
PRIMES 2023: ENTRANCE PROBLEM SET

Notation. We let Z and R denote the set of integers and the set of real numbers,
respectively.

General Math Problems

Problem G1. Can we tile a 4× 2023 grid using pieces of the form ?

Solution. The answer is no. Consider the elements of the additive group Z2×Z2 under
addition: namely, 0 = (0, 0), e1 = (1, 0), e2 = (0, 1), and s = (1, 1). Now fill out the
first (top) row of the grid with the sequence e1, e2, . . . , e2, e1, which contains 2023 terms,
starts with e1, and alternates between copies of e1 and e2. Similarly, fill out the second
row of the given grid with the sequence 0, s, . . . , s, 0, which contains 2023 terms, starts
with 0, and alternates between copies of 0 and s. Then fill out the third row of the
grid with the sequence e2, e1, . . . , e1, e2, which contains 2023 terms, starts with e2, and
alternates between copies of e2 and e1. Finally, fill out the fourth (last) row of the grid
with the sequence s, 0, . . . , 0, s, which contains 2023 terms, starts with s, and alternates
between copies of s and 0. We will obtain the following filled-out grid.

Observe now that all the elements in the grid add to 0 since the sum in each column
is 0 + e1 + e2 + s = 0. On the other hand, observe that matter how do we place
an L-shaped piece L on the grid, L will cover two copies of the same element and two
additional elements of Z2×Z2 placed in consecutive rows. Since 2x = 0 for all x ∈ Z2×Z2

and two elements in consecutive rows add either to e1 or e2, the elements covered by
L add to either e1 or e2. Now suppose, by way of contradiction, that one could tile
the grid with (rotated) copies of the L-shaped piece , namely, L1, . . . , L2023. For each
i ∈ {1, 2, . . . , 2023}, let Si be the sum of the sum in Z2 × Z2 of the elements covered by
Li. Since Si ∈ {e1, e2} for all i, we see that

0 =
2023∑
i=1

Si = me1 + (2023−m)e2

for some nonnegative integer m. However, this would imply that both m and 2023−m
are even, which is a contradiction. □
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Problem G2. Prove that there are infinitely many pairs (a, b) ∈ Z2 with gcd(a, b) = 1
such that

√
−4a3 − 27b2 is an integer.

Solution. We want d2 = −4a3 − 27b2 or, equivalently, a3 = (d2 + 27b2)/4. We note
that the right hand side is the norm of (d + 3b

√
−3)/2 in the field Q(ω), where ω is a

primitive third root of unity. For any α ∈ Z[ω], the norm of α3 is the cube of the norm
of α. Since the norm of α is integral, we can take any α and set α3 = (d + 3b

√
−3)/2

and then a is the norm of α. To make a and b relatively prime, we can take for example
α = (1 + 3p

√
−3)/2 with p prime. Then b and d are relatively prime, and hence so are

a and b. □

Problem G3. Suppose that α and β are distinct solutions of x2023 − 1 = 0 in the
complex plane, which have been randomly selected. What is the probability that the
following inequality |α + β|2 ≥ 2 +

√
3 holds?

Solution. Because the 2023-th roots of unity are symmetrically distributed in the
unit circle, we can assume, without loss of generality, that β = 1. After writing α =
cos θ + i sin θ, we see that we are looking for the probability that

|1 + α|2 = |1 + cos θ + i sin θ|2 = 2 + 2 cos θ ≥ 2 +
√
3.

Therefore we want to find the probability that cos θ ≥
√
3/2 or, equivalently, |θ| ≤ π/6.

Since α ̸= 1, we see that θ ∈
{
± 2π

2023
k : 1 ≤ k ≤

⌊
2023
12

⌋}
.

As there are 2 · 168 = 336 such angles, the desired probability is 336/2022 ≈ 0.166. □

Problem G4. Let 0 < p < 1, and let (an)n≥0 be a sequence of nonnegative numbers
such that an+2 ≤ (1− p)an+1 + pan. Prove that (an)n≥0 has a limit.

