
Parallelizable and Updatable Private
Information Retrieval

Boyan Litchev
MIT PRIMES

Simon Langowski (Mentor)
MIT

January 16, 2024

In traditional fully homomorphic encryption (FHE), number-theoretic trans-
forms (NTTs) are utilized to speed up the process of multiplication. After
multiplication, the ciphertext noise increases multiplicatively, meaning that
few multiplications can be applied successively. To reduce this noise, schemes
[8, 6, 7] apply modulus and key-switching after multiplication. However,
these operations cannot be applied to the NTT forms of ciphertexts, so ci-
phertexts have to be converted out of NTT form, using a significant amount
of processing time and preventing parallelization. In the setting of private in-
formation retrieval (PIR), small ciphertext values, low multiplicative depth,
and the usage of fresh ciphertexts in multiplications mitigate noise even with-
out key and modulus-switching. We explore the efficiency of removing key
and modulus-switching from the computation process for PIR, eliminating
the need for intermediate number-theoretic transforms. This also aids in
updating the result of a query when the database is modified.

1 Introduction

Private Information Retrieval (PIR) is a protocol that allows users to submit a query
to a database to retrieve a database item, without revealing which item was retrieved.
Recently, it has been used for applications such as metadata-private communication [3, 5]
and anonymous streaming [9].

There are two main variants of PIR: Information-theoretic PIR (IT-PIR), which as-
sumes multiple non-colluding servers, and computational PIR (CPIR) [4, 11, 2, 13, 10,
14], which makes no such assumptions, but is slower as a result. Additionally, some
schemes use a single query and answer between the client and database, while others
have multiple rounds of communication. In this work, we focus on single-round CPIR.
Single-round CPIR is composed of three procedures: a query generation procedure

that generates a query that encodes but doesn’t reveal the desired index, an answer

1

procedure that uses the query and the database to generate a response, and a decrypt
procedure that the client can use to extract the database element from the response.
In order to generate a response using the query and database, CPIR utilizes homo-

morphic multiplications and additions, which let it operate on the encrypted values.
To perform multiplications quickly, number-theoretic transforms (NTTs) are utilized
to convert ciphertexts into their point forms. Under current homomorphic encryption
schemes [6, 8, 7], ciphertexts are noisy encodings of plaintext values, and operations
increase the noise present in a ciphertext. After too much noise growth, ciphertexts are
no longer decryptable, so noise growth is controlled through steps called modulus and
key switching.
However, these steps require switching out of the NTT form of a ciphertext, which

uses a significant amount of computer time. So, we introduce PrimesPIR, a PIR protocol
that does not use modulus and key switching, but rather uses the structure of the PIR
answer procedure to minimize noise growth. Because of this, it is able to keep ciphertexts
in NTT form throughout the computation process, reducing computation time.
In addition, keeping ciphertexts in NTT form allows us to parallelize our scheme

along the length of the polynomials used in homomorphic encryption, allowing for a
GPU implementation of our protocol.
We also design PrimesPIR to support two additional operations: a sparse answer

procedure that generates a response for a sparse database, and an update procedure that
takes in a query, database, database modification, and previous response and generates
a response to the modified database.
This feature allows PIR to be effectively used for services such as anonymous email

retrieval, since the queries to users’ mailboxes can be updated when new messages are
sent, and empty mailboxes can be created without significantly impacting response time.
So, in summary PrimesPIR aims to:

• Speed up PIR answering time by removing conversions out of NTT form

• Allow for parallelization across multiple cores

• Support fast updates to responses when the database is modified.

2 Background

We now more formally introduce PIR, and the homomorphic operations that make cur-
rent schemes possible.

2.1 Homomorphic Encryption

Though there are several FHE schemes [6, 7, 8], in this work we will focus on BGV [6],
which is founded on the hardness of the Ring Learning with Errors problem.

2

Notation. We will use elements of the polynomial ring R = Z[X]/[Xn + 1]. Since
elements of this ring have n coefficients, we say that n is the polynomial (poly) length.
We use Rq to denote R/qR, for some integer q which is coprime to n. In practice, n is
a power of 2 so that number theoretic transforms can be computed efficiently, as will be
discussed later.

