
ALGORITHMICALLY GENERATED PANTS DECOMPOSITIONS OF
COMBINATORIAL SURFACES

NICHOLAS HAGEDORN

Abstract. We describe two algorithms that efficiently find a pants decomposition of
a surface model given by taking a 2n-sided regular polygon with unit length sides and
gluing all the edges in pairs. The first algorithm closely follows Buser’s proof that any
surface S of genus g ≥ 2 has a pants decomposition of length at most C(gArea(S))1/2

for some constant C > 0. The second algorithm finds a pants decomposition by
estimating the size of the largest embedded ball at a randomly chosen point on the
surface. We prove that the first algorithm always gives a pants decomposition of size
at most C ′g for some constant C ′ > 0 in O(ng + g3) time. Empirically, we observe
that the second algorithm outputs much shorter pants decomposition than the first.

1. Introduction

This paper aims to find an efficient algorithm to decompose a closed Riemannian
surface into simpler pieces called pairs of pants. A pair of pants is any subset of the
surface that is topologically a sphere punctured with three holes. If γ1, γ2, . . . γ3g−3 are
disjoint embedded loops on a surface S of genus g, so that each connected component
of S−∪3g−3

i=1 γi is a pairs of pants, then we say that these loops form a pants decomposition
of S. If the surface is endowed with a Riemannian metric, then we can compute the
length of each loop. The length of a pants decomposition is the maximum length of
a loop in the decomposition. An example of a pants decomposition for a genus two
surface is shown in Figure 1.

Figure 1. A pants decomposition of a genus two surface. Arrows on
edges indicate the edge identifications. The three gray lines indicate
curves that collectively decompose the surface into two pairs of pants.

Definition. The Bers’ constant of a Riemannian surface S, denoted by BS, is the
smallest length of a pants decomposition of S.

Date: April 29, 2024.
2020 Mathematics Subject Classification. 14J29, 51F05.
Key words and phrases. Bers’ constant, pants decomposition.

1

2 N. HAGEDORN

Since the Bers’ constantBS measures how difficult it is to cut a surface S into simpler
surfaces, it can indicate how complicated the geometry of S is. Understanding the worst
case behavior of BS for surfaces with a fixed area and genus is a big open problem in
the geometry of surfaces. We briefly give some background on what is known about BS

before describing our results.
Each loop in the pants decomposition must be non-contractible on the surface. It

is also interesting to show that any Riemannian surface S of non-zero genus has one
non-contractible loop of length bounded by a function of its area. The smallest length
of a non-contractible loop of S is called the systole of S and is denoted by sys(S).
In 1949, Loewner proved that every torus T satisfies sys(T)2 ≤ 2√

3
Area(T) [9] using

the uniformization theorem. Later, Gromov proved much more general versions of
Loewner’s systolic inequality. See for instance [6] for more results about systoles. For
example, Gromov proved the following theorem about systoles of surfaces.

Theorem 1.1. [5] Any Riemannian surface S with genus g ≥ 1 satisfies,

sys2(S) ≤ C
log(g)2

g
Area(S)

for some constant C > 0 independent of S.

To find an upper bound on the systole requires finding one short loop on the surface,
but to upper bound the Bers’ constant requires finding several short loops, each of
which are pairwise disjoint and non-homotopic. So the Bers’ constant is much more
difficult to estimate than the systole. Buser began proving results concerning the Bers’
constant in the 80’s. In 1981, he showed that a hyperbolic surface S with genus g ≥ 2
satisfies C−1g1/2 ≤ BS ≤ Cg log(g) for a constant C > 0 independent of S [1]. Later,
Buser and Seppälä [3] proved that BS ≤ Cg, and Parlier [8] found a good bound on
the constant, showing,

BS ≤ 4π(g − 1) + 4

(
cosh−1 1√

2 sin(π
12g−6

)

)
.

The
√
g lower bound on BS is sharp up to a constant for some hyperbolic surface S,

and Buser [3] conjectured that this should also be the behavior of the upper bound
on BS for any hyperbolic S. For a general Riemannian surface S of genus g, Buser also
proved that BS ≤ C(gArea(A))1/2 [2]. This matches the known bound for a hyperbolic
surface, since a hyperbolic surface of genus g has area 4π(g − 1).

To prove an upper bound on BS, Buser developed a procedure to successively find
disjoint and non-homotopic loops on S. He then proved an upper bound on the length
of these loops. See [2] for an exposition of this procedure. However, it is unknown
how the loops in Buser’s procedure actually behave; the procedure could potentially
output much shorter loops than the upper bound that Buser proved. Furthermore,
turning Buser’s procedure into an algorithm that can be run on a computer poses some
difficulties as it involves steps which are difficult to make algorithmic. For instance, the
procedure involves shrinking a loop to the smallest possible length within its homotopy
class.

In [4], Colin de Verdiere, Hubard, and de Mesmay discuss how to adapt Buser’s
procedure for a discrete surface model. Their discrete model is a triangulated surface,
where loops are supported on the graph dual to the triangulation, and lengths of loops

ALGORITHMIC PANTS DECOMPOSITIONS 3

are measured by the number of edges from the dual graph that they contain. They
found that for a surface of genus g with n triangles, there is algorithm which finds a
pants decomposition of length at most C

√
gn in O(gn) time for some constant C > 0.

This matches Buser’s upper bound estimate. Although more algorithmic in nature
than Buser’s procedure, their algorithm also contains some difficult steps to write into
a computer algorithm, like doing surgery on curves. Our aim in this paper to present
two simpler algorithms for finding pants decompositions inspired by Buser’s procedure
and to compare empirically the performance of the two algorithms.

We introduce a robust model of a genus g surface with area roughly g and constant
diameter. The surfaces S in our model will be constructed by taking a regular polygon
with 2n sides of unit length, and gluing together pairs of edges in an orientation pre-
serving way. Generally, when we run our algorithm, we will pair the edges at random.
In Theorem 6.1 of the appendix, we show that if we identify all the edges of a 2n-gon
in pairs uniformly at random, then the expected value of the genus of the resulting
surface is at least 1

6
n− C̃ lnn+ 1

2
for constant C̃ > 0, meaning the expected value of the

genus is roughly linear with respect to n. Each loop in our pants decomposition model
can be viewed as a collection of straight segments on this polygon, as in Figure 1. For
some k ≤ 3g − 3, suppose we have already found the first (k − 1) loops γ1, γ2 . . . γk−1

of our pants decomposition and would like to choose γk. The first (k − 1) loops cut
the 2n-sided polygon into several smaller polygons that we will call connected parts.

Now we describe the main idea in our first algorithm for finding the kth loop γk
for a pants decomposition of S, assuming k > 1. Let S ′ be a connected component
of S−∪k−1

i=1 γi which is not a pair of pants. If S ′ contains multiple boundary components,
we find a short curve α ⊂ S ′ between two loops γi and γj on the boundary of S ′. Then
the composition γ = γi ◦ α ◦ γj ◦ α−1 is another loop. We perturb this γ so that is
is disjoint from γi and γj. Note that γ not contractible, since otherwise γi would be
homotopic to γj. We choose γk to be this perturbation of γ. If S ′ rather has one

connected boundary component, we create a surface S̃ by contracting said boundary
component to a point. We find a curve γ on S̃ by the process used to find approximations
of the systole of a surface. We choose γk to be the corresponding curve on S ′.
Now we state the theorem about this algorithm.

Theorem 1.2. Given a surface S from our model, the first algorithm outputs a pants
decomposition of length at most Cg in O(ng+ g3) time, where C > 0 is some constant.

Now we describe the main idea of our second algorithm. If we have found (k − 1)
loops so that each connected component of S −∪k−1

i=1 γi has genus zero, we find the rest
of the loops of our pants decomposition using the first algorithm. Otherwise, we find
the kth loop in the following way. Let S ′ be a connected component in S −∪k−1

i=1 γi that
has non-zero genus. Consider the graph of connect parts G described as follows: Each
connected part in S ′ corresponds to a vertex of G, and each pair of connected parts
that share a boundary in S ′ correspond to an edge in G. Notice that each simple loop
in G corresponds to a loop in S ′, which consists of straight segments in some connected
parts. Our goal is to find a short loop that be added to our pants decomposition by
finding a short loop in G. To do this pick some starting vertex v ∈ G and start growing
a tree from v. Suppose after t steps, we have a sub-tree Tt of G. Choose one of the
leaves of Tt closest to v, call it w. First suppose there is some edge e which contains w,
so that Tt ∪ e contains a loop in G. If this loop corresponds to a loop in S ′ that can be

4 N. HAGEDORN

added to the pants decomposition, then let γk be this loop. Otherwise, let Ew be all the
edges that contain w, but no other vertex of Tt and define Tt+1 = Tt ∪Ew. Eventually,
we will find a loop that can be added to our pants decomposition.

Theorem 1.3. Given a surface S from our model, the second algorithm outputs a pants
decomposition in O(L(S)g3) time, where L(S) is the maximum number of identified
edges that a curve in the resulting pants decomposition intersects.

Empirically, for random surfaces in our model with genus g ≤ 120, L(S) seems to
behave like C̃g, where C̃ is some constant smaller than 1. In fact, the second algorithm
seems to almost always find a shorter pants decomposition than the first algorithm,
though we are not able to prove this.