Solution. Suppose M = max(a0, a1). Then by induction an ≤ M for every nonnegative
integer n. Also, after setting bn := an+1 − an, we see that bn+1 ≤ −pbn. Thus, bn ≤
pn−1M . Hence an+m − an = bn + · · ·+ bn+m−1 ≤ pnM/(1− p) for all m,n. Now assume
that x ≤ y are subsequential limits of (an)n≥0. Then there are subsequences (ank

)k≥0 and
(ank+mk

)k≥0 converging to x and y, respectively. However, ank+mk
−ank

≤ pnkM/(1−p).
Taking the limit when k goes to infinity, we get that y− x ≤ 0. Hence y = x, and so we
can conclude that the sequence (an)n≥0 converges. □

Problem G5. Determine the maximum value of m2+n2 if m and n are positive integers
less than 2022 such that (n2 −mn−m2)2 = 1.
Hint: The pair (Fn+1, Fn) satisfies the given equation, where Fn is the n-th Fibonacci
number.
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Solution. First note that if x, y ∈ Z+ satisfy the given equation then

x2 − xy − y2 ≥ −1 ⇒ x2 ≥ xy + y2 − 1 ≥ y2

The last inequality holds because xy ≥ 1. It follows that x ≥ y. Now, suppose that
(x, y) = (n,m) is a solution of the given equation. Take a nonnegative integer a such
that n = m+ a, and observe that

1 = (n2−mn−m2)2 = ((m+a)2−m(m+a)−m2)2 = (a2+ma−m2)2 = (m2−ma−a2)2.

Thus, if n > m, we obtain that (m, a) = (m,n − m) is also a solution of the given
equation, where m and n−m are positive integers. Hence, if we suppose n > m, then we
can create a sequence of solutions S−1, S0, S1, . . . , Sk, . . . for the given equation, where

S−1 = (n,m), Sk = ((−1)k+1Fk+1m+ (−1)kFkn, (−1)k+1Fk+1 + (−1)k+2Fk+2n),

for k ∈ Z, k ≥ 0, where (Fn)n≥0 is the Fibonacci sequence.

Suppose, by way of contradiction, that {Sn | n ∈ Z≥0} is infinite. This means that
an > bn for every n ∈ Z≥0. Therefore bn = an−1 − bn−1 and an = bn−1, which implies
that

an + bn = bn−1 < an−1 + bn−1.

As a result, if we set cn = an + bn, the sequence (cn)n≥0 would be a strictly decreasing
sequence of positive integers, which is a contradiction. Hence {Sn | n ∈ Z≥0} must be
finite, and so there exists l ∈ Z>0 such that al = bl. Then

(−1)l+1Fl+1m+ (−1)lFln = (−1)l+1Fl+1 + (−1)l+2Fl+2n

or, equivalently,

(Fl + Fl+1)n = (Fl+1 + Fl+2)m.

Since (Fn)n∈Z≥0
is the Fibonacci sequence, the previous equality is the same as

Fl+2n = Fl+3m.

From the initial equation, it is not hard to see that gcd(m,n) = 1. Also, gcd(Fl+2, Fl+3) =
1. Then (n,m) = (Fl+3, Fl+2) and, therefore, (al, bl) = (1, 1).

Conversely, since (1, 1) is a trivial solution for the given equation, (Fn+1, Fn) is also a
solution of the same equation for each n ∈ Z, n ≥ 0. Also, (1, 1) is the only solution of
the given equation of the form (a, a). Thus, {(Fn+1, Fn), n ∈ Z≥0} is the set of solutions
of the given equation.

Finally, the answer is F 2
m+1 + F 2

m, where m is the greatest positive integer such that
Fm+1 < 2022. □

Problem G6. Let T be a tree on the set of vertices {1, 2, . . . ,m}. For a positive integer
n with n > m, in how many ways can we extend T to a tree on [n]?
Hint: Read about Prüfer codes.
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Solution. Let S be a tree on [n] that extends T . We will construct a list of n − m
numbers repeating the following process n − m times: take the leaf with the largest
value, delete it, add the value of its parent to the list. Clearly, at each step, we are left
with a tree. We claim that at each step there is a leaf with value greater than m. Indeed,
if there are m+k vertices and no leaves outside T then there are m−1 edge inside T and
at least 2k edges outside T , giving at least m+2k−1 > m+k−1 edges, a contradiction.
Hence this process deletes vertices from [n] \ [m] in some order and gives back the initial
tree T . Thus, at each step, we are left with a tree that is obtained as an extension of T .
We also note that at the last step the parent of the corresponding leaf belongs to [m],
whence the last number in the obtained list belongs to [m]. Then we have constructed
a map φ from the set T of trees on [n] extending T to the set L of lists d1, . . . , dn−m

