
The Probabilistic Method

Janabel Xia and Tejas Gopalakrishna

MIT PRIMES Reading Group, mentors Gwen McKinley and Jake Wellens

December 7th, 2018

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 1 / 18

Introduction

What is the Probabilistic Method?

Basically, to show an object with a certain property exists, it suffices to
show that an object drawn from a particular distribution over objects has
the desired property with positive probability. This is often easier than
explicitly constructing such an object (and sometimes the only way we
know how to prove one exists!)

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 2 / 18

Introduction

What is the Probabilistic Method?

Basically, to show an object with a certain property exists, it suffices to
show that an object drawn from a particular distribution over objects has
the desired property with positive probability. This is often easier than
explicitly constructing such an object (and sometimes the only way we
know how to prove one exists!)

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 2 / 18

Basic Application: Turán’s Theorem

Consider a graph G = (V ,E).

Let dv be the degree of vertex v .

Let α(G) be the size of the maximal independent set of vertices.

Turán’s theorem gives a lower bound on α(G) for graphs with |E | edges.
Its proof is a classic example of the probabilistic method in action:

Theorem (Turán)

α(G) ≥
∑
v∈V

1

dv + 1
≥ n

1 + 2|E |
n

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 3 / 18

Basic Application: Turán’s Theorem

Consider a graph G = (V ,E).

Let dv be the degree of vertex v .

Let α(G) be the size of the maximal independent set of vertices.

Turán’s theorem gives a lower bound on α(G) for graphs with |E | edges.
Its proof is a classic example of the probabilistic method in action:

Theorem (Turán)

α(G) ≥
∑
v∈V

1

dv + 1
≥ n

1 + 2|E |
n

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 3 / 18

Basic Application: Turán’s Theorem

Consider a graph G = (V ,E).

Let dv be the degree of vertex v .

Let α(G) be the size of the maximal independent set of vertices.

Turán’s theorem gives a lower bound on α(G) for graphs with |E | edges.
Its proof is a classic example of the probabilistic method in action:

Theorem (Turán)

α(G) ≥
∑
v∈V

1

dv + 1
≥ n

1 + 2|E |
n

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 3 / 18

Basic Application: Turán’s Theorem

Theorem

α(G) ≥
∑
v∈V

1

dv + 1
≥ n

1 + 2|E |
n

(second inequality is just convexity, we’ll prove the first)

Proof:

Let < be a uniformly random linear order of V .
Define the independent set

I = I (<) := {v ∈ V : {v ,w} ∈ E ⇒ v < w}.
(two neighbors cannot both be the “smallest” in their neighborhoods
=⇒ I is indep. set)
Let Xv be the indicator variable for the event {v ∈ I}, and set

X =
∑
v∈V

Xv = |I |

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 4 / 18

Basic Application: Turán’s Theorem

Theorem

α(G) ≥
∑
v∈V

1

dv + 1
≥ n

1 + 2|E |
n

(second inequality is just convexity, we’ll prove the first)

Proof:

Let < be a uniformly random linear order of V .

Define the independent set

I = I (<) := {v ∈ V : {v ,w} ∈ E ⇒ v < w}.
(two neighbors cannot both be the “smallest” in their neighborhoods
=⇒ I is indep. set)
Let Xv be the indicator variable for the event {v ∈ I}, and set

X =
∑
v∈V

Xv = |I |

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 4 / 18

Basic Application: Turán’s Theorem

Theorem

α(G) ≥
∑
v∈V

1

dv + 1
≥ n

1 + 2|E |
n

(second inequality is just convexity, we’ll prove the first)

Proof:

Let < be a uniformly random linear order of V .
Define the independent set

I = I (<) := {v ∈ V : {v ,w} ∈ E ⇒ v < w}.
(two neighbors cannot both be the “smallest” in their neighborhoods
=⇒ I is indep. set)

Let Xv be the indicator variable for the event {v ∈ I}, and set

X =
∑
v∈V

Xv = |I |

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 4 / 18

Basic Application: Turán’s Theorem

Theorem

α(G) ≥
∑
v∈V

1

dv + 1
≥ n

1 + 2|E |
n

(second inequality is just convexity, we’ll prove the first)

Proof:

Let < be a uniformly random linear order of V .
Define the independent set

I = I (<) := {v ∈ V : {v ,w} ∈ E ⇒ v < w}.
(two neighbors cannot both be the “smallest” in their neighborhoods
=⇒ I is indep. set)
Let Xv be the indicator variable for the event {v ∈ I}, and set

X =
∑
v∈V

Xv = |I |

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 4 / 18

Basic Application: Turán’s Theorem

Proof: (cont.)