We now mention a few open questions.

(1) Can we prove that the length of the pants decomposition that the second algo-
rithm outputs is at most Cg, for some small constant C < 1?

(2) Given our surface model, is there some algorithm that finds a pants decompo-
sition of length at most Cg for some constant C > 0, in O(g2) time?

(3) Given a pants decomposition of a surface we can create its pants decomposition
graph as follows. Each vertex of a graph corresponds to a pair of pants on the
surface. Two vertices are connected by an edge in the graph if the corresponding
pair of pants intersect in some loop of the pants decomposition. The pants graph
of the decomposition that first algorithm outputs will, roughly, look like a path.
On the other hand, the pants graph of the decomposition that second algorithm
outputs could be much more interesting. Does this pants graph often have a
large spectral gap for surfaces obtained by randomly identifying pairs of edges
in a 2n-gon?

The paper is organized as follows. We describe combinatorial surfaces and the paper’s
notation, in addition to proving a few useful results about these surfaces, in Section 2.
We detail our first algorithm in Section 3 and our second in Section 4. We analyze both
algorithms’ performance in Section 5. Section 6 is an appendix, where we estimate the
expected value of the genus for the surfaces in our model.

2. Combinatorial surfaces

In this section we describe our combinatorial surfaces in more detail and begin dis-
cussing some algorithms to compute their properties. The concept is motivated by the
needed for an efficient way to discretely model a random surface and its pants decom-
position. We begin with an orientable 2n-gon for some integer n ≥ 4 and pair all the
edges of the polygon in some way. When all the paired edges are identified in an orien-
tation preserving way, we obtain an orientable surface. Next, we distinguish a certain
set of loops on this surface. The loops have to satisfy two conditions. First, these
loops must form a subset of a pants decomposition. In particular, they are disjoint
and non-homotopic. Second, each loop must be represented by a finite set of straight
line segments that cross our 2n-gon between two of its edges, but do not intersect the
vertices of the 2n-gon. The line segments cut up our 2n-gon into smaller polygons,
which we will refer to as connected parts. This leads to the following definitions.

Definition. A combinatorial surface S is given by a finite set of oriented polygons
along with several edge pairings, which we get from the above procedure. When all the

ALGORITHMIC PANTS DECOMPOSITIONS 5

paired edges are identified in an orientation preserving way, the result is a disjoint set
of oriented surfaces with boundary. We say that S is a connected combinatorial surface
if, after gluing the edges, we get only one connected component.

We refer to each polygon in S as a connected part, and let |S| denote the number
of connected parts in S. We write c ∈ S to mean that S has a connected part c, and
let |c| denote the number of edges of c.

Definition. The distinguished edges of a combinatorial surface S are those which are
not paired to any other edges. In particular they are subsets of the distinguished loops
in the above procedure. When all the paired edges of the connected parts are identified,
the distinguished edges lie on the boundaries of the resulting surfaces. We also refer to
distinguished loops as cuts or boundary components of S.

Next, we describe the data structure that stores the information of our combinatorial
surfaces and its distinguished loops. We assign an integer label to every edge of a
connected part. Each non-negative integer label represents an edge pairing. That
is, if two edges are both assigned the same non-negative integer, then the two edges
are paired. Distinguished edges are labeled with negative labels, and all edges in a
distinguished loop have the same label. So we can speak of a label of a distinguished
loop. The data structure that holds this information is a two-dimensional array, where
each array corresponds to a connected part and lists the integers corresponding to the
edges, starting from an arbitrary edge and moving clockwise. We only care about
the order of the edges of a connected part up to rotation, and we do not care about
the permutation of the connected parts. Hence we can store these values in a two-
dimensional array, arbitrary choosing the starting positions of edges in connected parts
and permutation of the connected parts.

We represent one-dimensional arrays with vectors like c =
(
0 1

)
or with sets like

c = {0, 1}. Similarly, a two-dimensional array is represented by a vector or set whose
entries are vectors or sets. Note that the arrays in the entries do not need to have
the same number of components. When storing information of a combinatorial sur-
face or connected part, we consider such arrays as equivalent up to rotation. So,((
0 1 2

) (
0 1

))
∼
((
0 1

) (
2 0 1

))
. We use |c| to count the size of an ar-

ray or set c. The notation S always refers to an orientable combinatorial surface. If c
is an array, then c(i) is the (i + 1)th entry in c. If c does not have an (i + 1)th entry,
then c(i) is the (j + 1)th entry in c where j is the remainder after i is divided by |c|.

Here are a few examples of combinatorial surfaces given by two-dimensional arrays.

Example 2.1. S =
((
0 1 0 1

))
is a combinatorial surface with one connected part.

When we identify the paired edges we get a torus.

Example 2.2. S =
((
0 1 0 1 2 3 2 3

))
is a combinatorial surface with one

connected part. When we identify the paired edges we get a genus 2 surface. Figure 1
shows three loops on this surface. After we cut the surface along these loops we obtain
a new combinatorial surface S ′ with four connected parts. This can be represented as,

S ′ =

(
0 1 −1 1 −2

)(
2 0 2 −3

)(
3 4 −4 4 −5

)(
5 3 5 −6

)
 .

6 N. HAGEDORN

Next, we discuss some metric considerations for our combinatorial surfaces. The
metric on a combinatorial surface S is given by letting the initial 2n-gon be regular

with unit side length. In particular, the area of such a surface is n
√
3
2

and its diameter

is at most
√
3. Suppose γ is one of the distinguished loops on a combinatorial surface.

Let LS(γ) be the number of distinguished edges in γ that do not belong to a connected
part with three sides. We can also define LS of a distinguished loop using the data
structure perspective.

Definition. For a negative label b and connected part c ∈ S, let Ic(b) count the number
of times b appears in c. Because c can store the same element multiple times, Ic(b) can
be greater than one. Then define LS(b) =

∑
c∈S,|c|≥4 Ic(b).

Our algorithms will find a pants decomposition of any combinatorial surface S with
control on LS of each distinguished loop. To relate this to the length of a pants decom-
position under our metric on S, we make use of the following lemma.

Lemma 2.3. If {γi}mi=1 is a set of distinguished loops on S from our model, then for
any ε > 0 there is another set of loops {γ′

i}mi=1 on S so that,

(1) γ′
i is homotopic to γi for each 1 ≤ i ≤ m;

(2) {γ′
i}mi=1 are all disjoint;

(3) length(γ′
i) ≤ 2LS(γi) + ε for each 1 ≤ i ≤ m.

Proof. For each 1 ≤ i ≤ m, we create γ′
i as follows. The {γi}mi=1 cut S into a certain num-

ber of connected parts. First consider each three-sided connected part c where γi ∈ c.
We can view c as a triangle in our 2n-gon. Since the distinguished loops are disjoint, c
contains contains some vertex v from the 2n-gon. Let v1, v2 be the other two vertices
of the connected part. Additionally, let li be the number of three-sided connected parts
that γi passes through. Pick ṽ1 ∈ vv1 and ṽ2 ∈ vv2 such that they are each precisely
ε/2li away from v. Inside the 2n-gon, add the segment ṽ1ṽ2 to γ′

i. We repeat this
procedure for each such c.
Now consider each connected part c where γi ∈ c and c doesn’t have precisely three

sides. Inside of c, consider each time γi passes through c, connecting two endpoints y1
and y2. If y1 connects γi to a three-sided connected part, then let ỹ1 be the point along
the same edge in c such that it connects to the segment of γ′

i inside the other connected
part. If not, let ỹ1 = y1. Do the same procedure to create ỹ2. Now add the straight
line between ỹ1 and ỹ2 to γ′

i. Again repeat this procedure for each such c.
We now prove γ′

i is homotopic to γi. Consider a segment of γ′
i in a connected part c.

If c was a triangle, then each of the endpoints of the segment have been shifted from the
segment of γi in c. However, to each neighboring connected part c0, if c0 is not three-
sided then the corresponding points of γi have also been shifted so that γ′

i is connected.
If c0 is three-sided, then note that the vertex v of c and c0 is the same vertex. Then both
points are precisely the same distance from that vertex along the same line segment,
so they line up regardless. Now if c is not a triangle and neighbors a triangle, this case
has already been covered. Lastly, if c is not a triangle and neighbors a connected part
that also is not a triangle, the endpoints have never been shifted from γi and so are
still connected. Thus γ′

i is still a loop. As each of the individual segments still connect
to each other in the same order and each are homotopic to the corresponding segments
in γi, γ

′
i is homotopic to γi.

ALGORITHMIC PANTS DECOMPOSITIONS 7

Now repeat all of the above for each γi ∈ {γi}mi=1. We already have the first claim.
The second claim follows as well. Since no two segments start at the same edge in
a connected part and the endpoints stay within the same edges, their order in each
connected part stays the same. Now the segments are then only straightened. If two
straight lines in a polygon cross, then there is no way for homotopic curves with the
same endpoints to be disjoint. Since {γi}mi=1 are disjoint, {γ′

i}mi=1 are disjoint as well.
Lastly, the third claim follows from the fact that a straight line across each connected
part has length at most two, and the sum of the length of segments that cross three-sided
connected parts adds up to at most ε. □

We now give an efficient way of finding the genus of a combinatorial surface S from
its two-dimensional array.

