18.212 Problem Set 1 (due Friday, March 10, 2023)

Each problem is 10 points.

Problem 1. Find an explicit formula for the number of Dyck paths of size n (i.e., Dyck paths with n up steps and n down steps) that start with 3 (or more) up steps.

For example, for $n=3$, there is only one such Dyck path $U U U D D D$; and, for $n=4$, there are 4 paths: $U U U U D D D D$, UUUDUDDD, $U U U D D U D D, U U U D D D U D$. (Here U and D denote up and down steps.)

Problem 2. In class, we mentioned that both binary trees on n vertices and plane trees on $n+1$ vertices are counted by the Catalan number C_{n}. Here "binary trees" are not necessarily "complete binary trees." A binary tree can have vertices with only one (left or right) child.

Prove bijectively that the number binary trees on n vertices equals the number of plane trees on $n+1$ vertices.
(You'll get a slightly reduced credit -2 points for a non-bijective proof, e.g., a proof based on recurrence relations.)

Problem 3. Prove bijectively that, for any $1 \leq k \leq n$, the number of non-crossing set partitions of $[n]$ with k blocks equals the number of non-crossing set partitions of [n] with $n-k+1$ blocks.
(Again, -2 points for a non-bijective proof.)

Problem 4. Recall that the major index of a permutation $w=w_{1} w_{2} \cdots w_{n}$ is defined as

$$
\operatorname{maj}(w):=\sum_{i: w_{i}>w_{i+1}} i .
$$

Define the modular major index $\operatorname{modmaj}(w) \in\{0,1, \ldots, n-1\}$ as the reside of $\operatorname{maj}(w) \bmod n$.

Prove bijectively that, for any $i, j \in\{0,1, \ldots, n-1\}$,

$$
\#\left\{w \in S_{n} \mid \operatorname{modmaj}(w)=i\right\}=\#\left\{w \in S_{n} \mid \operatorname{modmaj}(w)=j\right\}
$$

(-2 points for a non-bijective proof)

Problem 5. Find a bijective proof of the formula

$$
\sum_{k=0}^{n} c(n, k) x^{k}=x(x+1) \ldots(x+n-1)
$$

using a bijection. Here $c(n, k)$ is the signless Stirling number of the first kind, i.e., the number of permutations $w \in S_{n}$ with exactly k cycles.
(Here is one possible approach to this problem: Assume that x is a positive integer. Give combinatorial interpretations of both sides of this equation; and construct a bijection between these combinatorial objects.)

Problem 6. Recall that the number of exceedances of a permutation $w=w_{1} w_{2} \ldots w_{n}$ is defined as $\operatorname{exc}(w):=\left\{i \in[n] \mid w_{i}>i\right\}$. Define the number of weak exceedances as $\operatorname{wexc}(w):=\left\{i \in[n] \mid w_{i} \geq i\right\}$.

Prove bijectively that, for any $k \geq 0$,

$$
\#\left\{w \in S_{n} \mid \operatorname{exc}(w)=k\right\}=\#\left\{w \in S_{n} \mid \operatorname{wexc}(w)=k+1\right\}
$$

(-2 points for a non-bijective proof)

Bonus Problems:

Problem 7. Recall that the Stirling number of the second kind $S(n, k)$ equals the number of set partition on $[n]$ with k blocks; and the Eulerian number $A(n, k)$ equals the number of permutations in $w \in S_{n}$ with k descents.

Prove the formula

$$
\sum_{k=1}^{n} k!S(n, k) x^{n-k}=\sum_{k=0}^{n-1} A(n, k)(x+1)^{k}
$$

Problem 8. Let $K_{n}=(V, E)$ be the complete graph on n vertices. Its set of vertices is $V=[n]$; and its set of edges E is the set of all pairs $\{i, j\} \subset[n], i \neq j$.

For $n \geq 4$, construct a bijection $f: E \rightarrow E$ from the set of edges of K_{n} to itself such that, for any $e \in E$, the edges e and $f(e)$ have no common vertices.