Ring Learning With Errors (RLWE) is a generalization of the learning with errors
problem that states that for a uniformly random secret key s ← Rq, errors ei drawn
from a distribution E, and ai ← Rq, the pairs (as + e,−a) are indistinguishable from
pairs of uniformly random values, as long as certain parameter constraints are satisfied.
[12] provides specific estimates of the security levels achieved by various parameter

combinations. Generally, smaller values of q provide more security. Additionally, larger
polynomial lengths have larger maximum values of q to maintain the same level of
security. For example, a polynomial length of 211 requires q to have at most 53 bits,
while a polynomial length of 212 can have q have up to 107 bits in order to maintain 128
bits of security.

Ciphertext Representation. To encrypt the message m, we can generate the two-term
BGV ciphertext (as+ te+m,−a) for a plaintext modulus t which is relatively prime to
q. The security of sending such ciphertexts follows from RLWE: (as+ e,−s) is indistin-
guishable from random, therefore (ast+ te,−at) is indistinguishable from random. As a
is uniformly sampled from Rq, so is at, and therefore (as+ te,−a) is also indistinguish-
able from random pairs under the RLWE assumption. For a message m, this means the
BGV ciphertext (as+ te+m,−a) is also indistinguishable from random pairs of values,
and is therefore secure.
All freshly encrypted BGV ciphertexts have two terms, but after multiplications it

is possible for the number of terms to grow. Generally, to decrypt a BGV ciphertext
c = (f0, f1, . . .), a client computes f0s

0 + f1s
1 + f2s

2 + For the two-term ciphertext
(as+te+m,−a), this means that the ciphertext decrypts to as+te+m−as = te+m. Note
that the error is multiplied by t, meaning that the value of m mod t is preserved as long
as te < q. This has two important effects: Firstly, plaintexts in BGV are transmitted
modulo t, as values larger than that would be affected by the random error. So, t is
called the plaintext modulus. Secondly, it is important that the error of a message does
not grow to be larger than q, since then te mod q would interfere with the message bits.
This means that having larger values of q, and therefore larger values of n, can help
prevent error overflow.
Note that to encrypt a BGV plaintext, we just generate the element (m). Addition-

ally, for ciphertexts with more than two terms multiplication is defined to preserve this
decryption property; computing f0s

0 + f1s
1 + f2s

2 + . . . will result in m + te for some
error e.

Addition. Homomorphic additions allow us to compute the sum of two encrypted val-
ues. To add two ciphertexts c0 = (f0, f1, . . .) and c1 = (g0, g1, . . .) we add them term-wise

3

to get (f0 + g0, f1 + g1, . . .). Note that this decrypts to:

(f0+g0)s
0+(f1+g1)s

1+ . . . = (f0s
0+f1s

1+ . . .)+(g0s
0+g1s

1+ . . .) = Dec(c0)+Dec(c1)

Since the decryptions of the c0 and c1 have noise, and are added, noise grows additively
after addition.

Multiplication. After homomorphic multiplication, we want the decryptions of the two
ciphertexts to have been multiplied. Since Dec(c0) = f0s

0 + f1s
1 + . . . + fas

a and
Dec(c1) = g0s

0 + g1s
1 + . . .+ gbs

b,

Dec(c0) ·Dec(c1) = f0g0s
0 + (f1g0 + f0g1)s

1 + . . .+ fagbs
a+b

⇒ c0 · c1 = (f0g0, f1g0 + f0g1, . . . , fagb)

Notably, the size of the ciphertext increases after multiplication. Additionally, if
Dec(c0) = te0 + m0 and Dec(c1) = te1 + m1, this means that Dec(c0 · c1) = e0e1t

2 +
e0m1 + e1m0 + m0m1 So, though the message has been multiplied, so has the error.
Additionally, the error has been further multiplied by an additional factor of t. In order
to keep track of the error (or noise) in various ciphertexts, we introduce the following
two terms:

Definition 1 (Fresh Ciphertext). A fresh ciphertext is a ciphertext which is a direct
encryption of a message, with no operations performed on it. Its error is indistinguishable
from a random element of E. A fresh ciphertext has a noise level of 1.

Definition 2 (Noise Level). The Noise Level of a ciphertext is the bits of noise of that
ciphertext divided by the bits of noise in a fresh ciphertext. In practice, this means that
the Noise Level of c0+ c1 is roughly the maximum of their individual Noise Levels, while
the Noise Level of c0c1 is the sum of the noise terms of c0 and c1.

We now look at several commonly used optimizations for homomorphic multiplication.