Lemma 2.4. Let S be a combinatorial surface. After we identify the paired edges, we
obtain a surface whose genus g is given by,

g = (2− b+ t− v + e− f)/2

where f is the number of connected parts, b is the number of boundary components, t
is the total number of edges that lie on the boundary components, v is the number of
vertices in S after identifying the paired edges, and e is the number of edges in S after
identifying the paired edges that do not lie on a boundary component.

Proof. The formula for the Euler characteristic is 2 − 2g − b = v − E + f where E
is the total number of edges. Now E = e + t so 2 − 2g − b + t = v − e + f and
g = (2− b+ t− v + e− f)/2. □

We now consider the computational complexity of computing the genus of a combi-
natorial surface.

Definition. For a combinatorial surface S we define the total number of edges to be,

nS =
∑
c∈S

|c|.

We also define bS to be the number of boundary components of S. That is,

bS = |{x : x < 0 and there exists c ∈ S such that x ∈ c}|.

Lemma 2.5. For a combinatorial surface S, the value bS can be computed in O(nS)
time.

Proof. Create a set. Iterate through all x ∈ c ∈ S. In each iteration, add x to the set if
x < 0. The length of the set is bS. Each iteration takes constant time and there are nS

iterations, so the computation takes O(nS) time. □

Proposition 2.6. The genus of a combinatorial surface S can be computed in O(nS)
time.

Proof. Lemma 2.4 means that we know the genus if we can compute the following
values:

(1) The number of unique boundary components that border S.
(2) The number of total edges that border S that are part of boundary components.
(3) The number of unique vertices of S.

8 N. HAGEDORN

(4) The number of faces of S.
(5) The total number of edges that border S.

Values (2) and (5) can be computed by simply checking every value in S’s information
once. This can be done in one O(nS)-time pass through S. Value (1) can be found
from Lemma 2.5, and (4) is the number of connected parts in S, which is |S|. We can
find these two values in O(nS) time as well. Hence it is enough to show we can find the
number of unique vertices in O(nS) time.

We can now construct a graph G whose vertices are the same as the vertices of S.
Two vertices in G are connected by an undirected edge if an edge pairing in S implies
that the two vertices are equivalent. Then two vertices are unique if there exists no
path in G between them. The graph G has nS vertices and nS edges, so a breadth-
first search algorithm can be run in O(nS) time to find the number of unique vertices.
Because there are O(nS) edges, it takes O(nS) time to construct the graph. Hence we
can find the genus in the claimed time complexity. □

The results of this section can be summarized as follows: We introduce an algorithmic
way to store combinatorial surfaces and show that this approach allows us to quickly
find upper bounds on the lengths of pants decompositions and compute the genus of
the surfaces.

3. The First Pants Decomposition Algorithm

In this section, we develop a relatively efficient algorithm for finding the pants de-
compositions of orientable combinatorial surfaces. The idea of the algorithm is based
on Buser’s theoretical algorithm [2]. However, the details are quite different given the
discrete setting of the algorithm.

Lemma 3.1. Let v be a curve on a combinatorial surface S that passes through con-
nected parts of S a total of l times. Let S ′ be the result of cutting S along v. Then
nS′ = 4l + nS.

Proof. Curve v can be divided into l segments, each of which connects two edges of a
connected part. Say the ith such segment connects the xith and yith edge of connected
part ci. We can write,

ci =
(
ei,1 ei,2 · · · ei,xi

· · · ei,yi · · · ei,|ci|−1 ei,|ci|
)
.

Cutting S along v is the same as cutting S along the l segments that make up v. If we
cut ci along the ith such segment, we obtain two new segments,(

ei,1 · · · ei,xi
b1 ei,yi · · · ei,|ci|

)(
ei,xi

∗ · · · ei,yi
∗ b2

)
.

Note that the asterisks next to ei,xi
and ei,yi in the second connected part indicate that,

because we have split these edges in half, the edges with an asterisk have to gain a new
value. Edges b1 and b2 are the sides of v, which also need new values. Regardless, the
sum length of the two new connected parts is,(

xi + |ci| − yi + 2
)
+
(
y1 − xi + 2

)
= |ci|+ 4.

ALGORITHMIC PANTS DECOMPOSITIONS 9

Cutting S along the ith segment of v for all 1 ≤ i ≤ l obtains S ′, implying that:

nS′ =
∑
c∈S′

|c| =
l∑

i=1

4 +
∑
c∈S

|c| = 4l + nS.

□

Definition. For a combinatorial surface S, let GS be the graph with |S| vertices, each
corresponding to a connected part of S, where vertices v1, v2 corresponding to connected
parts c1, c2, respectively, share an edge if there exists x ≥ 0 such that x ∈ c1 and x ∈ c2.
That is, there is an edge between two vertices in G if an edge pairing in S joins their
connected parts.

Lemma 3.2. For a combinatorial surface S, GS can be constructed in O(nS) time.

The following proof makes use of dictionaries. Recall that a dictionary or associative
array is a function with a finite domain that maps keys to values. An unordered
dictionary can be implemented using a hash table. Such an implementation means that
it takes constant time to find a key’s value or remove/insert a (key, value) pair. If D is
a dictionary and i is a key of D, then D(i) is i’s value.

Proof. We first construct a dictionary D. The keys of D are the integers x such that
there exists c ∈ S such that x ∈ c. For a key x, D maps x to the following array of
arrays: {(r, s) : S(r)(s) = x}. We can construct D by iterating through all nS elements
of S. For each element k at position (rk)(sk) in S’s two-dimensional array, we check
if k is a key in D. If k is not a key in D, then we add it as a key in D that maps
to the array {(rk, sk)}. If k is a key in D, then we append the array (rk, sk) to k’s
corresponding array. Each iteration takes constant time and there are nS iterations, so
the construction takes O(nS) time.

We now construct GS. For any connected part c with corresponding vertex v, we can
find all of v’s edges as follows: For all x ≥ 0 such that x ∈ c, check the array that D
maps x to. This array contains two arrays, (r1, s1) and (r2, s2). Let v1 and v2 be the
vertices that correspond to connected parts r1 and r2, respectively. Add an edge in GS

between v and v1 if v ̸= v1 and add an edge in GS between v and v2 if v ̸= v2. This
constant time operation happens at most |c| times. Finding all edges in the graph thus
takes at most O(

∑
c∈S|c|) = O(nS) time. □

Lemma 3.3. Let v be a curve on a combinatorial surface S. Then we can cut S
along v into a set of connected combinatorial surfaces in O(nS) time. Denote the result
as cut(S, v).

Proof. The process detailed in Lemma 3.1 cuts S along v into S ′ in O(nS) time. Our
main task is to determine if v splits S into two connected surfaces. If so, we must
split S ′ into these two distinct surfaces. To do this, construct GS. Let c be one of
the connected parts in S that has since been split into c1 and c2. We run a breadth-
first search on GS, starting at the vertex corresponding to c1. If the search reaches c2,
then S is still connected and cut(S, v) = {S}. If not, we let S1 be the surface with
all the connected parts that the search reaches and let S2 be the remaining connected
parts. Then cut(S, v) = {S1, S2}. Constructing GS and running the search algorithms
takes O(nS) time, so the claim holds. □

10 N. HAGEDORN

3.1. The No Boundary Components Algorithm. Let S be a combinatorial surface
that has precisely one connected part c, has no boundary components, and can be
decomposed into pairs of pants. This algorithm finds a non-contractible curve on S
in O(nS) time.

Let D be the dictionary whose keys x ∈ c map x to
(
x1 x2

)
where x1 and x2 are

the two integers x1 < x2 such that c(x1) = c(x2) = x. We construct D by iterating
through all integers 0 ≤ i < |c|, adding i to D(c(i)). Let F be an empty set that
will eventually store elements of c. We want to find an x ∈ c such that the curve
betweenD(x)(0) andD(x)(1) is non-contractible. The procedure nbc(c) in Algorithm 1
finds such an x. We now provide some commentary on this algorithm. Since the curve
between D(x)(0) and D(x)(1) for some x ∈ c passes through a connected part just once,
if it is contractible, then it can be contracted by moving to the right of D(x)(0) and the
left of D(x)(1), which we call contracting inwards, or to the right of D(x)(1) and the left
of D(x)(0), which we call contracting outwards. We check for each of these possibilities
in inwards and outwards in Algorithm 1. The set F contains x ∈ c such that the
curve between D(x)(0) and D(x)(1) is contractible. We use F to tabulate already-
calculated results, which reduces the time complexity from O(nS

2) to O(nS). We can
use F in lines four and thirteen as, if a curve is homotopic to a curve which is already
in F , then it is contractible as well, which reduces the necessary computation.

Proposition 3.4. Let S be a surface that has precisely one connected part c, has
no boundary components, and can be decomposed into multiple pairs of pants. Then
the above no boundary components algorithm finds a non-contractible curve on S
in O(nS) time.