with d1, . . . , dn−m+1 ∈ [n] \ [m] and dn−m ∈ [m].
Now we show that φ : T → L is injective. Let D be a list in L ; that is D =

d1, . . . , dn−m with d1, . . . , dn−m+1 ∈ [n] \ [m] and dn−m ∈ [m]. By construction, the
degree of vertex i > m is the number of times it appears in D plus one. Hence we
know what are the leaves: vertices that do not appear in D. So we know what was the
first deleted edge: this was an edge between d1 and the maximum number l1 ∈ [n] \ [m]
that is not in D. Repeating this gives the second deleted edge: this is an edge between
d2 and maximal number not in {l1, d2, . . . , dn−m}. Repeating this process we get back
the sequence of deleted edges. Hence there is a unique tree S extending T such that
φ(S) = D.

Let us proceed to argue that φ is surjective. To do so, fix D ∈ L . We define the list of
leaves l1, . . . , ln−m as before: l1 is the maximum element of [n]\ [m] that is not in D, then
l2 is the maximum element of [n] \ [m] that is not in {l1, d2, . . . , dn−m}, and so on until
we get the last leaf ln−m of our list, which is the unique element of [n]\ [m] that is not in
{l1, . . . , ln−m−1, dn−m}. We will add edges to T one by one starting with dn−mln−m. By
construction {l1, . . . , lk} does not intersect with {dk, . . . , dn−m} for any 1 ≤ k ≤ n−m.
Hence when we add a new edge lkdk to T ∪ {ln−mdn−m} ∪ · · · ∪ {lk+1dk+1} we use a new
vertex lk and do not create a cycle. It follows that S = T ∪ {ln−mdn−m} ∪ · · · ∪ {l1d1} is
a tree.

Hence we conclude that φ is a bijection and, therefore, we can extend T to a tree on
[n] in |T | = |L | = mnn−m−1 ways. □
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Advanced Math Problems

Problem M1. For a prime p and an integer m ∈ [2, p + 1], consider the set G(p,m)
of polynomials

f(x) = x+ c2x
2 + · · ·+ cmx

m,

where c2, . . . , cm ∈ Z/pZ. One can check (see part (1) below) that G(p,m) is a group
under the following operation of substitution: (f ∗ g)(x) = f(g(x)) (mod xm+1).

(1) Check that G(p,m) is a group.

(2) Find a representative of each conjugacy class of G(p,m).

(3) Find the number of conjugacy classes of G(p,m).

(4) Find the size of each conjugacy class of G(p,m).

Solution. Conjugacy classes are represented by polynomials of the form x+cxr+dx2r−1

with c ̸= 0. If r ≥ 2 and 2r − 1 ≤ m, then there are (p − 1)p conjugacy classes. When
2r− 1 > m but r ≤ m, we see that the coefficient d disappears, and so in this case there
are p− 1 conjugacy classes. Also we have the identity. Adding this up gives a result. □

Problem M2. Let f : R → R be a monotonic function. Suppose that we can pick
a, b, c, d ∈ R with ac ̸= 0 such that for all y ∈ R∫ y+1

y

f(x) dx = ay + b and

∫ y+
√
2

y

f(x) dx = cy + d.

Prove that f is linear.

Solution. Define the function g : R → R as g(y) =
∫ y

0
f(x) dx. Since f is monotonic,

it is integrable and, therefore, g is a continuous function. In addition, g satisfying the
equalities

g(y + 1)− g(y) = ay + b and g(y +
√
2)− g(y) = cy + d

for all y ∈ R. Fix a polynomial p1 (of degree two) such that p1(y + 1)− p1(y) = ay + b
for all y ∈ R. Then after setting g1 := g − p1, we see that g1(y + 1) − g1(y) = 0,
and so g1 has period 1. Similarly, we can fix a polynomial p2 (of degree two) such that
p2(y +

√
2) − p2(y) = cy + d, and we can see that the function g2 := g − p2 has period√

2. Since p1(y) − p2(y) = g2(y) − g1(y) for all y ∈ R, the fact that g1 and g2 are
continuous and periodic functions guarantees that p1 − p2 is a bounded polynomial, and
so a constant function. Thus, there exists C ∈ R such that g1(y) = g2(y) + C for all
y ∈ R. Now the fact that g2 has period

√
2 implies that g1 also has

√
2 as a period.