CRT Form. In order to do homomorphic multiplications, we have to multiply two
elements of Rq, which involves multiplying many elements of Zq, as all of the coefficients
of each polynomial are in Zq. Since q typically has far more than 64 bits, this would
require multiple int-by-int multiplications. To avoid doing that, we have q = q1q2q3 . . .,
where all qi are pairwise relatively prime and can fit within a single integer. So, a ←
Zq is stored as a1 mod q1, a2 mod q2, . . ., which is a’s CRT form. Multiplications (and
additions) are then done modulo all qi, which takes fewer overall multiplications. By the
Chinese remainder theorem, this produces a set of modular relations with the correct
(and unique) value for ab mod q.

4

a

X
a1 a2

b

b1 b2

c

a1b1 a1b2+a2b1 a2b2

a

X
a1 a2

b

b1 b2

c

a1b1 a1b2+a2b1 a2b2

=

c'

c'1 c'2

c'

c'1 c'2

To NTT form Key-Switching Mod-Switching
From NTT Form

Figure 1: An FHE multiplication optimized using conversions to NTT form, key-
switching, and modulus-switching. Grey boxes represent ciphertexts, and their
sub-boxes represent elements of the ring Z[X]/[Xn + 1].

NTT Form. Coefficient-wise multiplication of two polynomials in Rq would take O(n2)
multiplications, which is inefficient. Instead, the polynomials are evaluated at n points,
and then multiplied at each of the n points, which takes O(n) operations. Since poly-
nomials in Rq have n coefficients, the original coefficients can be recovered from the n
points.
However, in order for the conversion to and from point form to be computable in

n log(n) time, the polynomial has to be evaluated on the 2n-th roots of unity, and 2n
must be a power of 2. Transforming such a polynomial to point-form is referred to as
a Number-Theoretic Transform (NTT). For these roots to exist, all qi are chosen to be
primes that are one more than a multiple of 2n.
By converting the elements of Rq to CRT and NTT forms, we can speed up homomor-

phic multiplications. However, after multiplications ciphertexts both have an increased
size and increased noise. To prevent this, modulus and key switching are typically used
after multiplications.

Modulus Switching reduces the noise of the product by treating the polynomial co-
efficients in Zq as elements of Z, and then doing integer division 1 on the coefficients.
Though division is possible in NTT form, integer division is not, since rounding the
point-form of a polynomial doesn’t correspond to rounding the coefficients of a polyno-
mial. So, elements are typically conveted out of NTT form for modulus switching to
occur.

Key Switching. On a high level, key switching encrypts s2 under s, and then uses
that to convert the s2 coefficient of the ciphertext into a term that is linear in s. This
allows the degree of the ciphertext to be reduced back to 1 after multiplications. How-
ever, in order for this to happen without excessive noise growth, key-switching does a
binary decomposition of the coefficients of the polynomial. This cannot happen when
the polynomial is in point-form, so key-switching requires switching out of NTT form.

1Some additional steps are taken to preserve the correctness of the message

5

2.2 Private Information Retrieval

Private information retrieval (PIR) aims to retrieve a database item without revealing
which item was retrieved. Trivially, this could be done by sending the entire database to
a user, thus transmitting the desired item. However, this would result in a prohibitively
large network overhead, since the response size would be the size of the database.
So, PIR aims to decrease network costs by compressing the d-element database into

a ciphertext that contains the information of the desired database index. Traditionally,
this is done using three operations – the client can generate a query or decode a response,
and the server must have a procedure to “answer” a query by generating a response that
can be decrypted by the client. Formally, there are three procedures such that:

Query(idx) = query

Answer(query,db) = response

Decode(response) = database[index]

In practice, the answer procedure is the most expensive: in order to hide which database
element was retrieved, all database elements must be involved in the computation
process–if any element was not involved, it would leak information about the retrieved
index. Because of this, we will focus on how the server compresses the database down
to a smaller ciphertext.

A linear PIR protocol accomplishes the goal of compression using a one-hot query
Q = (c0, c1, . . . , ci, . . . , cd−1), where ci encodes a 1 for the desired database index and
0 for all other indices. The database D = (p0, p1, . . . , pd−1) is then multiplied by the
query to produce the result R =

∑d−1
i=0 cipi. For all non-desired elements, cipi = 0 since

ci = 0, and for the desired element cipi = pi as ci = 1, so this sum generates a ciphertext
encoding just the desired element.