Proof. We need to show that some x ∈ c satisfies inwards(x) and outwards(x), that
the resulting chosen curve is non-contractible, and that the algorithm is linear with
respect to nS.

We first prove the second claim. For any x ∈ c, the straight curve between the two x
edges, if contractible, can be either contracted by moving to the right of D(x)(0) and
the left of D(x)(1) or to the right of D(x)(1) and the left of D(x)(0). Now inwards(x)
and outwards(x) check for each of these, respectively. Since both return true, the
curve is non-contractible.

Now suppose no such x ∈ c satisfies both methods. Then, for each x ∈ c, the curve
between the two x edges is contractible. Then every element of the fundamental group
of S is the identity, the fundamental group is trivial, and S has genus g = 0. Yet S can
be decomposed into multiple pairs of pants and has no boundary components, which
means g ≥ 2, which is the contradiction.

Lastly, we analyze the algorithm’s time complexity. ConstructingD takesO(|c|) time,
and |c| = nS. Then the only part of the algorithm that could take more than O(nS)
time is computing inwards(c, x) and outwards(c, x) for each x ∈ c. Now, for each
x ∈ c, either inwards(c, x) and outwards(c, x) are both false or at least one is
true. The former situation occurs only once, as the algorithm then terminates. Both
inwards and outwards take at worst linear time with respect to nS, so the former
situation is O(nS). In the latter case, every time the for loop in lines three or twelve
is run, an additional element is added to F . Then the total cost of inwards(c, x) and
outwards(c, x) over all x ∈ c is bounded by the maximum size of F . But since F ⊆ c
and |c| = nS, the total cost is O(nS). Hence the algorithm takes O(nS) time. □

ALGORITHMIC PANTS DECOMPOSITIONS 11

Algorithm 1 Find a non-contractible curve on a surface S.

Require: |S| = 1
1: procedure inwards(c, x)
2: i, j ← D(x)(0), D(x)(1)
3: for k ← 1 to j−i

2
do

4: if c(i+ k) ̸= c(j − k) or i+ k = j − k or c(i+ k) ∈ F then
5: return false, {c[l] | i ≤ l < i+ k}
6: end if
7: end for
8: return true, {c[l] | i ≤ l ≤ j}
9: end procedure
10: procedure outwards(c, x)
11: i, j ← D(x)(0), D(x)(1)

12: for k ← 1 to |c|+i−j
2

do
13: if c(i− k) ̸= c(j + k) or i− k = j + k or c(i− k) ∈ F then
14: return false, {c[l] | j ≤ l < j + k}
15: end if
16: end for
17: return true, {c[l] | j ≤ l ≤ i+ |c|}
18: end procedure
19: procedure nbc(c)
20: for x ∈ c do
21: if x ∈ F then
22: continue
23: end if
24: if not inwards(c, x)(0) and not outwards(c, x)(0) then
25: return x
26: else
27: F ← F ∪ inwards(c, x)(1) ∪ outwards(c, x)(1)
28: end if
29: end for
30: end procedure

3.2. The One Boundary Component Algorithm. Let S be a connected combina-
torial surface that has precisely one distinguished loop, where each connected parted
of S has precisely one boundary component edge, and that can be decomposed into
multiple pairs of pants. This algorithm finds a non-contractible curve on S that is
homotopically distinct and disjoint from the other distinguished loop on S in O(nS)
time.

As every connected part of S has precisely one boundary component edge and bS = 1,
then every c ∈ S has precisely one boundary component edge, all of which have the

12 N. HAGEDORN

same value b < 0. Then,

S =

{(
x|S| b x1 x1,1 x1,2 x1,3 . . .

)︸ ︷︷ ︸
c1

,

(
x1 b x2 x2,1 x2,2 x2,3 . . .

)︸ ︷︷ ︸
c2

, . . .

(
x|S|−1 b x|S| x|S|,1 x|S|,2 x|S|,3 . . .

)︸ ︷︷ ︸
c|S|

}
where xi, xi,j ≥ 0 for each such i.

Also, let S∗ = ((x ∈ c : x ≥ 0) : c ∈ S). That is, S∗ is a copy of S where
all of the b boundary component edges have been removed from the connected parts.
The advantage of creating S∗ is that all curves that were homotopic to the b boundary
component on S are now contractible in S∗, as we contracted the b boundary component
to a point. Simultaneously, any valid curves we find on S∗ are also valid curves on S.
This means that we no longer need to ensure the new curve is homotopically-distinct or
disjoint from the previous curve; we only need to find a non-contractible curve on S∗.
So, our process is as follows: merge the connected parts of S∗ into one connected part c∗

and create a graph G that keeps track of how the connected parts are glued together,
apply no boundary components to find a non-contractible curve on c∗, and lastly
use G to find the corresponding curve on S.

From the definition of S∗,

S∗ =

{(
x|S| x1 x1,1 x1,2 x1,3 . . . x1,|c1|−2

)
,(

x1 x2 x2,1 x2,2 x2,3 . . . x2,|c2|−2

)
, . . .(

x|S|−1 x|S| x|S|,1 x|S|,2 x|S|,3 . . . x|S|,|c|S||−2

)}
.

We next create G and c∗. Let G be an undirected graph with |S| vertices v1, . . . , v|S|
corresponding to the connected parts c1, . . . , c|S|, respectively, such that vi and vi+1 are
connected by an edge with label xi for each 1 ≤ i < |S|. Similarly, v|S| and v1 are
connected by an edge with label x|S|. Additionally let,

c∗ =
(
x|S|,1 x|S|,2 . . . x|S|,|c|S||−2 . . . x2,1 x2,2 . . . x2,|c2|−2 . . . x1,1 x1,2 . . . x1,|c1|−2

)
.

Note that c∗ is the connected part of S∗ that is the result of merging all connected parts
of S∗ together as per the edges of G. Now apply no boundary components to c∗

to find a non-contractible curve. This curve connects two edges of c∗, which we call e1
and e2. We now run a breadth-first search on G to find the shortest path p between
the connected part with e1 and the connected part with e2. Our curve is the path p,
which both exists on S∗ and on S.

Proposition 3.5. Let S be a connected combinatorial surface that has precisely one
boundary component, where each connected parted of S has precisely one boundary
component edge, and that can be decomposed into multiple pairs of pants. Then the
above one boundary component algorithm finds a non-contractible curve on S that
is homotopically-distinct and disjoint from the previous cut on S in O(nS) time.

ALGORITHMIC PANTS DECOMPOSITIONS 13

Proof. We first show that the curve found by one boundary component satisfies
the desired properties. By Proposition 3.4, the curve found on c∗ is non-contractible.
Since c∗ is topologically the same as S∗, the same applies to the curve on S∗. As S∗ is ob-
tained by contracting the boundary component b of S and the curve is non-contractible
on S∗, the curve on S is homotopically distinct from b and non-contractible. Since the
curve does not intersect vertex points of the connected parts, it does not intersect the
point where b is contracted, meaning the curve is disjoint from b.

Now we show that the algorithm runs in O(nS) time. Constructing S∗ and G
takes O(nS) time, and c∗ can be constructed from running breadth-first search on G,
which takes O(nS) time as well. The remaining steps consist of running no boundary
components and another breadth-first search on G, both of which also take O(nS)
time, so the total time complexity is O(nS) as well. □

3.3. The Shorten Curve Algorithm. The goal of this algorithm is to modify pre-
viously made cuts on a surface S to make the cuts shorter. We think about this as,
right after we make a cut as per a different algorithm, we apply shorten curve to
“change our minds” about the cut we made. Note that this algorithm does not change
the geometry of the surface—it only changes where the curve lies on the surface.

First construct dictionary D as per Lemma 3.2. Make a queue q of all c ∈ S such
that |c| = 2 and min(c) < 0. We then repeat the following process:
If q is empty, end the algorithm. If not, take some c from the start of the queue.

Then c =
(
x b

)
for some x ≥ 0, b < 0. Remove c from S. (Note that because the order

of S does not matter, we can swap two elements of S to remove c in constant time.)
Now use D to find c̃ ∈ S such that x ∈ c̃. Then replace the sub-array

(
b x b

)
in c̃

with
(
b
)
. Lastly, remove the x key from D to update D in constant time and, if |c̃| = 2

and min(c̃) < 0, then add c̃ to q. We then repeat the above steps.

Remark. The shorten curve algorithm does not always run in O(nS) time. However,
the algorithm does run in O(nS) time when we apply it after the multiple boundary
components algorithm, which is detailed below, assuming there existed no c in S
such that |c| = 2 and min(c) < 0 before the multiple components algorithm was
run. This is all we need due to the ultimate construction of Algorithm 2, whereby we
only apply shorten curve after multiple boundary components and multiple
boundary components is the only algorithm that can add such a c to S.

We now prove this runtime result. While we have not yet introduced multiple
boundary components, the only fact we need is that multiple boundary com-
ponents(S) has at most two connected parts c1 and c2 such that |c1|, |c2| = 2 and
min(c1),min(c2) < 0. Every element from q represents a connected part that ulti-
mately gets removed from S, meaning at most |S| elements are ever added to q. For
each element in q, the only action that takes more than constant time is replacing the
sub-array

(
b x b

)
in c̃ with

(
b
)
. Then all other actions take O(|S|) ≤ O(nS) time.

