
PRIMES MATH PROBLEM SET
PRIMES 2024

DUE NOVEMBER 30, 2023

Dear PRIMES applicant:
This is the PRIMES 2023 Math Problem Set. Please send us your solutions as part of 

your PRIMES application by November 30, 2023. For complete rules, see the following 
link: http: //math.mit.edu/research/highschool/primes/apply.php

• Note that this set contains two parts: “General Math Problems” and “Advanced
Math Problems.” Please, solve as many problems as you can in both parts.

• You can type the solutions or write them up by hand and then scan them. Please
attach your solutions to the application as a PDF file. The name of the attached
file must start with your last name, for example, “etingof-solutions.pdf”
or similar. Include your full name in the heading of the file.

• Please, write not only answers, but also proofs (and partial solutions/results/ideas
if you cannot completely solve the problem). Besides the admission process, your
solutions will be used to decide which projects would be most suitable for you if
you are accepted to PRIMES.

• Submissions in LATEX are preferred, but handwritten submissions are also ac-
cepted.

• You are allowed to use any resources to solve these problems, except other peo-
ple’s help. This means that you can use calculators, computers, books, and the
Internet. However, if you consult books or Internet sites, please give us a refer-
ence.

• Note that posting these problems on problem-solving websites before
the application deadline is strictly forbidden! Applicants who do so will
be disqualified, and their parents and recommenders will be notified. Note that
some of these problems are tricky. We recommend that you do not leave them
for the last day. Instead, think about them, on and off, over some time, perhaps
several days.

Why it makes no sense to cheat

PRIMES expects its participants to adhere to MIT rules and standards for honesty
and integrity in academic studies. As a result, any cases of plagiarism, unautho-
rized collaboration, cheating, or facilitating academic dishonesty during the
application process or during the work at PRIMES may result in immedi-
ate disqualification from the program, at the sole discretion of PRIMES. In
addition, PRIMES reserves the right to notify a participant’s parents, schools, and/or
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recommenders in the event it determines that a participant did not adhere to these
expectations. For explanation of these expectations, see What is Academic Integrity?,
integrity.mit.edu.

Moreover, even if someone gets into PRIMES by cheating, it would immediately be-
come apparent that their background is weaker than expected, and they are not ready
for research. This would prompt an additional investigation with serious consequences.
By trying to get into PRIMES by cheating, students run very serious risks of exposing
their weak background and damaging their college admissions prospects.

Note: This entrance problem set is larger than those of previous years, so we expect
competitive applicants to solve at least 60% of the problems (unlike previous years, when
competitive applicants were expected to solve at least 70% of the problems). However,
we encourage you to apply if you can solve at least 40% of the problems.

ENJOY!
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PRIMES 2024: ENTRANCE PROBLEM SET

Notation. We let Z and R denote the set of integers and the set of real numbers,
respectively. Also, we let P, N, and N0 denote the set of primes, positive integers, and
nonnegative integers, respectively.

General Math Problems

Problem G1. Hogwarts has quite peculiar habits and games.

(a) Gryffindor fans tell the truth when Gryffindor wins and lie when it loses. Fans
of Hufflepuff, Ravenclaw, and Slytherin behave similarly. After two matches of
quidditch with the participation of these four teams (with no draws and each team
playing exactly one game), among the wizards who watched the broadcast, 500
answered positively to the question “Do you support Gryffindor?”, 600 answered
positively to the question “Do you support Hufflepuff?”, 300 answered positively
to the question “Do you support Ravenclaw?”, and 200 answered positively to
the question “Do you support Slytherin?”. How many wizards support each of
the teams? Note: Each wizard is fan of exactly one of the teams.

(b) There is a bucket of N candies leftover from Halloween (N ≥ 2). Two friends,
Hermione Granger and Ron Weasley, take turns to disappear candies from the
bucket as follows. The first turn, Hermione must disappear at least one candy
and cannot disappear all of the candies. Then taking turns, each of them must
disappear at least one candy and at most 9/4 times the number of candies disap-
peared by her/his friend in the previous turn. The winner is the one disappearing
the last candy. Assume that Hermione and Ron play optimally.
(i) For which numbers N does Hermione have a winning strategy? Justifying

your answer.