For each v ,

E[Xv] = Pr[v ∈ I] =
1

dv + 1
,

because v ∈ I iff v is least among v and its dv neighbors.

So

E[X] =
∑
v∈V

1

dv + 1

and therefore there exists an ordering < with

|I (<)| ≥
∑
v∈V

1

dv + 1
.

�

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 5 / 18

Basic Application: Turán’s Theorem

Proof: (cont.)

For each v ,

E[Xv] = Pr[v ∈ I] =
1

dv + 1
,

because v ∈ I iff v is least among v and its dv neighbors.

So

E[X] =
∑
v∈V

1

dv + 1

and therefore there exists an ordering < with

|I (<)| ≥
∑
v∈V

1

dv + 1
.

�

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 5 / 18

Another Basic Application: Increasing subsequences in a
matrix

Problem

Determine the smallest k = k(n) such that:

For any n by n matrix A with distinct entries, there is a permutation of the
rows of A so that no column in the permuted matrix contains an
increasing subsequence of length k .

Lower bound: k(n) ≥
√
n.

Theorem (Erdös-Szekeres, 1935)

Any sequence of n2 + 1 distinct reals contains either an increasing or
decreasing (n + 1)-subsequence.

Consider a matrix whose first column is in the reverse relative order of the
second column. Then for any permutation of rows, either the first or
second column contains an increasing subsequence of length ≥

√
n.

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 6 / 18

Another Basic Application: Increasing subsequences in a
matrix

Problem

Determine the smallest k = k(n) such that:

For any n by n matrix A with distinct entries, there is a permutation of the
rows of A so that no column in the permuted matrix contains an
increasing subsequence of length k .

Lower bound: k(n) ≥
√
n.

Theorem (Erdös-Szekeres, 1935)

Any sequence of n2 + 1 distinct reals contains either an increasing or
decreasing (n + 1)-subsequence.

Consider a matrix whose first column is in the reverse relative order of the
second column. Then for any permutation of rows, either the first or
second column contains an increasing subsequence of length ≥

√
n.

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 6 / 18

Another Basic Application: Increasing subsequences in a
matrix

Problem

Determine the smallest k = k(n) such that:

For any n by n matrix A with distinct entries, there is a permutation of the
rows of A so that no column in the permuted matrix contains an
increasing subsequence of length k .

Lower bound: k(n) ≥
√
n.

Theorem (Erdös-Szekeres, 1935)

Any sequence of n2 + 1 distinct reals contains either an increasing or
decreasing (n + 1)-subsequence.

Consider a matrix whose first column is in the reverse relative order of the
second column. Then for any permutation of rows, either the first or
second column contains an increasing subsequence of length ≥

√
n.

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 6 / 18

Another Basic Application: Increasing subsequences in a
matrix

Problem

Determine the smallest k = k(n) such that:

For any n by n matrix A with distinct entries, there is a permutation of the
rows of A so that no column in the permuted matrix contains an
increasing subsequence of length k .

Lower bound: k(n) ≥
√
n.

Theorem (Erdös-Szekeres, 1935)

Any sequence of n2 + 1 distinct reals contains either an increasing or
decreasing (n + 1)-subsequence.

Consider a matrix whose first column is in the reverse relative order of the
second column. Then for any permutation of rows, either the first or
second column contains an increasing subsequence of length ≥

√
n.

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 6 / 18

Another Basic Application: Increasing subsequences in a
matrix

Lower bound already holds for n × 2 matrices – is it much harder to avoid
increasing subsequences among n columns?

...Not really!
Upper bound: There exists C > 0 such that k(n) ≤ C

√
n.

Proof: Consider a random permutation σ of the rows. Let LIS(c) be the
length of the largest increasing subsequence in the column vector c .
Consider each column separately:

Pr
σ

[1 . . . 2 . . . 3 . . . k] =
1

k!

=⇒ Pr
σ

[LIS(c) ≥ k] ≤
(
n

k

)
1

k!

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 7 / 18

Another Basic Application: Increasing subsequences in a
matrix

Lower bound already holds for n × 2 matrices – is it much harder to avoid
increasing subsequences among n columns?...Not really!

Upper bound: There exists C > 0 such that k(n) ≤ C
√
n.

Proof: Consider a random permutation σ of the rows. Let LIS(c) be the
length of the largest increasing subsequence in the column vector c .
Consider each column separately:

Pr
σ

[1 . . . 2 . . . 3 . . . k] =
1

k!

=⇒ Pr
σ

[LIS(c) ≥ k] ≤
(
n

k

)
1

k!

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 7 / 18

Another Basic Application: Increasing subsequences in a
matrix

Lower bound already holds for n × 2 matrices – is it much harder to avoid
increasing subsequences among n columns?...Not really!
Upper bound: There exists C > 0 such that k(n) ≤ C

√
n.