Next note that if |c̃| > 4, then the modification of c̃ does not add another element to q
and the modification takes O(nS) time. If instead |c̃| ≤ 4, then the modification of c̃
adds at most one element to q and takes constant time. As q initially starts with the
two elements c1 and c2, the cumulative time taken by each of the descendants of c1
and c2 is at most a constant times the number of descendants of the connected part,

14 N. HAGEDORN

which is at most |S| ≤ nS, plus the time of the modification of the final descendant of
the connected part, which is O(nS). Hence the total runtime is O(nS).

3.4. The Multiple Boundary Components Algorithm. Let S be a connected
combinatorial surface with at least two distinguished loops. This algorithm finds a
non-contractible curve on S that is homotopically distinct and disjoint from all the
other distinguished loops on S.

We first construct a graph G by adding bS more vertices to GS: For all x < 0 where
there exists c ∈ S such that x ∈ c, we create a vertex vx that shares an edge with all
other vertices whose connected part contains x in its edges. We now run a breadth-
first search algorithm bS different times. Specifically, for all x < 0 where there exists
c ∈ S such that x ∈ c, we start a search from vx and end the algorithm once we arrive at
a vertex vy with y < x. We keep track of the shortest path found from the breadth-first
search algorithms. Call this path p and let the vertices that p connects be vx and vy. If
we refer to the connected parts that vertices in G correspond to, then p is also a path
on S between a connected part c1 that has boundary component x as an edge and a
connected part c2 that has boundary component y as an edge. We can now construct
the new non-contractible curve on S.
Let this curve start in c1, right next to the x edge. Then have the curve follow

the x boundary component across S, staying right next to the boundary component,
until it has traveled the entire path of the x boundary component. At this point, have
the curve follow p until it reaches c2. Then have it similarly follow the y boundary
component across S until it returns to c2. Lastly, have the curve follow p back to its
starting position in c1. This is the desired curve.

Proposition 3.6. Let S be a connected combinatorial surface with at least two dis-
tinguished loops. Then the above multiple boundary components algorithm finds
a non-contractible curve on S that is homotopically distinct and disjoint from all the
distinguished loops on S in O(nSbS) time.

Proof. We first show the obtained curve satisfies the desired properties. Its construction
ensures it only passes through edges of connected parts that are identified with other
edges, so the curve is disjoint from all other distinguished loops on S. Next, the
surface enclosed by the curve has genus zero and three boundary components (boundary
component x, boundary component y, and the curve), so it is a pair of pants. Thus the
curve is non-contractible. This also implies the curve is homotopically-distinct from
previous cuts on S as it changes the topology of the remaining part of S.
We next look at time complexity. Constructing G requires constructing GS, which

takes linear time in nS by Lemma 3.2. It also requires adding the vx vertices, which
can be added in the same way as the other vertices in GS: by using D, which also takes
at most O(nS) time. Now G is a graph with |S|+ bS vertices and at most nS edges. A
breadth-first search runs in O(V + E) time on a graph with V vertices and E edges.
Hence the bS breadth-first searches run in

O(bS(|S|+ bS + nS)) ≤ O(bS(nS + nS + nS)) = O(nSbS)

time. □

3.5. The Linear Decomposition Algorithm. Putting all of the results in this sec-
tion together, we have our final algorithm for finding pants decompositions. The linear

ALGORITHMIC PANTS DECOMPOSITIONS 15

Algorithm 2 The First Pants Decomposition Algorithm

1: procedure linear decomposition(S)
2: if genus(S) = 0 and bS = 3 then ▷ If S is a pair of pants.
3: return 0
4: else if |S| = 1 then ▷ If S has one connected part.
5: v ← no boundary components(S)
6: Snew ← cut(S, v)
7: else if bS = 1 then ▷ If S has one boundary component.
8: v ← one boundary component(S)
9: Snew ← cut(S, v)

10: else ▷ If S has multiple boundary components.
11: v ← multiple boundary components(S)
12: Snew ← cut(S, v)
13: Snew ← {shorten curve(S ′) | S ′ ∈ Snew}
14: end if
15: l←

∑
S′∈Snew

LS′(b) ▷ Here, b is the label of one side of v.
16: for S ′ ∈ Snew do ▷ Snew is a set of ≤ 2 surfaces achieved from the cut.
17: l← max(l, linear decomposition(S ′)) ▷ Decompose resulting surface(s).
18: end for
19: return l
20: end procedure

decomposition algorithm is described in Algorithm 2. The algorithm recursively ap-
plies itself to the new surfaces created by cutting along these curves until the surface
has been decomposed into pairs of pants. The fact that linear decomposition actu-
ally produces a pants decomposition is a consequence of the above propositions, which
show that each step finds a new non-contractible, homotopically distinct, and disjoint
curve on the surface. The one complication is that one boundary compoennt re-
quires each connected part to have precisely one boundary component edge. It turns
out that this requirement is always met, and the result is a consequence of the proofs
of Lemma 3.7 and Theorem 3.8.

Due to Lemma 2.3 and the fact that we use LS(b) in the algorithm, the pants de-
composition that linear decomposition finds has a length of at most 2 · linear
decomposition+ ε, for any ε > 0. The same holds true for the algorithm we propose
in Section 4. Note that the following analysis concerns linear decomposition. To
bound the exact length of the decomposition, multiply all the bounds by two. We now
analyze the time complexity and output of linear decomposition. It turns out that
linear decomposition has a linear upper bound with respect to the genus of the
surface, which is the reason the algorithm is named as such.

Lemma 3.7. If S is a combinatorial surface with genus g ≥ 1, bS = 1, and each c ∈ S
has one boundary component edge, then,

linear decomposition(S) ≤ |S|+ 4(g − 1).

Proof. We induct on g. When g = 1, linear decomposition(S) ≤ ⌈ |S|
2
⌉ ≤ |S| +

4(g − 1) as per the one boundary component algorithm. Now assume the result
holds for such surfaces of genus g and consider some such surface S of genus g + 1.

16 N. HAGEDORN

x|S| x1

c1

. . .

. . . xi−1 xi

ci

...
...

y

. . . xj−1 xj

cj

. . .

. . . xk−1 xk

ck

...
...

y

. . . x|S|−1 x|S|

c|S|

. . .

(a) The surface S with bS = 1.

x|S| x1

c1

. . .

. . . xi−1 xi

ci

...
...

y

. . . xj−1 xj

cj

. . .

. . . xk−1 xk

ck

...
...

y

. . . x|S|−1 x|S|

c|S|

. . .

(b) S after one cut.

x|S| x1

c1

. . .

. . . xi−1 xi

ci

...
...

y

. . . xj−1 xj

cj

. . .

. . . xk−1 xk

ck

...
...

y

. . . x|S|−1 x|S|

c|S|

. . .

(c) S after two cuts but before applying shorten curve.

x|S| x1

c1

. . .

. . . xi−1 xi

ci

...
...

y

. . . xj−1 xj

cj

. . .

. . . xk−1 xk

ck

...
...

y

. . . x|S|−1 x|S|

c|S|

. . .

(d) S after two cuts and applying shorten curve.

Figure 2. A surface S with bS = 1 after no cuts, one cut, two cuts
before applying shorten curve, and two cuts after applying shorten
curve.

As every connected part has precisely one boundary component edge and bS = 1, then
every c ∈ S has precisely one boundary component edge, all of which have the same
value b < 0. Then,

S =

{
c1 =

(
x|S| b x1 . . .

)
, c2 =

(
x1 b x2 . . .

)
, . . . , c|S| =

(
x|S|−1 b x|S| . . .

)}
where xi ≥ 0 for each such i. This view is shown in Figure 2a. We now analyze the
first few cuts in linear decomposition(S). The algorithm first uses one boundary
component, which, since every connected part has exactly one b, finds a curve that
travels alongside b. Specifically, the resulting curve starts from connected part ci then
travels along xi, xi+1, . . . xj−1 to connected part cj for some i < j, as shown in Figure 2b.
The second cut then uses multiple boundary components followed by shorten
curve. The cut is shown both before and after using shorten curve in Figure 2c
and Figure 2d, respectively. This cut decomposes S into a pair of pants and a different
surface. Note that this other surface might either be two unconnected surfaces S1

and S2 or be one connected surface.

ALGORITHMIC PANTS DECOMPOSITIONS 17

Suppose the former case. Then bS1 = 1 and bS2 = 1, and the surfaces’ genuses g1
and g2, respectively, are both less than or equal to g. Lastly, every connected part
in each surface has precisely one boundary component edge. As such, we can apply
the inductive hypothesis. Applying multiple boundary components increases the
number of connected parts by two, so the total number of said parts is at most |S|+2,
meaning each of the first two curves has length at most |S|+2. Lastly, |S1|, |S2| ≤ |S|.
So,

linear decomposition(S) ≤ max{|S1|+ 4(g1 − 1), |S2|+ 4(g2 − 1), |S|+ 2}
≤ |S|+max{4(g − 1), 4(g − 1), 2}
≤ |S|+ 4(g − 1).