Hence g1 have both periods 1 and
√
2, which implies that g1 has period m + n

√
2 for

all m,n ∈ Z. Since the set {m + n
√
2 : m,n ∈ Z} is dense in R, the continuity of g1

guarantees that g1 is a constant function. As a result, g = p1 + g1 is a polynomial of
degree 2. Write g(y) = my2 + py + q for some m, p, q ∈ R. Then it follows from the
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Fundamental Theorem of Calculus that f(y) = g′(y) = 2my + p. As a result, f is a
linear function, as desired. □

Problem M3. There is an m × n table. In the first column there are m real numbers
a1, a2, . . . , am. You want to fill in the rest of the columns with real numbers such that
the value of each entry that is not in the first column equals the average of the values of
its neighbors.

(1) Show that you can always do this in a unique way.

(2) You can assume that part 1 is true. Show that the summations of each column
are the same.

(3) You can assume that part 1 and 2 are true. Now fix m and a1, a2, . . . , am. Show
that there is a constant c such that each entry in the last column will approach
c as n → ∞.

Solution. (1) For the first part, we use the following lemma.

Lemma 0.1. If ai = 0 for all i ∈ J1,mK, then there is a unique solution (namely,
everything 0).

Proof. Everything 0 is obviously a solution. Now suppose it has another solution, then
we can assume there’s an element > 0 (otherwise we swap the sign of each element).
We pick the largest number, call it a > 0, then because a = average, all neighbors of

a is still a, following this process we see all of the entries are a, but the entries in first
column are 0, a contradiction. □

Basically, we want to solve a linear system. There are m(n − 1) unknown variables,
and m(n − 1) equations (aij = average for 1 ≤ i ≤ m, 1 < j ≤ n). Hence we can write
this linear system as AX = Y , and we want to show that there’s an unique solution
X. However, AX = Y has an unique solution ⇔ detA ̸= 0 ⇔ AX = 0 has an unique
solution.

Now the system AX = 0 correspond to the case that all entries in the first column
are 0, and we already proved that there’s a unique solution in this case.

(2) Note that if we only pick the last few columns, then it is also satisfactory (ignore
the average problem of the first column). We call an entry good if it is equal to the
average of its neighbors. We introduce two models.
Model 1: (red entries are good)

x1 y1
x2 y2
...

...
xm ym

Model 2: (red entries are good)
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x1 y1 z1
x2 y2 z2
...

...
...

xm ym zm

We make 2 claims.
Claim 1: In model 1, we have

∑
xi =

∑
yi.

Proof. We have the following

2y1 = x1 + y2.

3y2 = x2 + y1 + y3.
...

2ym = xm + ym−1.

Adding them up we get our conclusion. □

Claim 2: In model 2, we have 2
∑

yi =
∑

xi +
∑

zi.

Proof. We have the following

3y1 = x1 + z1 + y2.

4y2 = x2 + z2 + y1 + y3.
...

3ym = xm + zm + ym−1.

Adding them up we get our conclusion. □

Now we can finish our proof by easy induction.

(3) First we need a result about positive definite matrix.

Lemma 0.2. {A ∈ M : A is positive definite} is open (when view as a sub-topological

space of M ⊂ Rt2), where M = {A ∈ Matt×t(R) : AT = A}.

Proof. Use Sylvester’s criterion and note that det is continuous. □

Here’s another proof without using Sylvester’s criterion.

Proof. Instead we will prove that its complement is closed. Suppose Ak → A where Ak

is not positive definite for all k, we want to show that nor is A. There exists vk ∈ Rt

such that vTk Akvk ≤ 0. Furthermore, after scaling, we can select vk ∈ {x ∈ Rt : ∥x∥ = 1}.
Now because vk are in a compact set, we can suppose vk → v ̸= 0 (otherwise just pick a
sub-sequence). We claim that vTAv ≤ 0. This is because as k → ∞, we have

|vTAv − vTk Akvk| ≤ |vTAv − vTAkv|+ |vTAkv − vTk Akvk|
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≤ |vT (A− Ak)v|+ 2|vTAk(v − vk)|+ |(v − vk)
TAk(v − vk)| → 0.