Proof: Consider a random permutation σ of the rows. Let LIS(c) be the
length of the largest increasing subsequence in the column vector c .
Consider each column separately:

Pr
σ

[1 . . . 2 . . . 3 . . . k] =
1

k!

=⇒ Pr
σ

[LIS(c) ≥ k] ≤
(
n

k

)
1

k!

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 7 / 18

Another Basic Application: Increasing subsequences in a
matrix

Lower bound already holds for n × 2 matrices – is it much harder to avoid
increasing subsequences among n columns?...Not really!
Upper bound: There exists C > 0 such that k(n) ≤ C

√
n.

Proof: Consider a random permutation σ of the rows. Let LIS(c) be the
length of the largest increasing subsequence in the column vector c .
Consider each column separately:

Pr
σ

[1 . . . 2 . . . 3 . . . k] =
1

k!

=⇒ Pr
σ

[LIS(c) ≥ k] ≤
(
n

k

)
1

k!

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 7 / 18

Another Basic Application: Increasing subsequences in a
matrix

Lower bound already holds for n × 2 matrices – is it much harder to avoid
increasing subsequences among n columns?...Not really!
Upper bound: There exists C > 0 such that k(n) ≤ C

√
n.

Proof: Consider a random permutation σ of the rows. Let LIS(c) be the
length of the largest increasing subsequence in the column vector c .
Consider each column separately:

Pr
σ

[1 . . . 2 . . . 3 . . . k] =
1

k!

=⇒ Pr
σ

[LIS(c) ≥ k] ≤
(
n

k

)
1

k!

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 7 / 18

Another Basic Application: Increasing subsequences in a
matrix

Lower bound already holds for n × 2 matrices – is it much harder to avoid
increasing subsequences among n columns?...Not really!
Upper bound: There exists C > 0 such that k(n) ≤ C

√
n.

Proof: Consider a random permutation σ of the rows. Let LIS(c) be the
length of the largest increasing subsequence in the column vector c .
Consider each column separately:

Pr
σ

[1 . . . 2 . . . 3 . . . k] =
1

k!

=⇒ Pr
σ

[LIS(c) ≥ k] ≤
(
n

k

)
1

k!

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 7 / 18

Proof of upper bound

Prσ[LIS(c) ≥ k] ≤
(n
k

)
1
k!

Use standard inequalities
(n
k

)
≤
(
en
k

)k
and m! > (m/e)m

for k = C
√
n,

Pr[LIS(c) ≥ C
√
n] ≤

(
en

C
√
n

)C
√
n 1

(C
√
n)!

≤
(

en

C
√
n

)C
√
n(e

C
√
n

)C
√
n

=

(
e

C

)2C
√
n

Then by a union bound over all columns:

Pr[LIS(c) ≥ C
√
n for at least one column] ≤ n

(
e

C

)2C
√
n

< 1

(for sufficiently large C). So with positive probability over σ,
LIS(c) ≤ C

√
n for all columns. �

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 8 / 18

Proof of upper bound

Prσ[LIS(c) ≥ k] ≤
(n
k

)
1
k!

Use standard inequalities
(n
k

)
≤
(
en
k

)k
and m! > (m/e)m

for k = C
√
n,

Pr[LIS(c) ≥ C
√
n] ≤

(
en

C
√
n

)C
√
n 1

(C
√
n)!

≤
(

en

C
√
n

)C
√
n(e

C
√
n

)C
√
n

=

(
e

C

)2C
√
n

Then by a union bound over all columns:

Pr[LIS(c) ≥ C
√
n for at least one column] ≤ n

(
e

C

)2C
√
n

< 1

(for sufficiently large C). So with positive probability over σ,
LIS(c) ≤ C

√
n for all columns. �

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 8 / 18

Proof of upper bound

Prσ[LIS(c) ≥ k] ≤
(n
k

)
1
k!

Use standard inequalities
(n
k

)
≤
(
en
k

)k
and m! > (m/e)m

for k = C
√
n,

Pr[LIS(c) ≥ C
√
n] ≤

(
en

C
√
n

)C
√
n 1

(C
√
n)!

≤
(

en

C
√
n

)C
√
n(e

C
√
n

)C
√
n

=

(
e

C

)2C
√
n

Then by a union bound over all columns:

Pr[LIS(c) ≥ C
√
n for at least one column] ≤ n

(
e

C

)2C
√
n

< 1

(for sufficiently large C). So with positive probability over σ,
LIS(c) ≤ C

√
n for all columns. �

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 8 / 18

Proof of upper bound

Prσ[LIS(c) ≥ k] ≤
(n
k

)
1
k!