(ii) Answer the previous question replacing 9/4 by 3.

Problem G2. Suppose that each edge of a given convex hexagon has distance 1 to the
origin (this means, each edge is contained in a line whose distance to the origin equals 1).
What is the minimum possible area enclosed by this hexagon? Justify your answer.

Problem G3. For any positive a, b ∈ Z, we define pow(a, b) inductively in the following
way: pow(a, 1) = a and pow(a, b) = apow(a,b−1) if b ≥ 2.

(a) Prove that for any positive k, n ∈ Z with gcd(k, n) = 1, there exists c ∈ Z with
0 ≤ c < n and M ∈ N such that pow(k,m) ≡ c (mod n) for all m ∈ Z such that
m ≥ M : we denote the integer c by fn(k).

(b) Prove that for every positive integer n, the inclusion (Z/nZ)× ⊆ Im(fn) holds,
where Im(fn) is the image of the function fn : Z → Z.
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Problem G4.

(a) Describe an algorithm, with proof, to compute all possible ways to write a given
n ∈ N as the sum of squares of consecutive positive integers. For example, for
n = 25, we can write 25 = 52 and 25 = 32+42. Include your code as part of your
solution (feel free to use your favorite programming language).

(b) What is the time complexity of your algorithm?

(c) What is the first number that is NOT a perfect square which can be written as
the sum of squares of consecutive positive integers in three different ways? Hint:
it is less than 150000.

Problem G5. A nonempty set S consisting of positive real numbers is called an additive
set if x + y ∈ S when x, y ∈ S. Let S be an additive set. An element of S is called
indecomposable if it is not the sum of two (not necessarily distinct) elements of S, and S is
called decomposable if every element of S can be written as a finite sum of indecomposable
elements (allowing repetitions and sums consisting of only one summand). Prove that
if S is an additive set and there exists a strictly decreasing sequence (xn)n≥1 such that
{xn, xn − xn+1 : n ∈ N} ⊆ S, then there exists an additive set contained in S that is not
decomposable.
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Advanced Math Problems

Problem M1. Suppose that a function g : [0, 1] → R is continuous on [0, 1] and differen-
tiable on (0, 1). Prove that if there exists c ∈ R with 0 < c < 1 such that

∫ c

0
g(t) dt = 0,

then
2

1− c

∫ 1

0

g(t) dt ≤ sup
{
|g′(t)| : t ∈ (0, 1)

}
.

Problem M2. Let b and n be nonnegative integers with b ≥ 2. If n =
∑k

i=0 aib
i, where

ak ̸= 0 and 0 ≤ a0, . . . , ak ≤ b − 1, then we write n = [ak, . . . , a0]b, and we say that n
is b-ascending provided that ak < ak−1 < · · · < a0. Assume that 0 is b-ascending for
every b. For example, 158 = [1, 5, 8]10 is 10-ascending and also 11-ascending because
158 = [1, 3, 4]11, but it is not 12-ascending because 158 = [1, 1, 2]12.

(a) For each b, argue that there are only finitely many b-ascending numbers for any b,
and find how many b-ascending numbers are there.

(b) Let P (d, b) be the probability that a positive random d-digits number in base b
is b-ascending. Assume that P (0, b) = 1 for every b. Give a formula for P (d, b)
and compute

lim
b→∞

P (d, b) and lim
b→∞

∞∑
d=0

P (d, b).

(c) Given n ∈ N, justify why there must be only finitely many b such that n is not
b-ascending. Set N(n) := |{b ∈ N :

√
n < b ≤ n} and n is not b-ascending}|.

Find a formula for N(n).