And this shows that A is also not positive definite. □

Note that we can we can assume
∑

ai = 0 because we can add the same amount to
every element.

Claim 1: In model 2, we have
∑

y2i ≤ 1/2 (
∑

x2
i +

∑
z2i ).

Proof. We have (by Cauchy-Schwarz)

3y21 =
1

3
(x1 + z1 + y2)

2 ≤ x2
1 + z21 + y22.

4y22 =
1

4
(x2 + z2 + y1 + y3)

2 ≤ x2
2 + z22 + y21 + y23.

...

3y2m =
1

3
(xm + zm + ym−1)

2 ≤ x2
m + z2m + y2m−1.

Adding them up we get our conclusion. □

Claim 2: In model 1, we have
∑

y2i ≤
∑

x2
i , and the equality can only be achieved when

xi = xj(= yi) for all i, j ∈ J1,mK.

Proof. We have (by Cauchy-Schwarz)

2y21 =
1

2
(x1 + y2)

2 ≤ x2
1 + y22.

3y22 =
1

3
(x2 + y1 + y3)

2 ≤ x2
2 + y21 + y23.

...

2y2m =
1

2
(xm + ym−1)

2 ≤ x2
m + y2m−1.

Adding them up we get our conclusion. Then by carefully examine the inequality
(with the knowledge of Cauchy-Schwarz inequality) we get the equality condition. □

For the kth column (c1 c2 . . . cm)
T , we let sk =

∑
c2i (1 ≤ k ≤ n). Then by easy

induction, we can show that s1 ≥ s2 ≥ · · · ≥ sn, which tells us that the entries of
the last column “most likely” converges to 0 (remember we always assume

∑
ai = 0).

But this is not enough, so we are seeking to improve our last claim, we want to show
that

∑
x2
i ≥ α

∑
y2i where α is a constant > 1 (of course, we assume

∑
yi = 0). Note

that once we know yi’s, we can uniquely figure xi’s out, by a linear transformation:
AY = X where Y = (y1 y2 · · · ym)

T , X = (x1 x2 · · · xm)
T . All we need to do is prove

Y TATAY − αY TY ≥ 0 if Y ∈ L. Where L is the kernel of the function Rm → R : Y 7→
(1 1 · · · 1)Y . Hence it suffices to show that ATA − αI is positive definite in L. When
we select a basis for L and restrict ATA − αI to L, we form a new matrix, call it Aα.
It’s easy to see that α 7→ Aα is continuous, and we already know that A1 is positive
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definite. Thus by Lemma 2 there exists α > 1 such that ATA − αI is positive definite
in L. What’s good is that the α doesn’t depend on n. Note that we can assume α < 2.
Thus with these facts, we can give a list of inequalities. WLOG s1 = 1 (because we can
multiply a constant to every element). We have

s2 ≤
1 + s3

2
.

s3 ≤
s2 + s4

2
.

...

sn−1 ≤
sn−2 + sn

2
.

αsn ≤ sn−1.

(And clearly we have sk ≥ 0). We want to maximize sn. To do this, let E be the
collection of all (s2, s3, . . . , sn) ∈ Rn−1 that satisfy such conditions. E is compact because
E is the intersection of closed sets and E ∈ [0, 1]n−1, and E is non-empty because 0 ∈ E.
Consider the projection p : Rn−1 → R, (c1, c2, . . . , cn−1) 7→ cn−1, it is continuous. Thus
pE is also compact, so it can attain its maximum. Suppose at the point (s2, s3, . . . , sn),
it attains its maximum, that is, sn. Now we claim that all of the above inequalities
are actually equality. This is because if one is strictly less, say sk < sk−1+sk+1

2
, then we

can slightly increase sk, then slightly increase sk+1, · · · , finally we can slightly increase
sn, a contradiction. Thus if we set s2 = 1 − δ, then sk = 1 − (k − 1)δ. We have
α(1 − (n − 1)δ) = 1 − (n − 2)δ, hence δ = 1/

(
n+ 2−α

α−1

)
, and sn = 1 − (n − 1)δ =

1/
(
2−α
n

+ α− 1
)
· 1/n ≤ 1/ (α− 1) · 1/n = O(n−1).