Use standard inequalities
(n
k

)
≤
(
en
k

)k
and m! > (m/e)m

for k = C
√
n,

Pr[LIS(c) ≥ C
√
n] ≤

(
en

C
√
n

)C
√
n 1

(C
√
n)!

≤
(

en

C
√
n

)C
√
n(e

C
√
n

)C
√
n

=

(
e

C

)2C
√
n

Then by a union bound over all columns:

Pr[LIS(c) ≥ C
√
n for at least one column] ≤ n

(
e

C

)2C
√
n

< 1

(for sufficiently large C). So with positive probability over σ,
LIS(c) ≤ C

√
n for all columns. �

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 8 / 18

Proof of upper bound

Prσ[LIS(c) ≥ k] ≤
(n
k

)
1
k!

Use standard inequalities
(n
k

)
≤
(
en
k

)k
and m! > (m/e)m

for k = C
√
n,

Pr[LIS(c) ≥ C
√
n] ≤

(
en

C
√
n

)C
√
n 1

(C
√
n)!

≤
(

en

C
√
n

)C
√
n(e

C
√
n

)C
√
n

=

(
e

C

)2C
√
n

Then by a union bound over all columns:

Pr[LIS(c) ≥ C
√
n for at least one column] ≤ n

(
e

C

)2C
√
n

< 1

(for sufficiently large C).

So with positive probability over σ,
LIS(c) ≤ C

√
n for all columns. �

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 8 / 18

Proof of upper bound

Prσ[LIS(c) ≥ k] ≤
(n
k

)
1
k!

Use standard inequalities
(n
k

)
≤
(
en
k

)k
and m! > (m/e)m

for k = C
√
n,

Pr[LIS(c) ≥ C
√
n] ≤

(
en

C
√
n

)C
√
n 1

(C
√
n)!

≤
(

en

C
√
n

)C
√
n(e

C
√
n

)C
√
n

=

(
e

C

)2C
√
n

Then by a union bound over all columns:

Pr[LIS(c) ≥ C
√
n for at least one column] ≤ n

(
e

C

)2C
√
n

< 1

(for sufficiently large C). So with positive probability over σ,
LIS(c) ≤ C

√
n for all columns. �

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 8 / 18

Random Graphs

(Erdös-Renyi) Random graph G (n, p):

graph on n labeled vertices

each edge appears independently with probability p.

Question: How big does p = p(n) have to be in order for a typical
G (n, p) to contain a clique of size 4?

First moment: Expected number of cliques of size 4 is
(n

4

)
p6, so if

p � n−2/3, then

Pr[G (n, p) has a 4-clique] ≤ E[number of 4-cliques]→ 0

But is p > n−2/3 enough to guarantee a 4-clique? Need to use the
second moment.

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 9 / 18

Random Graphs

(Erdös-Renyi) Random graph G (n, p):

graph on n labeled vertices

each edge appears independently with probability p.

Question: How big does p = p(n) have to be in order for a typical
G (n, p) to contain a clique of size 4?

First moment: Expected number of cliques of size 4 is
(n

4

)
p6, so if

p � n−2/3, then

Pr[G (n, p) has a 4-clique] ≤ E[number of 4-cliques]→ 0

But is p > n−2/3 enough to guarantee a 4-clique? Need to use the
second moment.

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 9 / 18

Random Graphs

(Erdös-Renyi) Random graph G (n, p):

graph on n labeled vertices

each edge appears independently with probability p.

Question: How big does p = p(n) have to be in order for a typical
G (n, p) to contain a clique of size 4?

First moment: Expected number of cliques of size 4 is
(n

4

)
p6, so if

p � n−2/3, then

Pr[G (n, p) has a 4-clique] ≤ E[number of 4-cliques]→ 0

But is p > n−2/3 enough to guarantee a 4-clique? Need to use the
second moment.

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 9 / 18

Random Graphs

(Erdös-Renyi) Random graph G (n, p):

graph on n labeled vertices

each edge appears independently with probability p.

Question: How big does p = p(n) have to be in order for a typical
G (n, p) to contain a clique of size 4?

First moment: Expected number of cliques of size 4 is
(n

4

)
p6, so if

p � n−2/3, then

Pr[G (n, p) has a 4-clique] ≤ E[number of 4-cliques]→ 0

But is p > n−2/3 enough to guarantee a 4-clique? Need to use the
second moment.

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 9 / 18

The Second Moment Method

Let Xi be indicator random variables for “symmetric” events Ai , and
set X =

∑
i Xi .

Write i ∼ j if Ai and Aj are not independent, and let

∆∗ =
∑
i∼j

Pr[Aj |Ai]

(which is independent of i by symmetry)

Lemma

Pr[X = 0] ≤ 1+∆∗

E[X] .