ProblemM3. Let (A,+) be a finite abelian group. For k ∈ N, a sequence (a1, a2, . . . , ak)
is called a nuller of A if a1 + a2 + · · · + ak = 0, and a nuller (a1, a2, . . . , ak) is called
minimal if

∑
i∈I ai ̸= 0 for any nonempty proper subset of {1, 2, . . . , k}. Define

ρ(A) := max

{
1

o(a1)
+

1

o(a2)
+ · · ·+ 1

o(ak)
: (a1, a2, . . . , ak) is a minimal nuller of A

}
,

where o(a) denotes the order of a ∈ A. Prove that ρ(A) = 1 if and only if A is cyclic
with |A| = pn for some p ∈ P and n ∈ N0.

Problem M4. Let N0[x
±1] denote the set of all Laurent polynomials with coefficients

in N0. For instance, x
−2023 + x2023 belongs to N0[x

±1] while x2 − 2x+1 does not. As N0,
the set N0[x

±1] is closed under both addition and multiplication. We say that a nonzero
Laurent polynomial f =

∑n
i=0 cix

ki ∈ N0[x
±1] with k0 > k1 > · · · > kn has n + 1 terms

and is

• irreducible if f is not a monic monomial and the equality f = gh for some
g, h ∈ N0[x

±1] implies that either g or h is a monic monomial of N0[x
±1],
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• monolithic if f = gh for some g, h ∈ N0[x
±1] implies that either g or h is a

monomial of N0[x
±1], and

• hyper-monolithic if f is not a monomial and either k0 − k1 < ki − ki+1 for every
i ∈ Z with 1 ≤ i ≤ n − 1 or kn−1 − kn < kj − kj+1 for every j ∈ Z with
0 ≤ j ≤ n− 2.

In this problem, we will prove that N0[x
±1] satisfies a condition similar to that of the

famous Goldbach’s conjecture.

(a) Prove that every non-monomial f ∈ N0[x
±1] satisfying that f(1) is an odd number

greater than 3 can be written as a sum of at most three irreducibles.

(b) Prove that each hyper-monolithic in N0[x
±1] is monolithic.

(c) Prove that if f ∈ N0[x
±1] has at least three terms, then f = g + h for some

g, h ∈ N0[x
±1], where g is hyper-monolithic and h(1) ≤ g(1).

(d) Suppose that f ∈ N0[x
±1] has at least three terms and also that 5f(1)

6
− 1 ≤

p ≤ f(1) − 2 for some p ∈ P. Prove that f can be written as the sum of two
irreducibles in N0[x

±1].

(e) Prove that every non-monomial f ∈ N0[x
±1] satisfying that f(1) > 31 can be

written as a sum of at most two irreducibles. NOTE: You can use (without
proving it) the Nagura’s result that for each n ∈ Z with n ≥ 25, there exists
p ∈ P such that n < p < 6n

5
.

Problem M5. A (possibly infinite) graph is called a tree if it is connected and acyclic.
For k ≥ 1, a tree is called k-regular if every vertex has exactly k neighbors.

(a) Prove that, given a vertex v in a (q+1)-regular tree and i ∈ N, there are exactly
(q + 1)qi−1 vertices at distance i from v. In particular, the ball of center v and
radius k contains exactly

1 +
k∑

i=1

(q + 1)qi−1 = 1 + (q + 1)
k−1∑
i=0

qi = 1 + (1 + q)
qk − 1

q − 1
.

A river in the tree is an infinite path such that for every vertex in the path, exactly
two neighbors are also in the path. Let A and B be two rivers in a (q + 1)-regular tree
that share finitely many vertices. Let c be the number of vertices A and B have in
common, and let d be the distance between A and B (i.e., the length of the shortest
path connecting a vertex in A and a vertex in B). Also, let α and β be two non-negative
integers.

(b) How many vertices are there at distance at most α from A and β from B when
A ∩B is empty (in terms of α, β, and d)? Justify your answer.

(c) How many vertices are there at distance at most α from A and β from B when
A ∩B is nonempty (in terms of α, β, and c)? Justify your answer.
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