Now consider the latter case, where the second cut decomposes S into a pair of pants
and one connected surface with two boundary components. The linear decompo-
sition algorithm now uses multiple boundary components again two decompose
the connected surface into a pair of pants and a connected surface S ′ with bS′ = 1.
Once again, |S ′| ≤ |S|+ 4, S ′ has genus g − 1, and every connected part in the surface
has precisely one boundary component edge. Moreover, then the maximum length of
those three curves must be at most |S|+ 4. By induction,

linear decomposition(S) = max{linear decomposition(S ′), |S|+ 4}
≤ max{(|S|+ 4) + 4(g − 2), |S|+ 4}
≤ |S|+ 4max{g − 1, 1}
≤ |S|+ 4(g − 1).

□

Theorem 3.8. Suppose Algorithm 2 is run on a genus g ≥ 2 connected combinatorial
surface S with no boundary components and one connected part. Then,

linear decomposition(S) ≤ 4g − 4.

Proof. The first curve from linear decomposition(S) either decomposes S into two
unconnected combinatorial surfaces S1 and S2 or into one combinatorial surface with
two connected parts, each containing one boundary component. In the former situation,
note bS1 = 1 and bS2 = 1. Moreover, |S1| = |S2| = 1, every connected part in each
surface has precisely one boundary component edge, the surfaces’ genuses g1 and g2,
respectively, are both less than g. Applying Lemma 3.7 yields,

linear decomposition(S) ≤ max{|S1|+ 4(g1 − 1), |S2|+ 4(g2 − 1)}
≤ max{1 + 4(g − 2), 1 + 4(g − 2)}
≤ 1 + 4(g − 2)

≤ 4g − 4.

Now consider the latter situation, where the first curve from linear decomposi-
tion(S) decomposes S into one combinatorial surface with two connected parts. Then
the second curve applies the multiple boundary components algorithm, which
cuts S into a pair of pants and a surface S ′ with four connected parts and genus g− 1.
Moreover, the maximum length of these first two cuts is four and bS′ = 1. Lastly, every

18 N. HAGEDORN

connected part in the surface has precisely one boundary component edge. Then we
can apply Lemma 3.7 to achieve,

linear decomposition(S) ≤ max{linear decomposition(S ′), 4}
≤ max{4 + 4(g − 2), 4}.

Because S can be decomposed into pairs of pants, g ≥ 2. Hence,

linear decomposition(S) ≤ 4g − 4.

□

Lemma 3.9. Each recursive call of linear decomposition(S ′) takes O(nS′) time.

Proof. As shown by previous lemmas and propositions, every line in Algorithm 2 takes
O(nS′) time aside from line ten. As per Proposition 3.6, line ten instead takes

O (nS′bS) time.

However, note that bS starts at bS = 0 for the first surface inputted into linear
decomposition(S). Next, bS only increases by at most two after each cut, since each
boundary component has two unique sides. Lastly, the cut in line ten occurs whenever
bS ≥ 2 and results in bS decreasing by one. Then if linear decomposition(S ′) is
called recursively, we know that bS ≤ 3. Hence,

O (nS′bS) ≤ O (3nS′)

= O (nS′) .

□

Theorem 3.10. Suppose Algorithm 2 is run on a genus g ≥ 2 connected combinatorial
surface S with no boundary components and one connected part. Then the algorithm
takes O(nSg + g3) time.

Proof. Though the algorithm is recursive, every call of the linear decomposition
function either makes a new cut on the inputted surface or declares that the inputted
surface is a pair of pants. As stated in Section 1, a pants decomposition consists of
3g − 3 curves that decompose a surface into 2g − 2 pairs of pants. Hence the linear
decomposition function is called at most 5g − 5 times.

Lemma 3.1 tells us that with each cut that passes through connected parts of S ′

a total of l times, nS′ increases by at most 4l. Notice that the proofs of Lemma 3.7
and Theorem 3.8 don’t just bound linear decomposition(S), but also the maximum
number of times a curve in the decomposition passes through connected parts of the
surface. As such, Theorem 3.8 then gives that the largest possible value of nS′ over
all surfaces S ′ that we input into linear decomposition is nS + 4(4g − 4)(3g − 3).
Lemma 3.9 implies the time complexity of each recursive call of linear decomposi-
tion(S ′) is O(nS′), meaning each recursive call takes at most O(nS+4(4g−4)(3g−3))
time. With 5g − 5 calls of linear decomposition(S ′), the algorithm’s worst-case
total time complexity is,

O
((

5g − 5
)(
nS + 4(4g − 4)(3g − 3)

))
= O

(
g(nS + g2)

)
= O(nSg + g3).

□

ALGORITHMIC PANTS DECOMPOSITIONS 19

Corollary 3.11. Let S be a random combinatorial surface created by identifying all the
edges of a 2n-gon in pairs uniformly at random. Suppose S has genus g ≥ 2. Then the
expected value of the time complexity of Algorithm 2 is O(g3).
Proof. Apply Theorem 6.1 to Theorem 3.10. □

4. The Second Pants Decomposition Algorithm

In this section, we present another algorithm that finds a pants decomposition for
a genus g ≥ 2 combinatorial surface. The goal of this second algorithm is to produce
a pants decomposition with shorter average length than the decomposition produced
by Algorithm 2. Though we do not achieve an upper bound on the length of the
boundary components, the upper bound appears to be linear with respect to the genus
and significantly smaller than the bound found in Section 3.

4.1. The Genus Removal Algorithm. Given a connected combinatorial surface S,
this algorithms finds a non-contractible curve on S that is homotopically distinct and
disjoint from all previous curves. This algorithm focuses on finding a curve that reduces
the genus of the surface, as opposed to decreasing the number of boundary components.

Begin by constructing the dictionary D in the same manner as in the proof of
Lemma 3.2. Let H be a graph with one vertex for each connected part of S and
no initial edges. Pick a connected part c1 ∈ S with maximal |{x ≥ 0 : x ∈ c1}| and
conduct a breadth-first search algorithm of GS that starts from c1 and is modified for
cycle detection. As we conduct the search, we connect vertices in H together as per
the search so that H is an acyclic graph; we also label each edge with the shared edge
that glues together the vertices’ corresponding connected parts.

Specifically, when the vertex for some connected part c̃ is taken from the queue, we
look at all x ∈ c̃ such that x ≥ 0 and x is not the edge connecting c̃ to its parent
connected part, information we get from H. We then use D to find the connected
part cx that each x joins to c̃. If cx has not been visited, we add it to the queue and
add an edge with label x in H between the vertices corresponding to c̃ and cn. If
not, we consider the unique curve between the two x edges in S whose path is given
by the path in H between the two connected parts. If this curve cuts S into two
disconnected combinatorial surfaces, of which one has genus zero and less than three
boundary components, then we continue with the breadth-first search. Otherwise, we
return said cut and end the algorithm.

Proposition 4.1. Suppose S is a connected combinatorial surface with non-zero genus.
The genus removal algorithm described above finds a non-contractible curve that is
homotopically-distinct and disjoint from all previous cuts on S. In addition, it does so
in O(nS

2) time.

Proof. Note that the test at the end of the algorithm guarantees that, if a curve is
found, then the curve is non-contractible and homotopically-distinct and disjoint from
all previous cuts on S. We next show a suitable curve must be found. The glueing of
two connected parts,

c1 =
(
e1 e2 · · · en · · · e|c1|−1 e|c1|

)
and c2 =

(
f1 f2 · · · fm · · · f|c2|−1 f|c2|

)
around some shared edge en = fm = x ≥ 0 is the new connected part,(

e1 · · · en−1 fm+1 · · · f|c2| f1 · · · fm−1 en+1 · · · e|c1|
)
.

20 N. HAGEDORN

Note that the glueing of c1 and c2 contains the same topological information as {c1, c2}.
Now consider the connected part c formed by successively glueing pairs of connected
parts in S around shared edges x if they are connected in H by an edge with label x.
The result is a connected part that is homeomorphic to the entirety of S. Since c then
has non-zero genus, its fundamental group is non-trivial. Then there exists some edge
pairing, between edges labeled y, in c such that the direct path between the two edges
forms a non-contractible curve that is homotopically distinct from all other curves in c.
The breadth-first search of GS conducted in the genus removal algorithm searches
through all edges, so it will eventually look at each one of the two y edges. When it
does, the algorithm considers the curve between the two y edges in S whose path is
given by H. But this is the same as the curve between the y edges in c. Then the
curve is non-contractible and homotopically distinct from all previous curves. Thus the
algorithm finds a suitable curve.

We next look at the algorithm’s time complexity. In Lemma 3.2, we showed that
constructing D and GS takes O(nS) time. The breadth-first search consists of at
most O(nS) passes. At each edge in GS, we either add an edge to H, which takes
constant time, or cut along the potential curve and check the genus of the resulting
surface(s), which takes O(nS) time as per Lemma 3.3 and Lemma 2.4. Then the genus
removal algorithm runs in O(nS

2) time. □

Definition. A length n ≥ 1 chain is a set of connected parts {c0, c1, c2, . . . , cn, cn+1} in S
(where c0 is not necessarily distinct from cn+1) such that, for each 1 ≤ i ≤ n, |ci| = 4, ci
contains precisely two boundary component edges, and ci neighbors both ci−1 and ci+1

in GS. Moreover, |c0|, |cn+1| > 4.
Equivalently, a length n ≥ 1 chain in a combinatorial surface S is a set of n squares,

whose edges are identified to be all in one a row and who all have two boundary
component edges. In addition, the connected parts at the end of the chain are both
identified to connected parts that are not squares.