(Proof is a fairly straightforward application of Chebyshev’s inequality)

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 10 / 18

The Second Moment Method

Let Xi be indicator random variables for “symmetric” events Ai , and
set X =

∑
i Xi .

Write i ∼ j if Ai and Aj are not independent, and let

∆∗ =
∑
i∼j

Pr[Aj |Ai]

(which is independent of i by symmetry)

Lemma

Pr[X = 0] ≤ 1+∆∗

E[X] .

(Proof is a fairly straightforward application of Chebyshev’s inequality)

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 10 / 18

The Second Moment Method

Let Xi be indicator random variables for “symmetric” events Ai , and
set X =

∑
i Xi .

Write i ∼ j if Ai and Aj are not independent, and let

∆∗ =
∑
i∼j

Pr[Aj |Ai]

(which is independent of i by symmetry)

Lemma

Pr[X = 0] ≤ 1+∆∗

E[X] .

(Proof is a fairly straightforward application of Chebyshev’s inequality)

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 10 / 18

Cliques in G (n, p)

Theorem

If p(n) · n2/3 →∞, then Pr[G (n, p) has a 4-clique]→ 1

Proof:

For each 4-set S of vertices in G ∼ G (n, p), let AS be the event that
S is a clique, let XS be its indicator random variable, and set
X =

∑
|S|=4 XS to be the number of 4-cliques in G .

Then, E[XS] = Pr[AS] = p6 and so

E[X] =
∑
|S |=4

E[XS] =

(
n

4

)
p6 ∼ n4p6

24
→∞

By the lemma, it now suffices to show that ∆∗ � n4p6.

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 11 / 18

Cliques in G (n, p)

Theorem

If p(n) · n2/3 →∞, then Pr[G (n, p) has a 4-clique]→ 1

Proof:

For each 4-set S of vertices in G ∼ G (n, p), let AS be the event that
S is a clique, let XS be its indicator random variable, and set
X =

∑
|S|=4 XS to be the number of 4-cliques in G .

Then, E[XS] = Pr[AS] = p6 and so

E[X] =
∑
|S |=4

E[XS] =

(
n

4

)
p6 ∼ n4p6

24
→∞

By the lemma, it now suffices to show that ∆∗ � n4p6.

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 11 / 18

Cliques in G (n, p)

Theorem

If p(n) · n2/3 →∞, then Pr[G (n, p) has a 4-clique]→ 1

Proof:

For each 4-set S of vertices in G ∼ G (n, p), let AS be the event that
S is a clique, let XS be its indicator random variable, and set
X =

∑
|S|=4 XS to be the number of 4-cliques in G .

Then, E[XS] = Pr[AS] = p6 and so

E[X] =
∑
|S |=4

E[XS] =

(
n

4

)
p6 ∼ n4p6

24
→∞

By the lemma, it now suffices to show that ∆∗ � n4p6.

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 11 / 18

Cliques in G (n, p)

Theorem

If p(n) · n2/3 →∞, then Pr[G (n, p) has a 4-clique]→ 1

Proof:

For each 4-set S of vertices in G ∼ G (n, p), let AS be the event that
S is a clique, let XS be its indicator random variable, and set
X =

∑
|S|=4 XS to be the number of 4-cliques in G .

Then, E[XS] = Pr[AS] = p6 and so

E[X] =
∑
|S |=4

E[XS] =

(
n

4

)
p6 ∼ n4p6

24
→∞

By the lemma, it now suffices to show that ∆∗ � n4p6.

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 11 / 18

Cliques in G (n, p)

Proof: (cont.)

If S and T are 4-sets, then S ∼ T iff S 6= T and S ,T have common
edges (i.e. |S ∩ T | = 2 or 3).

Fix S . There are O(n2) sets T with |S ∩ T | = 2, and O(n) with
|S ∩ T | = 3.

For each type of T , Pr[AT |AS] = p5 or p3 respectively.

So (since p � n−2/3),

∆∗ = O(n2p5) + O(np3) = o(n4p6) = o(E[X])

as needed. �

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 12 / 18

Cliques in G (n, p)

Proof: (cont.)

If S and T are 4-sets, then S ∼ T iff S 6= T and S ,T have common
edges (i.e. |S ∩ T | = 2 or 3).

Fix S . There are O(n2) sets T with |S ∩ T | = 2, and O(n) with
|S ∩ T | = 3.

For each type of T , Pr[AT |AS] = p5 or p3 respectively.

So (since p � n−2/3),

∆∗ = O(n2p5) + O(np3) = o(n4p6) = o(E[X])

as needed. �

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 12 / 18

Cliques in G (n, p)

Proof: (cont.)

If S and T are 4-sets, then S ∼ T iff S 6= T and S ,T have common
edges (i.e. |S ∩ T | = 2 or 3).