Database

Query

p0 p1 pd-2 pd-1

X
c0

X X X
c1 cd-2 cd-1

R Result
Ciphertext

Plaintext

⋯

⋯

Figure 2: A linear PIR scheme. Note that homomorphic encryption is used so that
operations can be performed using the query values.

However, linear PIR uses a query as large as the database, which has prohibitive
network costs. SealPIR [4] solves this issue with a query-unpacking operation that
allows all of the P coefficients of a query ciphertext polynomial to be used to store 1s
or 0s during transmission. So, only d

P ciphertexts are needed to transmit the query.

6

However, the query-unpacking process is slow, and adds O(d) operations to the answer
procedure, significantly slowing down the answer computation time.

Two-dimensional databases can reduce the query size while maintaining a relatively
fast answer procedure, as shown in Figure 3. Formally, if we have a database D =
(p0,0, p0,1, . . . , p0,m−1, p1,0, p1,1, . . . , p1,m−1, . . . pn−1,m−1 with mn = d, then we can have
queryQ = (c0,0, c0,1, . . . c0,m−1, c1,0, c1,1, . . . c1,n−1), where both (c0,0, . . . c0,m−1) and (c1,0, . . . c1,n−1)
are one-hot vectors. Then, the result R =

∑m−1
i=0

∑n−1
j=0 c0,ic1,jpi,j is computed, and it

encodes the desired element, since all other elements are multiplied by zero.

Note that in practice this is computed as R =
∑n−1

i=0 c0,i

(∑m−1
j=0 c1,jpi,j

)
, meaning

d+ n multiplications (and not 2d) are now required to compute the result. In addition,
the two-dimensional structure means that in an m by n database, only m+ n expanded
query ciphertexts are needed instead of mn.

Database

p0,0 p0,1

X

c0,0

c0,1

p0,m-1

p1,0 p1,1 p1,m-1

pn-1,0 pn-1,1 pn-1,m-1 c0,m-1

t0

t1

tn-1

⋅

c1,0

c1,1

c1,n-1

R

Query Result

…

…

…

… … …… … … …

Figure 3: Reformatting the database into a rectangular matrix results in a smaller query
at the cost of slightly more multiplications.

Further increasing the number of dimensions of the database eventually results in a
procedure we call “folding”, where each dimension has size two, as shown in Figure 4.
Since the query for each dimension is a one-hot vector, one of the two ciphertexts will
always be an encoding of 0, and the other will always encode 1. This means one of
the ciphertexts is always 1 minus the other, so in practice only one ciphertext is sent.
Therefore, the query length for a folding PIR protocol is only log2(d), and from a com-
putational perspective 2d multiplications are required.
Such a scheme is partially used by Spiral [11], which has one large dimension and then

many small dimensions of size two. It also improves on PIR by composing two FHE
schemes to yield smaller noise after multiplications. However, we do not consider such
optimizations.

3 Updatability

In addition to the operations Query(idx), Answer(query,db), and Decode(response), we
introduce an update operation Update(response,query,index,new,db) that can modify a

7

p0 p1

R

Database

Query

c1

X

Response

p3 pd-4 pd-3 pd-2p2 pd-1⋯
X X X X X X X
1-c1 c1 1-c1 c1 1-c1 c1 1-c1⋯

⋯

c2

X X
1-c2 c2

X X
1-c2⋯

⋯
⋯

cl(d)

X X
1-cl(d)

⋯

Figure 4: “Folding”: each ciphertext folds the database in half

PIR response in response to changing the database at a given index to a new value.
Specifically a valid update procedure must satisty:

Decode(Update(Answer[query,db],idx2,query,new,db)) =

{
new if idx2 = idx1

db[idx1] if idx2 ̸= idx1

where
query = Query(idx1)

In addition, we require that an Update procedure be infinitely repeatable; one should
be able to perform an arbitrary number of updates.

Note that any update procedure implicitly generates a protocol for evaluating a query
to a sparse database, since we can start with a database with every element equal to
zero, and then update that database into one with our desired elements.

3.1 Linear PIR (SealPIR with d=1)

Firstly, we define an update procedure for a linear PIR protocol. If our answer procedure
computes the result R =

∑d−1
i=0 cipi, then a valid update procedure is:

Update(response,query,idx,new,db) = response + (new-db[idx]) · query[idx]

as shown in Figure 5.