Therefore, each entry of the last column is O(n−1/2). □

Problem M4. For a positive integer k, let A be an alphabet of k letters, and let
s = s1 . . . sm be a string of length m over A. A string a of length n is called a freak
subchain of s if the following two properties hold:

• a is a subsequence of s (i.e., aj = sij for every integer j ∈ [1, n] and some indices
i1, i2, . . . , in with i1 < i2 < · · · < in), and

• there exists an integer ℓ ∈ [1, n− 1] such that iℓ+1 − iℓ > 1.

For instance, in our alphabet, “tics” is a substring of the string “mathemaTICS” that is
also a freak subchain, as emphasized in “maThematICS”. Given a positive integer N ,
create an efficient algorithm to find the number of strings over the alphabet A such that
the length of its largest-length substring that is also its freak subchain is N .

Solution. Let s be a string over A. A string a is called a freak substring of s provided
that a is both a substring and a freak subsequence of s. For a length-n freak substring a
of s, the set {i1, . . . , in}, where i1 < · · · < in, is a good set of indices of a in s if
a = si1si2 . . . sin and iℓ+1 − iℓ > 1 for some ℓ ∈ [1, n− 1].
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Claim 1: If a freak substring a of s has the largest length possible, then a must be a
prefix or a suffix of s.

Proof of Claim 1: Let a be a freak substring of s having the largest length possible n,
and assume by contradiction that a is neither a prefix nor a suffix of s. Assume that
a = sb+1sb+2 . . . sb+n for some integer b ∈ [1,m−n). Let {i1, i2, . . . , in} with i1 < · · · < in
be a good set of indexes of a in s, and take an integer k ∈ [1, n−1] such that ik+1−ik > 1.
Observe that in−i1 > n−1 and, therefore, either i1 < b+1 or b+n < in. If i1 < b+1, then
(b+2)−i1 > 1 and so the fact that b+n < m ensures that {i1, b+2, . . . , b+n, b+n+1} is
a good set of indices of the length-(n+1) substring si1sb+2 . . . sb+nsb+n+1 in s. However,
this contradicts the maximality of n. We can proceed similarly to obtain a contradiction
when b+ n < in. Hence the claim follows.

We let s[: k] denote the prefix of s that ends at position k. Similarly, we let s[k :]
denote the suffix of s that starts at position k.

Claim 2: Let k the the largest subindex in [1,m − 1] such that there exists a subindex
ℓ ∈ [k + 1,m] such that sℓ = sk. Then s[: k] is the largest prefix of s that is a freak
substring.

Proof of Claim 2: Consider the set {i1, . . . , ik}, where ij = j for every j ∈ [1, k − 1] and
ik = ℓ. It is clear that {i1, . . . , ik} is a good set of indices of s[: k], which implies that
s[: k] is a freak substring of s. On the other hand, the maximality of k guarantees that
there are no k′ and ℓ′ such that k < k′ < ℓ′ and sk′ = sℓ′ , and this implies that among
all prefixes of s that are also freak substrings, s[: r] is the largest one. Hence the claim
follows.
Claim 3: Let k the the smallest subindex in [2,m] such that there exists a subindex
ℓ ∈ [1, k − 1] such that sℓ = sk. Then s[k :] is the largest suffix of s that is a freak
substring.

Proof of Claim 3: The proof is similar to that of Claim 2.

Now suppose that s is a string over A having a largest freak substring of length N .
Then it follows from Claim 1 that s has either a largest prefix or a largest suffix that is
also a freak substring and that has length N . In the first case, it follows from Claim 2
that the string s[N + 1 :] cannot repeat any letter and, therefore, the length of s is at
most N +k. In the second case, we can similarly arrive to the conclusion that the length
of s is at most N + k.

Let us further use the characterizations in Claims 2 and 3 of the largest prefix and
suffix of s that are freak substrings to count in how many strings s the largest between
those prefixes and suffixes has length N . We separate our work into the following two
cases.