Fix S . There are O(n2) sets T with |S ∩ T | = 2, and O(n) with
|S ∩ T | = 3.

For each type of T , Pr[AT |AS] = p5 or p3 respectively.

So (since p � n−2/3),

∆∗ = O(n2p5) + O(np3) = o(n4p6) = o(E[X])

as needed. �

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 12 / 18

Cliques in G (n, p)

Proof: (cont.)

If S and T are 4-sets, then S ∼ T iff S 6= T and S ,T have common
edges (i.e. |S ∩ T | = 2 or 3).

Fix S . There are O(n2) sets T with |S ∩ T | = 2, and O(n) with
|S ∩ T | = 3.

For each type of T , Pr[AT |AS] = p5 or p3 respectively.

So (since p � n−2/3),

∆∗ = O(n2p5) + O(np3) = o(n4p6) = o(E[X])

as needed. �

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 12 / 18

k-SAT

Suppose we have a k-CNF, i.e. an AND of n OR clauses on k
Boolean variables each, e.g.

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x5) ∧ (x2 ∨ ¬x3 ∨ ¬x4) ∧ (¬x1 ∨ x5 ∨ x6)

Can we satisfy all clauses by assigning TRUE or FALSE to each xi?

(Cook-Levin) Finding a satisfying assignment (or even deciding if one
exists) for general k-CNFs is NP-complete (i.e. hopelessly hard)

What if each variable appears in a bounded number of clauses?

The probabilistic tool we need is the Lovász Local Lemma!

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 13 / 18

k-SAT

Suppose we have a k-CNF, i.e. an AND of n OR clauses on k
Boolean variables each, e.g.

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x5) ∧ (x2 ∨ ¬x3 ∨ ¬x4) ∧ (¬x1 ∨ x5 ∨ x6)

Can we satisfy all clauses by assigning TRUE or FALSE to each xi?

(Cook-Levin) Finding a satisfying assignment (or even deciding if one
exists) for general k-CNFs is NP-complete (i.e. hopelessly hard)

What if each variable appears in a bounded number of clauses?

The probabilistic tool we need is the Lovász Local Lemma!

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 13 / 18

k-SAT

Suppose we have a k-CNF, i.e. an AND of n OR clauses on k
Boolean variables each, e.g.

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x5) ∧ (x2 ∨ ¬x3 ∨ ¬x4) ∧ (¬x1 ∨ x5 ∨ x6)

Can we satisfy all clauses by assigning TRUE or FALSE to each xi?

(Cook-Levin) Finding a satisfying assignment (or even deciding if one
exists) for general k-CNFs is NP-complete (i.e. hopelessly hard)

What if each variable appears in a bounded number of clauses?

The probabilistic tool we need is the Lovász Local Lemma!

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 13 / 18

k-SAT

Suppose we have a k-CNF, i.e. an AND of n OR clauses on k
Boolean variables each, e.g.

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x5) ∧ (x2 ∨ ¬x3 ∨ ¬x4) ∧ (¬x1 ∨ x5 ∨ x6)

Can we satisfy all clauses by assigning TRUE or FALSE to each xi?

(Cook-Levin) Finding a satisfying assignment (or even deciding if one
exists) for general k-CNFs is NP-complete (i.e. hopelessly hard)

What if each variable appears in a bounded number of clauses?

The probabilistic tool we need is the Lovász Local Lemma!

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 13 / 18

k-SAT

Suppose we have a k-CNF, i.e. an AND of n OR clauses on k
Boolean variables each, e.g.

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x5) ∧ (x2 ∨ ¬x3 ∨ ¬x4) ∧ (¬x1 ∨ x5 ∨ x6)

Can we satisfy all clauses by assigning TRUE or FALSE to each xi?

(Cook-Levin) Finding a satisfying assignment (or even deciding if one
exists) for general k-CNFs is NP-complete (i.e. hopelessly hard)

What if each variable appears in a bounded number of clauses?

The probabilistic tool we need is the Lovász Local Lemma!

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 13 / 18

The (Symmetric) Local Lemma

Theorem (Lovász, 1975)

Let A1,A2, . . . ,An be events in a probability space. Suppose each event
is independent of all but at most d others, and that Pr[Ai] ≤ p for all
1 ≤ i ≤ n. If

ep(d + 1) ≤ 1

then

Pr

[
n∧

i=1

Ai

]
> 0.

(i.e. with positive probability, no event Ai holds).

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 14 / 18

k-SAT with bounded occurrences

Let

φ = (x1 ∨ · · · ∨ x3) ∧ (¬x10 ∨ · · · ∨ x5) ∧ · · · ∧ (x20 ∨ · · · ∨ ¬x14)

be some k-CNF.