8

Database

Query

p0 p1 pd-2 pd-1

X
c0

X X X
c1 cd-2 cd-1

RoResult

⋯

⋯

pi UUpdate:

Ro
pi ciX

Rn

-
+
=

U ciX

Figure 5: Updating a linear PIR protocol.

The result of this update is equivalent to the result that would have been produced
by running the answer procedure on the updated database, so the correctness of the
decoding of the updated response is guaranteed by the correctness of the original answer
procedure.
Notably, this procedure is fast: an update can be performed in O(1) time.

3.2 Higher-dimensional PIR

Now, we consider a two-dimensional database. If our answer procedure computes the

result R =
∑n−1

i=0 c0,i

(∑m−1
j=0 c1,jpi,j

)
, then a naive update procedure would update the

element pi,j to U by computing the answer R′ = R+ (U − pi,j)c0,ic1,j .
However, this procedure causes long-term noise growth, meaning it is not infinitely

repeatable, and therefore it does not constitute an update procedure:
Because key- and mod-switching alter the noise in a ciphertext, the noise contained

in c0,i

(∑m−1
j=0 c1,jpi,j

)
is not the same as the noise in

(∑m−1
j=0 c0,ic1,jpi,j

)
. Note that a

naive update procedure can update the answer procedure R =
∑m−1

i=0

∑n−1
j=0 c0,ic1,jpi,j .

However, the noise of the optimized version of this procedure differs, and each time
an update is performed the noise increases, resulting in a long-term noise growth that
eventually prevents decryption of the result.

To actually update the answer procedure which computesR =
∑n−1

i=0 c0,i

(∑m−1
j=0 c1,jpi,j

)
,

one has to compute R′ = R− c0,i

(∑m−1
k=0 c1,kpi,k

)
+ c0,i

(
(
∑m−1

k=0 c1,jpi,k)− c1,jpi,j + U
)
,

where pi,j has been updated to the element U .
Instead of running in O(1) time as with a linear scheme, this runs in O(dn) time, where

n is the size of the first dimension. Practically, this means protocols such as Spiral [11]
and SealPIR [4] with a dimension of at least two cannot be updated rapidly.
We now turn to resolving this difficulty through PrimesPIR.

4 PrimesPIR

In current PIR schemes [4, 11], all multiplications are followed by modulus and key-
switching steps to reduce the ciphertext size, as shown in Figure 1. Due to the rounding

9

involved in modulus and key-switching, ciphertexts need to be switched out of NTT
form after each multiplication, reducing the speed of these schemes.
In PrimesPIR, we implement a folding protocol that avoids the mod- and key-switching

steps of FHE multiplicaitons, resulting in the multiplications shown in Figure 6. Because
key- and modulus-switching are skipped, there is no need to convert ciphertexts out of
NTT form, so expensive NTT conversions are removed from the NTT process.

a

X
a1 a2

b

b1 b2

c

a1b1 a1b2+a2b1 a2b2

=

X
d

d1 d2

=
c

c1 c2 c3

d

d1c1 c1d2+c2d1 c3d2c2d2+c3d1

Figure 6: Multiplying ciphertexts without key- and modulus- switching means they can
be left in NTT form, at the cost of an increased ciphertext size.

After each multiplication that does not use key-switching, the ciphertext size grows,
so subsequent multiplications require more operations. However, since the database is
‘folded’ in half after each multiplication, there are fewer of these larger multiplications,
meaning that in total only 8d polynomial multiplications are required, which is twice
as much as the 4d required by a folding scheme with key- and mod-switching (folding
requires 2d ciphertext multiplications). Each of these 8d multiplications is faster than
those in a traditional PIR scheme due to the lack of an NTT transform. In addition, these
8d multiplications allow for better use of computer architecture through parallelization.
For simplicity, we do not use the query-packing approach of Spiral and SealPIR.

Since we have so few query ciphertexts (only log(d), where d is the database length),
we estimate that adding query-packing would reduce query sizes by a factor of log(d)
without significantly increasing speed.

Parallelization. Because all of our multiplications are done in NTT form, our scheme
can be run independently on each of the P different point evaluations of the polyno-
mials involved in the computation process. This means that our scheme can easily be
implemented on a large number of threads, or even on a GPU.