Case 1: The largest freak substring is achieved as a suffix of s. Fix an integer i such
that s[i+ 1 :] is a largest freak substring of s. Then the following three conditions hold:

• s[: i] is conformed by different characters only,



PRIMES 2023 ADMISSION PROBLEMS 11

• there exists an index j ∈ [1, i] such that sj = si+1,

• all the letters of s[N + 1 :] must be different.

The first two conditions follow directly from Claim 3, while the third one follows from
the fact that there is no prefix of s with length strictly greater than N that is a freak
substring. Also, notice that these three conditions are sufficient to ensure that s[i+ 1 :]
is the largest freak substring of s. Our task is to count all the words s, of length N + i
that fulfill the previous three conditions for a fix positive integer i. We can distinguish
the following two subcases:

Case 1.1: i ≥ N . Since the the last i characters of s must be different the number of
way of choose them and its positions is k!/(k − i)!. It only remains to pick the first w
characters of s. One of this characters must match to si+1, and we can choose which
one is in w ways. The others must be all different and different from the i− w + 1 that
are already fixed in the prefix of length i. This give us (k − i+ w − 1)!/(k − i)! ways of
choosing them. Hence the total number of words in this case is

k!(k − i+ w − 1)!w

(k − i)!(k − i)!
.

Case 1.2: i < N . In the second case we can fix as well the last i characters of the word
in k!/(k − i)! ways. As i < w the rest of characters of the suffix of length w can be
chosen without restrictions. This give us kw−i ways of doing it. Now between the first
i characters we must choose the one that would match si+1 in i different ways. Finally
the rest of characters of the prefix of length i must be all different and different from the
previously fixed one, which give us (k − 1)!/(k − i)! ways of picking them. Hence the
total number of words in this case is

ik!(k − 1)!kw−i

(k − i)!(k − i)!
.

Case 2: The largest freak substring is a prefix. This case is almost similar to the previous
one, with the only difference being that all the characters in the prefix of length i+1 must
be different. This guarantees that the suffix will not be also a largest freak substring of
length N , which is necessary since the words with both prefix and suffix been maximal
freak substring of length N were counted in the previous case. This time we split into
the following two subcases.

Case 2.1: i+ 1 ≥ N .
In the first case we get that the amount of words is

k!(k − i+N − 2)!(N − 1)

(k − i− 1)!(k − i)!
.
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Case 2.2: i+ 1 < N . In this case, we can see that

ik!(k − 1)!kN−i−1

(k − i)!(k − i− 1)!
.

Finally note that the fixed i must be smaller than k + 1 as otherwise we could not
find i different letters to fulfill the first condition. Below we show the desired algorithm.

Input: k = number of letters of the alphabet A; N = length of the largest freak substring
Output: Number of strings with a largest freak substring of length N
1: answer = 0
2: for i ∈ [1, k] do
3: if i ≥ N then
4: answer+ = k!(k − i+N − 1)! ∗N/(k − i)!/(k − i)!
5: else
6: answer+ = i ∗ k!(k − 1)! ∗ pow(k,N − i)/(k − i)!/(k − i)!

7: if i < k then
8: if i+ 1 ≥ N then
9: answer+ = k!(k − i+N − 2)! ∗ (N − 1)/(k − i)!/(k − i− 1)!

10: else
11: answer+ = i ∗ k!(k − 1)! ∗ pow(k,N − i− 1)/(k − i)!/(k − i− 1)!

12: return answer

Final Remark: We have assumed that the computation of factorials and powers of k
is constant since we can precalculate them in a linear array in a total cost of O(k). □

Problem M5. For n > 2, each cell in an n× n grid is either colored black or white. A
flip operation consists of choosing a 2 × 2 square that has at least two black cells and
swapping the colors of each of the four cells in the chosen square. Call a given coloring
irreducible if there exists no sequence of flips that will reduce the number of black cells
in it.

(1) Prove that an irreducible coloring with maximum number of black squares cannot
have two adjacent black squares.

(2) Prove that there exists an irreducible coloring with maximum number of black
squares that avoids the following two patterns.

(3) Let B be the number of black squares in an irreducible coloring with maximum
number of black squares. Prove that B ≤ (n+ 1)2/4.
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(4) Prove that each irreducible coloring with maximum number of black squares has

⌊ (n+1)2

4
⌋ black squares.

NOTE: This problem was kindly proposed by the MIT student Khalid Ajran.