The probability that a random assignment leaves clause i unsatisfied
is 2−k (call this event Ai)

Suppose each variable in φ appears in at most ` clauses.

Then each Ai is dependent on at most k(`− 1) other Aj .

If

` ≤ 2k

ek

then e2−k(k(`− 1) + 1) < 1 and hence the local lemma says that φ is
satisfiable!

.

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 15 / 18

k-SAT with bounded occurrences

Let

φ = (x1 ∨ · · · ∨ x3) ∧ (¬x10 ∨ · · · ∨ x5) ∧ · · · ∧ (x20 ∨ · · · ∨ ¬x14)

be some k-CNF.

The probability that a random assignment leaves clause i unsatisfied
is 2−k (call this event Ai)

Suppose each variable in φ appears in at most ` clauses.

Then each Ai is dependent on at most k(`− 1) other Aj .

If

` ≤ 2k

ek

then e2−k(k(`− 1) + 1) < 1 and hence the local lemma says that φ is
satisfiable!

.

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 15 / 18

k-SAT with bounded occurrences

Let

φ = (x1 ∨ · · · ∨ x3) ∧ (¬x10 ∨ · · · ∨ x5) ∧ · · · ∧ (x20 ∨ · · · ∨ ¬x14)

be some k-CNF.

The probability that a random assignment leaves clause i unsatisfied
is 2−k (call this event Ai)

Suppose each variable in φ appears in at most ` clauses.

Then each Ai is dependent on at most k(`− 1) other Aj .

If

` ≤ 2k

ek

then e2−k(k(`− 1) + 1) < 1 and hence the local lemma says that φ is
satisfiable!

.

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 15 / 18

k-SAT with bounded occurrences

Let

φ = (x1 ∨ · · · ∨ x3) ∧ (¬x10 ∨ · · · ∨ x5) ∧ · · · ∧ (x20 ∨ · · · ∨ ¬x14)

be some k-CNF.

The probability that a random assignment leaves clause i unsatisfied
is 2−k (call this event Ai)

Suppose each variable in φ appears in at most ` clauses.

Then each Ai is dependent on at most k(`− 1) other Aj .

If

` ≤ 2k

ek

then e2−k(k(`− 1) + 1) < 1 and hence the local lemma says that φ is
satisfiable!

.

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 15 / 18

k-SAT with bounded occurrences

Let

φ = (x1 ∨ · · · ∨ x3) ∧ (¬x10 ∨ · · · ∨ x5) ∧ · · · ∧ (x20 ∨ · · · ∨ ¬x14)

be some k-CNF.

The probability that a random assignment leaves clause i unsatisfied
is 2−k (call this event Ai)

Suppose each variable in φ appears in at most ` clauses.

Then each Ai is dependent on at most k(`− 1) other Aj .

If

` ≤ 2k

ek

then e2−k(k(`− 1) + 1) < 1 and hence the local lemma says that φ is
satisfiable!

.
Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 15 / 18

k-SAT with bounded occurrences

We’ve just shown

Theorem

If φ is a k-CNF in which each variable shows up at most 2k

ek times, then φ
has a satisfying assignment.

...how tight is this?

consider the k-CNF on k variables with each of the 2k possible clauses

unsatisfiable =⇒ cannot replace 2k

ek with 2k

a more involved construction of Gebauer, Szabó and Tardos (2016)

shows that 2k

ek cannot be replaced with (2 + ok(1)) 2k

ek

can actually be improved to 2 · 2k

ek using lopsided local lemma

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 16 / 18

k-SAT with bounded occurrences

We’ve just shown

Theorem

If φ is a k-CNF in which each variable shows up at most 2k

ek times, then φ
has a satisfying assignment.

...how tight is this?

consider the k-CNF on k variables with each of the 2k possible clauses

unsatisfiable =⇒ cannot replace 2k

ek with 2k

a more involved construction of Gebauer, Szabó and Tardos (2016)

shows that 2k

ek cannot be replaced with (2 + ok(1)) 2k

ek

can actually be improved to 2 · 2k

ek using lopsided local lemma

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 16 / 18

k-SAT with bounded occurrences

We’ve just shown

Theorem

If φ is a k-CNF in which each variable shows up at most 2k

ek times, then φ
has a satisfying assignment.

...how tight is this?

consider the k-CNF on k variables with each of the 2k possible clauses

unsatisfiable =⇒ cannot replace 2k

ek with 2k

a more involved construction of Gebauer, Szabó and Tardos (2016)

shows that 2k

ek cannot be replaced with (2 + ok(1)) 2k

ek

can actually be improved to 2 · 2k

ek using lopsided local lemma

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 16 / 18

k-SAT with bounded occurrences

We’ve just shown

Theorem

If φ is a k-CNF in which each variable shows up at most 2k

ek times, then φ
has a satisfying assignment.