4.2. The Chain Detection Algorithm. Let S be a connected combinatorial surface
that can be decomposed into pairs of pants. This algorithm aims to determine if S has
at least one chain. For each c ∈ S, determine whether |c| = 4 and c contains precisely
two boundary components. We return true if some c ∈ S satisfies both these criteria
and false otherwise.

Proposition 4.2. Suppose S is a combinatorial surface that can be decomposed into
pairs of pants. Then the chain detection algorithm described above correctly deter-
mines in O(nS) time whether a combinatorial surface S has a chain.

Proof. We need to prove S has a chain if and only if there exists c ∈ S such that |c| = 4
and c contains precisely two boundary components.

To prove the forward direction, note that if S has a length n ≥ 1 chain {c0, c1, c2, . . . ,
cn, cn+1}, then |c1| = 4 and c1 contains precisely two boundary components. This is the
desired connected part in S.

To prove the converse, suppose there exists c ∈ S such that |c| = 4 and c contains
precisely two boundary components, which we call b1 and b2. Since b1 and b2 cannot
be adjacent, we can write c =

(
x1 b1 x0 b2

)
for some x0, x1 ≥ 0. Now consider the

connected parts that connect to c through x1 and x0. If one of them has length four and
precisely two boundary components, then iteratively consider the next connected part

ALGORITHMIC PANTS DECOMPOSITIONS 21

that it neighbors. As |S| is finite, if this process never ends, then the connected parts
in question must form a loop. This means S has at most two boundary components
and genus zero. But then S cannot be decomposed into pairs of pants. Then the
process must terminate after examining m ≥ 3 connected parts. Let c0 and cm−1 be
the two connected parts examined that do not satisfy the two criteria, and label each
connected part in between the two from c1 to cm−2. Then {c0, c1, c2, . . . , cm−2, cm−1} is
a length m− 1 chain in S. Hence S has a chain.

We lastly analyze the algorithm’s time complexity. Examining the size of each c ∈ S
and the number of boundary components in each such c takes O(|c|) operations. So
chain detection runs in O(

∑
c∈S|c|) = O(nS) time. □

4.3. The Chain Removal Algorithm. Suppose S is a connected combinatorial sur-
face that can be decomposed into pairs of pants, and S contains a length n chain. This
algorithm aims to cut S along one or two non-contractible curves that are homotopically-
distinct and disjoint from all previous cuts on S and each other such that the resulting
surface has at least n fewer connected parts than the original surface. The algorithm
returns the resulting surface and the maximum length of the curves.

Use the chain detection algorithm to identify some c =
(
x1 b1 x0 b2

)
∈ S

with x0, x1 ≥ 0 and b1, b2 < 0. Consider two situations, depending on whether b1 = b2.
If b1 ̸= b2, we apply a modification of the multiple boundary components

algorithm (instead of searching through G for p, we let p be the path on G from b1
to c to b2, which means the algorithm takes O(nS) time), which adds a new boundary

component b̃ to the surface. We lastly run the shorten curve algorithm to obtain
the final surface, which we return alongside LS(b̃).
Now suppose b1 = b2 and let b < 0 be their common value. We remove c from S

and add the two connected parts
(
x1 b

)
and

(
x0 b

)
to S. If the b boundary compo-

nent is connected, then S must be non-orientable, a contradiction. So the b boundary
component is two disjoint boundary components. Pick integers b3, b4 < 0 that are not
previous boundary components on S. Running a breadth-first search along the path
of b, we replace all b’s with b3 or b4 such that b3 and b4 both form two distinct loops.
We then run the shorten curve algorithm to obtain the final curves. The end result
is a surface with two additional cuts b3 and b4 and one fewer chain. We return the
resulting surface and max{LS(b3), LS(b4)}.

Proposition 4.3. Suppose S is a connected combinatorial surface that can be decom-
posed into pairs of pants, and S contains a length n chain. Then the chain removal
algorithm described above cuts S along one or two non-contractible curves that are
homotopically-distinct and disjoint from all previous cuts on S and each other such
that the resulting surface has at least n fewer connected parts than the original surface.
In addition, it does so in O(nS) time.

Proof. The chain removal algorithm first uses chain detection to identify some
connected part c ∈ S that is part of some chain {c0, c1, c2, . . . , cn, cn+1}. Note c = ck for
some 1 ≤ k ≤ n. Since the two boundary components of c1 cannot be adjacent, we can
write c1 = (x1, b1, x0, b2), where x1, x0 ≥ 0, x0 ∈ c0, x1 ∈ c2, and b1, b2 < 0. If n ≥ 2,
then x1 ∈ c2 =⇒ c2 = (x2, b1, x1, b2) for some x2 ≥ 0. If n ≥ 3, then since x1 con-
nects c2 to c1 and c2 connects to c3, x2 ∈ c3 and so c3 = (x3, b1, x2, b2) for some x3 ≥ 0.

22 N. HAGEDORN

Continue the process inductively to achieve, for 1 ≤ i ≤ n, ci = (xi, b1, xi−1, b2), where
each xi ≥ 0 and b1, b2 < 0.

If b1 ̸= b2, then chain removal applies multiple boundary components, which
we already proved in Proposition 3.6 cuts S along a non-contractible curve that is
homotopically-distinct and disjoint from all previous cuts on S. In particular, it splits ck
into

(
xk b∗

)
and

(
xk−1 b∗

)
for some new boundary component b∗ < 0 and replaces

all b1, b2 in S with b∗. Using our labeling of the connected parts {c1, c2, . . . , cn}, it is
clear that the shorten curve algorithm removes c1, c2, . . . , cn from S and modifies c0
and cn+1. Then the resulting surface has at least n fewer connected parts than the
original surface.

If b1 = b2 = b, then chain removal splits ck into
(
xk b

)
and

(
xk−1 b

)
. After each b

is replaced with either b3 or b4 such that b3 and b4 form disjoint loops, the discarded
region is a pair of pants as it has genus zero and its boundary components are b, b3,
and b4. Then both b3 and b4 are non-contractible curves that are homotopically-distinct
and disjoint from all previous cuts on S and each other—if they were not, then the cuts
would result in a cylinder or circle. The connected parts in the chain out of one side
of ck are the same as in the b1 ̸= b2 case, just with the b labels replaced with a new
label. The same applies to the other side of the chain, again with a different label.
Then the same reasoning as in the b1 ̸= b2 case gives that the resulting surfaces has at
least n fewer connected parts than the original surface.

We now analyze the algorithm’s time complexity. We first call chain detection.
By Proposition 4.2, this takes O(nS) time. Changing ck takes constant time, and
shorten curve takes O(nS) time. If b1 = b2, running the breadth-first search along
the path of b also takes O(nS) time as every vertex and edge in the graph corresponds
to an edge in a c ∈ S. Hence chain removal takes O(nS) time. □

4.4. The Genus Decomposition Algorithm. Algorithm 3, the genus decompo-
sition algorithm, is our second pants decomposition algorithm and the culmination of
the algorithms presented in this section. Its key feature, and the reason for its name,
is that it prioritizes cuts early on that decrease the genus of the surface. Just like
the linear decomposition algorithm, the genus decomposition algorithm uses
recursion, with each recursive step cutting the surface along one or two curves before
applying genus decomposition to finish the decomposition on each of the resulting
connected surfaces. The curves produced by genus decomposition indeed result in
a pants decomposition. This is due to the preceding propositions, which prove that
the curves found in each step are non-contractible and homotopically-distinct and dis-
joint from each other. Lastly, just as for the linear decomposition algorithm, note
that genus decomposition finds a pants decomposition with a length of at most
2 · genus decomposition+ ε, for any ε > 0, due to Lemma 2.3 and the use of LS(b)
in the algorithm. We now analyze the time complexity of genus decomposition.

Theorem 4.4. Suppose Algorithm 3 is run on a genus g ≥ 2 connected combinatorial
surface S, and let L be the maximum number of identified edges that a curve in the
resulting pants decomposition intersects. Then the algorithm takes O(gnS

2 + g3L2)
time.

Proof. Consider each recursive call genus decomposition(S ′) within the overall al-
gorithm. Since the total number of curves in the decomposition is 3g − 3, bS′ = O(g).

ALGORITHMIC PANTS DECOMPOSITIONS 23

Algorithm 3 The Second Pants Decomposition Algorithm

1: procedure genus decomposition(S)
2: if genus(S) = 0 and bS = 3 then ▷ If S is a pair of pants.
3: return 0
4: else if chain detection(S) then ▷ If S has at least one chain.
5: Snew, l← chain removal(S)
6: else if genus(S) = 0 then ▷ If S has genus 0 but is not a pair of pants.
7: v ← multiple boundary components(S)
8: Snew ← cut(S, v)
9: Snew ← {shorten curve(S ′) | S ′ ∈ Snew}

10: l←
∑

S′∈Snew
LS′(b) ▷ Here, b is the label of one side of v.