Update Procedure. Before, we noted that as a result of key- and modulus switching,
PIR protocols that structure their databases as higher-dimensional objects cannot be
updated. Since PrimesPIR does not use key- and modulus-switching, we are able to
efficiently update our protocol in log2(d) time, since there are log2(d) dimensions in our
folding protocol.

10

5 Evaluation

When implementing this scheme, we only focused on speeding up server answer times,
and not on reducing client-side query generation, decryption, or network costs. So, we
used lattigo [1] for all client-side operations.
In addition, we implemented the answer procedure for our scheme in C++, with a

second version using CUDA C++.
In Figure 7, we display the time it took to run the answer procedure, query size, and

response size for SealPIR, the C version of Spiral, and PrimesPIR for various database
sizes and 32KB elements.
Note that of the three schemes, PrimesPIR can be updated inO(log2(d)) time, SealPIR

can be updated in O(1) time when a one-dimensional database structure is used, and
Spiral requires O(

√
d) time for an update, since Spiral uses key and modulus switching

on a high-dimensional database.
Of the four variants of Spiral, we compare to SpiralStream since it also doesn’t pack

queries into a single ciphertext.

Number of
Items

SealPIR (d=1)* SpiralStream Our Scheme

Q
u
ery

S
ize

(M
B
)

R
esp

on
se

S
ize

(M
B
)

A
n
sw

er
T
im

e
(s)

Q
u
ery

S
ize

(M
B
)

R
esp

on
se

S
ize

(M
B
)

A
n
sw

er
T
im

e
(s)

Q
u
ery

S
ize

(M
B
)

R
esp

on
se

S
ize

(M
B
)

A
n
sw

er
T
im

e
(s)

212 * * * 3.9 .074 0.35 18.9 10.2 8.01

211 .089 .185 9.25 2 .074 0.23 17.3 9.4 3.96

210 .089 .185 4.69 2 .074 0.16 15.7 8.7 1.82

29 .089 .185 2.36 2 .074 0.16 14.2 7.9 0.89

28 .089 .185 1.21 2 .074 0.16 12.6 7.1 0.44

27 .089 .185 0.67 2 .074 0.16 11 6.3 0.24

Figure 7: Benchmarks for Spiral, Seal, and our scheme. All trials were run on my laptop
(6-core AMD Ryzen 5 5500U, 20GB RAM, 2.10 GHz) using a single core. Each
item stored 32KB of data. *Data for Seal for was gathered by retrieving four
8KB items. Using Seal with d = 2 results in an answer time that is 4̃x faster,
but significantly impedes updatability.

Unfortunately, PrimesPIR’s network costs are much larger than current schemes.
Query costs would continue to be larger than Seal’s even with query packing, and our

11

response size is significantly larger than Seal or Spiral’s. This is because after each mul-
tiplication, the ciphertext size increases and cannot be decreased without key-switching.
In order to reduce the response size, we would have to either reduce the noise growth
(letting us use a smaller ratio of q

t , thereby reducing ciphertext size), or reduce the
multiplicative depth (which would also reduce noise growth).
Additionally, though it is not reflected in these results, a downside of our scheme is

that it requires large parameters due to larger-than-expected noise growth. So, unlike
Spiral, our minimum ciphertext size is quite large, meaning our scheme would struggle
to support PIR applications with small database and response sizes, since we would still
have to support that ciphertext size.
However, our answer computation time is very promising. On a single core, Our

scheme is already 2̃x faster than SealPIR, and is only an order of magnitude slower than
Spiral without composing multiple FHE schemes for smaller noise growth.

Number of
Items

1 thread 12 threads 64 threads GPU

T
im

e
(m

s)

T
im

e
(m

s)

S
p
eed

u
p

T
im

e
(m

s)

S
p
eed

u
p

T
im

e
(m

s)

S
p
eed

u
p

28 1500 144 11x 69 22x 51 30x

27 750 71 11x 36 21x 9 83x

Figure 8: Answer times, and the speedup over a single thread achieved by our protocol.
Trials were run on a different machine than those in Figure 7–these trials used
a NVIDIA GeForce RTX 3090, had a 2.2GHz, 32-Core processor, and 251 GB
of RAM.

With more cores, and even a GPU, our scheme shows considerable speed increases, as
demonstrated in Figure 8. We are currently working on expanding our GPU implemta-
tion to work for larger database sizes.

