $w \in S_n$ with k descents.

Prove the formula

$$\sum_{k=1}^{n} k! S(n,k) x^{n-k} = \sum_{k=0}^{n-1} A(n,k) (x+1)^{k}$$

Problem 8. Let $K_n = (V, E)$ be the *complete graph* on *n* vertices. Its set of vertices is V = [n]; and its set of edges *E* is the set of all pairs $\{i, j\} \subset [n], i \neq j$.

For $n \geq 4$, construct a bijection $f : E \to E$ from the set of edges of K_n to itself such that, for any $e \in E$, the edges e and f(e) have no common vertices.