Solution. (1) Assume, towards a contradiction, that there are two adjacent black
squares, say in positions (x, y) and (x+ 1, y).

Suppose first that there is another black square in one of the columns x and x + 1,
and suppose that the nearest one to the two given adjacent squares is in position (x, y′).
Then, we can perform the sequence of moves as shown in the picture below to reduce
the number of black cells, contradicting that the coloring is irreducible. Thus, there can
be no other black cells in neither column x nor x+ 1.

Now let [a, b] be the largest range such that x, x+1 ∈ [a, b] and each column c ∈ [a, b]
has at least one black cell in it (so columns a − 1 and b + 1 have no black cells, or do
not exist). We claim that all columns in this range must have exactly one black cell.
Suppose that one of them has at least two black cells. Then, we can perform the following
sequence of moves to reduce the number of black cells. To shorten the sequence, simply
note that whenever we have two adjacent black cells, we can shift the two of them up or
down by any amount.

In the last step of the sequence, we have three cells in the same 2 × 2, which can be
swapped to contradict the irreducibility of the coloring. Hence each column c ∈ [a, b] has
exactly one black cell. So, we now have a (b− a+ 1)× n region of the grid that is only
occupied by b− a+ 1 black cells. Notably, this region is surrounded on both side either
by edges of the grid, or by columns that have no black cells in them. If n > 4, then we
can replace the b− a+1 cells in this region by black cells in a pattern of 1 black cell per
2× 2 square. This increases the number of black cells in the construction but does not
affect that it is irreducible. We can check by that when n ≤ 4, we can also find more
optimal ways to fill the region, contradicting that maximality of the coloring.

(2) Now assign values to each cell in the grid as follows two different ways.
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For a coloring C of the grid, define f1(C) to be the sum of the values assigned to
the black cells of the coloring by labelling 1, and define f2(C) similarly. Say that an
irreducible coloring with a maximum number of black cells has exactly B black cells.
Now, take all irreducible colorings with B black cells, and sort them lexicographically
by the pair (f1(C), f2(C)) (i.e., sort them by the f1(C) values, and then sort ties by the
f2(C) values). Let C∗ be the first coloring with respect to this order.
We claim that none of the given two patterns in part (2) can occur in C∗. This is

indeed the case as flipping the first pattern results in increasing the f1 value of C
∗, while

performing two flips on the second pattern results in the f1 value staying the same and
the f2 value increasing.

(3) Let C∗ as in the previous part, and look at all connected blocks of black cells
in C∗ (we say that two cells are connected if they share a vertex). It follows from
parts (1) and (2) that all connected shapes in C∗ are diagonal strings covering the
positions (x, y), (x+ 1, y − 1), (x+ 2, y − 2), . . . , (x+ k, y − k).
Now we extend the given grid to an (n+1)×(n+1) grid by adding a phantom leftmost

column and a phantom bottom-most row consisting both of white cells. We now turn
blue three white cells in the new grid for each of the black cells by going through each
of the diagonal strings of black cells as the following picture illustrates.

Using the previous parts, we can confirm that the blue colored cells can not be already
black, and also that the corresponding 3-sets of blue cells of two distinct black cells are
disjoint. Thus, 4B ≤ (n+ 1)2, and so the desired inequality follows.

(4) First, here are constructions for even and odd n. The constructions below for n = 7
and n = 8 are easy to generalize.
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Observe that no flips are possible in the odd construction, so clearly it is irreducible.
Finally, it remains to show that the construction provided for even n is valid. Divide the
grid into (n2/4) 2× 2 square regions. We need the following claim.

Claim 3. The following properties of the construction remain invariant as we do flips.

(1) n/2 of the regions have two black cells, and the remaining regions have exactly
one black cell.

(2) No two regions containing two black cells are in the same row or column.

(3) Any black cell that is the lone black cell in its region is not adjacent (even
diagonally) to any other black cells.

Proof of Claim 3. Whenever these properties hold, we can check that the only possible
times we may perform a flip are either within a region, or between diagonally adjacent
regions that each contain two black cells. We can check that either move preserves all
three properties. Then Claim 3 follows.

Since these properties hold for the provided construction, and we can show that they
do not hold whenever there exist two orthogonally adjacent black cells, then it’s not
possible to reduce the number of black cells in this construction. □
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