...how tight is this?

consider the k-CNF on k variables with each of the 2k possible clauses

unsatisfiable =⇒ cannot replace 2k

ek with 2k

a more involved construction of Gebauer, Szabó and Tardos (2016)

shows that 2k

ek cannot be replaced with (2 + ok(1)) 2k

ek

can actually be improved to 2 · 2k

ek using lopsided local lemma

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 16 / 18

k-SAT with bounded occurrences

We’ve just shown

Theorem

If φ is a k-CNF in which each variable shows up at most 2k

ek times, then φ
has a satisfying assignment.

...how tight is this?

consider the k-CNF on k variables with each of the 2k possible clauses

unsatisfiable =⇒ cannot replace 2k

ek with 2k

a more involved construction of Gebauer, Szabó and Tardos (2016)

shows that 2k

ek cannot be replaced with (2 + ok(1)) 2k

ek

can actually be improved to 2 · 2k

ek using lopsided local lemma

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 16 / 18

Finding a satisfying assignment

Let φ be a k-CNF with n clauses in which each variable shows up at
most 2k

ek times, which we now know is satisfiable... how can we find a
satisfying assignment?

Brute force: try all possible assignments to the variables (could be as
many as 2nk of these to try!)

A slightly (but not much) more intelligent algorithm:

start with uniformly random truth assignment of all variables
pick at random any unsatisfied clause C
give all xi in C new random assignments
repeat until all clauses are satisfied

is this efficient?

Theorem (Moser, Tardos 2010)

The expected number of times this algorithm has to loop before finding a
satisfying assignment is . n

2k
.

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 17 / 18

Finding a satisfying assignment

Let φ be a k-CNF with n clauses in which each variable shows up at
most 2k

ek times, which we now know is satisfiable... how can we find a
satisfying assignment?

Brute force: try all possible assignments to the variables (could be as
many as 2nk of these to try!)

A slightly (but not much) more intelligent algorithm:

start with uniformly random truth assignment of all variables
pick at random any unsatisfied clause C
give all xi in C new random assignments
repeat until all clauses are satisfied

is this efficient?

Theorem (Moser, Tardos 2010)

The expected number of times this algorithm has to loop before finding a
satisfying assignment is . n

2k
.

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 17 / 18

Finding a satisfying assignment

Let φ be a k-CNF with n clauses in which each variable shows up at
most 2k

ek times, which we now know is satisfiable... how can we find a
satisfying assignment?

Brute force: try all possible assignments to the variables (could be as
many as 2nk of these to try!)

A slightly (but not much) more intelligent algorithm:

start with uniformly random truth assignment of all variables
pick at random any unsatisfied clause C
give all xi in C new random assignments
repeat until all clauses are satisfied

is this efficient?

Theorem (Moser, Tardos 2010)

The expected number of times this algorithm has to loop before finding a
satisfying assignment is . n

2k
.

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 17 / 18

Finding a satisfying assignment

Let φ be a k-CNF with n clauses in which each variable shows up at
most 2k

ek times, which we now know is satisfiable... how can we find a
satisfying assignment?

Brute force: try all possible assignments to the variables (could be as
many as 2nk of these to try!)

A slightly (but not much) more intelligent algorithm:

start with uniformly random truth assignment of all variables
pick at random any unsatisfied clause C
give all xi in C new random assignments
repeat until all clauses are satisfied

is this efficient?

Theorem (Moser, Tardos 2010)

The expected number of times this algorithm has to loop before finding a
satisfying assignment is . n

2k
.

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 17 / 18

Finding a satisfying assignment

Let φ be a k-CNF with n clauses in which each variable shows up at
most 2k

ek times, which we now know is satisfiable... how can we find a
satisfying assignment?

Brute force: try all possible assignments to the variables (could be as
many as 2nk of these to try!)

A slightly (but not much) more intelligent algorithm:

start with uniformly random truth assignment of all variables
pick at random any unsatisfied clause C
give all xi in C new random assignments
repeat until all clauses are satisfied

is this efficient?

Theorem (Moser, Tardos 2010)

The expected number of times this algorithm has to loop before finding a
satisfying assignment is . n

2k
.

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 17 / 18

Acknowledgements

We would like to thank:

Gwen McKinley and Jake Wellens, our mentors

Dr. Tanya Khovanova

Dr. Slava Gerovitch

MIT PRIMES

Noga Alon and Joel H. Spencer, for writing The Probabilistic Method

Our families, for all their support

Janabel Xia and Tejas Gopalakrishna Probabilistic Method December 7th, 2018 18 / 18