11: else ▷ If S has non-zero genus and no chains.
12: v ← genus removal(S)
13: Snew ← cut(S, v)
14: l←

∑
S′∈Snew

LS′(b) ▷ Again, b is the label of one side of v.
15: end if
16: for S ′ ∈ Snew do ▷ Snew is a set of ≤ 2 surfaces achieved from the cut.
17: l← max(l,genus decomposition(S ′)) ▷ Decompose resulting surface(s).
18: end for
19: return l
20: end procedure

Now chain detection and chain removal both take O(nS) time, due to Propo-
sition 4.2 and Proposition 4.3, respectively. On the other hand, multiple bound-
ary components and genus removal take O(nS

2) time, as per Proposition 3.6
and Proposition 4.1, respectively. The remaining steps in the algorithm take O(nS)
time, due to additional prior results. Then each recursive call takes O(nS

2) time.
Due to Lemma 3.1, nS′ increases by at most 4L with each cut. With O(g) curves,
we have nS′ = O(nS + gL). There are O(g) recursive calls, so the entire algorithm
takes O(g(nS + gL)2) time. Since either nS ≥ gL or nS < gL, Algorithm 3 has time
complexity O(gnS

2 + g3L2). □

5. Analysis

In this section, we analyze the length of the pants decompositions from Section 3’s
linear decomposition algorithm and Section 4’s genus decomposition algorithm.
We create a random combinatorial surface of size 2n by randomly shuffling the array(
1 1 2 2 · · · n n

)
. Then, we run our two algorithms on these random combi-

natorial surfaces. Note that in all of the following figures, the y-axis is the output of
the respective algorithm, which finds the maximum value of LS(b) over all boundary
components b of S, even when the axis label uses the word length. To obtain the actual
length of the curves of pants decompositions, multiply the y-axis by two. This is a
consequence of Lemma 2.3.

Figure 3a displays the average value of linear decomposition(S) for random com-
binatorial surfaces S given the genus of S. This figure uses 1,000 data points. The
relationship appears linear, and it almost perfectly matches the upper bound of 4g− 4
from Theorem 3.8, where g is the genus of S. So, linear decomposition rarely does

24 N. HAGEDORN

(a) linear decomposition. (b) genus decomposition.

Figure 3. Average value of each algorithm over random combinatorial
surfaces of a certain genus.

better than its upper bound. Since Area(S) =
√
3g, the data suggests that linear

decomposition(S) ∼ C
√

Area(S)g for some constant C > 0. As Buser [2] proved

that BS ≤ C
√

Area(S)g for constant C > 0, it appears that the algorithm behaves
very similarly to the upper bound.

The relationship between the genus of S and genus decomposition(S) is less clear.
In Figure 3b, we show the average value of genus decomposition(S) for random
combinatorial surfaces S given the genus of S. This figure uses 3,000 data points. Still,
the figure suggests a strong linear relationship between the two variables.

Comparing the two algorithms in Figure 4 reveals that genus decomposition
produces significantly shorter pants decompositions than linear decomposition. In
Figure 5 and Figure 6, we look at the lengths of the individual cuts in a decomposition.
The linear aspects of linear decomposition are revealed in Figure 5a. Note that
this pattern is what enables the proof of Theorem 3.8. This is in contrast with the
more sporadic nature of the genus decomposition algorithm.

Figure 4. Average value of both linear decomposition(S), shown
in orange, and genus decomposition(S), shown in blue, for random
combinatorial surfaces S given the genus of S.

ALGORITHMIC PANTS DECOMPOSITIONS 25

(a) linear decomposition. (b) genus decomposition.

Figure 5. Lengths of the individual cuts in each algorithm, in the order
the algorithm finds the cuts, for a fixed random combinatorial surface.

(a) linear decomposition. (b) genus decomposition.

Figure 6. Lengths of the individual cuts in each algorithm, sorted by
the length of the cuts, for a fixed random combinatorial surface.

6. Appendix

In this appendix we prove that the surfaces in our model often have a large genus.
We note that in [10] Brooks and Makover prove a tighter bound for the expected value
of the genus for a random surface model that is similar to ours.

Theorem 6.1. Suppose we identify all the edges of a 2n-gon in pairs, uniformly at
random. Then the expected value of the genus of the resulting surface is at least 1

6
n −

C̃ lnn+ 1
2
, for some constant C̃ > 0.

Proof. When we identify the edges of our 2n-sided polygon, many of the vertices are
identified. The identifications put a transitive relation on the vertices of the polygon.
Let V be the number of equivalence classes of this relation. We can compute the Euler
characteristic of the resulting surface to be V − n + 1, and so its genus is n−V+1

2
. Our

goal is to show that V is on average much smaller than n.

26 N. HAGEDORN

We identify the edges of our polygon step by step. On the kth step, we randomly
select two of the unidentified 2n−2(k−1) edges and identify them. We want to find an
upper bound on the probability that the kth identification identifies two vertices that
are already identified, an event we call R(k). Let e be the first edge we select on the kth

step and let e1 and e2 be the neighboring edges of e, where e intersects e1 at vertex v1
and e2 at vertex v2. Now for R(k) to be true, the kth identification must either identify
a vertex to itself or to a different vertex that it is already identified to. The former case
occurs when e is identified to a not-yet-identified neighbor, of which there are at most
two, meaning the event occurs with probability at most 2

2n−2(k−1)
= 1

n−k+1
. The latter

case occurs when either e1 or e2 is identified with another edge f , meaning a vertex w
of f is already identified to v1 or v2, respectively. Then R(k) occurs if e is identified
with the other edge that shared vertex f . Since f could be the edge identified with
either e1 or e2, there are once again at most two such possibilities, so the case occurs
with probability at most 2

2n−2(k−1)
= 1

n−k+1
. As such,

P[R(k)] ≤ 2

n− k + 1
.

Then the expected number of steps for which R(k) occurs is at most,
n∑

k=1

P[R(k)] ≤
n∑

k=1

2

n− k + 1
= C

∫ n

1

1

x
dx = C lnn

for some constant C > 0. If a vertex does not lie on an edge for which R(k) occurs,
then it lies in an equivalence class with at least two other vertices. Every vertex lies on
two edges, meaning at most 2C lnn vertices lie on edges for which R(k) occurs. Then
the expected value of V is at most,

1

3
(2n− 2C lnn) + 2C lnn ≤ 2

3
n+

4C

3
lnn.

Thus, for some constant C̃ > 0, the expected value of the genus is at least,

1

6
n− C̃ lnn+

1

2
.

□

Acknowledgements

I am extremely grateful to my PRIMES mentor, Elia Portnoy, for his excellent guid-
ance throughout this project. He has been consistently kind and patient, and has been
invaluable to my PRIMES experience. I am also very grateful to the MIT PRIMES-USA
program for making this project possible.

References

[1] Peter Buser. Riemannshe flächen und längenspektrum vom trigonometrishen standpunkt. Habili-
tation Thesis, University of Bonn, 1981.

[2] Peter Buser. Geometry and spectra of compact Riemann surfaces. Birkhäuser Boston, 1992.
[3] Peter Buser and Mika Seppälä. Symmetric pants decompositions of Riemann surfaces. Duke Math-

ematical Journal, 67(1):39–55, 1992.
[4] Eric Colin de Verdiere, Alfredo Hubard, and Arnaud de Mesmay. Discrete systolic inequalities

and decompositions of triangulated surface. Discrete and Computational geometry, 53, 2015.

ALGORITHMIC PANTS DECOMPOSITIONS 27

[5] Misha Gromov. Systoles and intersystolic inequalities. Institut des Hautes etudes Scientifiques,
1992.

[6] Larry Guth. Metaphors in systolic geometry. Proceedings of the International Congress of Math-
ematicians 2010 (ICM 2010), I, 2010.

[7] Larry Guth, Hugo Parlier, and Robert Young. Pants decompositions of random surfaces. Geomet-
ric and Functional Analysis, 21, 2011.

[8] Hugo Parlier. A short note on short pants. Canadian Mathematical Bulletin, 57(4):870–876, 2014.
[9] Pao Ming Pu. Some inequalities in certain nonorientable riemannian manifolds. Pacific J. Math,

2:55–71, 1952.
[10] Eran Makover Robert Brooks. Random construction of riemann surfaces. J. Differential Geom.,

68:121–157, 2004.

Princeton High School, Princeton New Jersey, 08540
Email address: nicholas.d.hagedorn@gmail.com

	1. Introduction
	2. Combinatorial surfaces
	3. The First Pants Decomposition Algorithm
	3.1. The No Boundary Components Algorithm
	3.2. The One Boundary Component Algorithm
	3.3. The Shorten Curve Algorithm
	3.4. The Multiple Boundary Components Algorithm
	3.5. The Linear Decomposition Algorithm

	4. The Second Pants Decomposition Algorithm
	4.1. The Genus Removal Algorithm
	4.2. The Chain Detection Algorithm
	4.3. The Chain Removal Algorithm
	4.4. The Genus Decomposition Algorithm

	5. Analysis
	6. Appendix
	Acknowledgements
	References