6 Conclusion

PrimesPIR provides a method of reducing the expensive ansewr time of private informa-
tion retrieval, while also being compatible with sparse databases and use cases involving
updates to the database. However, it creates large network costs that may be prohibitive
in practical settings.
In the future, we would like to implement further optimizations using the idea of

avoiding the key- and modulus-switching steps of private information retrieval:

• Gathering timing data for the update procedure and sparse database protocol

• Extending our GPU implementation to work on larger databases

12

• Further optimizations to the GPU version of our scheme

• Reducing the network costs of our protocol using strategies explored by [4].

• More rigorous analysis of the noise growth achieved by update procedures.

7 Acknowledgments

I would like to thank Simon Langowski for his guidance and support of this project, and
MIT PRIMES for making this project possible.

References

[1] Lattigo v4. Online: https://github.com/tuneinsight/lattigo, August 2022.
EPFL-LDS, Tune Insight SA.

[2] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian.
XPIR : Private Information Retrieval for Everyone. Proceedings on Privacy En-
hancing Technologies, avril 2016:155–174, April 2016.

[3] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal, Amr El Abbadi, and Trin-
abh Gupta. Addra: Metadata-private voice communication over fully untrusted
infrastructure. In 15th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 21), pages 313–329. USENIX Association, July 2021.

[4] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. Pir with com-
pressed queries and amortized query processing. Cryptology ePrint Archive, Paper
2017/1142, 2017. https://eprint.iacr.org/2017/1142.

[5] Sebastian Angel and Srinath Setty. Unobservable communication over fully un-
trusted infrastructure. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 551–569, Savannah, GA, November 2016.
USENIX Association.

[6] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic
encryption without bootstrapping. Cryptology ePrint Archive, Paper 2011/277,
2011. https://eprint.iacr.org/2011/277.

[7] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic
encryption for arithmetic of approximate numbers. Cryptology ePrint Archive,
Paper 2016/421, 2016. https://eprint.iacr.org/2016/421.

[8] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. Cryptology ePrint Archive, Paper 2012/144, 2012. https://eprint.

iacr.org/2012/144.

13

https://github.com/tuneinsight/lattigo
https://eprint.iacr.org/2017/1142
https://eprint.iacr.org/2011/277
https://eprint.iacr.org/2016/421
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144

[9] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath Setty, Lorenzo Alvisi,
and Michael Walfish. Scalable and private media consumption with popcorn. In 13th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 16),
pages 91–107, Santa Clara, CA, March 2016. USENIX Association.

[10] Yiping Ma, Ke Zhong, Tal Rabin, and Sebastian Angel. Incremental Offline/Online
PIR. In 31st USENIX Security Symposium (USENIX Security 22), pages 1741–
1758, Boston, MA, August 2022. USENIX Association.

[11] Samir Jordan Menon and David J. Wu. Spiral: Fast, high-rate single-server pir
via fhe composition. Cryptology ePrint Archive, Paper 2022/368, 2022. https:

//eprint.iacr.org/2022/368.

[12] Johannes Mono, Chiara Marcolla, Georg Land, Tim Güneysu, and Najwa Aaraj.
Finding and evaluating parameters for bgv. Cryptology ePrint Archive, Paper
2022/706, 2022. https://eprint.iacr.org/2022/706.

[13] Muhammad Haris Mughees, Hao Chen, and Ling Ren. Onionpir: Response efficient
single-server pir. Cryptology ePrint Archive, Paper 2021/1081, 2021. https://

eprint.iacr.org/2021/1081.

[14] Sarvar Patel, Joon Young Seo, and Kevin Yeo. Don’t be dense: Efficient keyword
pir for sparse databases. Cryptology ePrint Archive, Paper 2023/466, 2023. https:
//eprint.iacr.org/2023/466.

14

https://eprint.iacr.org/2022/368
https://eprint.iacr.org/2022/368
https://eprint.iacr.org/2022/706
https://eprint.iacr.org/2021/1081
https://eprint.iacr.org/2021/1081
https://eprint.iacr.org/2023/466
https://eprint.iacr.org/2023/466

	Introduction
	Background
	Homomorphic Encryption
	Private Information Retrieval

	Updatability
	Linear PIR (SealPIR with d=1)
	Higher-dimensional PIR

	PrimesPIR
	Evaluation
	Conclusion
	Acknowledgments

