
Optimal Stability for

Trapezoidal-Backward Difference

Split-Steps

Sohan Dharmaraja, Yinghui Wang,

and Gilbert Strang

Department of Mathematics, MIT

Cambridge MA 02139 USA

Dedicated to Ron Mitchell for a lifetime of leadership by example

I. Introduction. The trapezoidal method is A-stable. When the equation u ′ = au has
Re a ≤ 0, the difference approximation has |Un+1| ≤ |Un|:

Un+1 − Un

∆t
=

a Un+1 + a Un

2
leads to Un+1 =

1 + a ∆t/2

1 − a ∆t/2
Un = GUn. (1)

That growth factor G has A-stability:

|G| ≤ 1 whenever Re (a ∆t) ≤ 0.

The accuracy is second order: Un − u(n ∆t) is bounded by C(∆t)2 for n ∆t ≤ T . But the
stability is very close to the edge: |G| = 1 if a is imaginary. Nonlinearities can push us over
the edge, and the trapezoidal method can fail. In practice (when the iterations to compute
Un+1 stop early), more stability is often needed.

Extra safety from additional damping can be achieved in different ways. Here we begin
by alternating the trapezoidal method with backward differences (BDF2, also second-order
accurate):

BDF2
Un+2 − Un+1

∆t
+

Un+2 − 2Un+1 + Un

2 ∆t
= f(Un+2). (2)

This split-step method is self-starting (the trapezoidal method determines U1 from U0, and
then U2 comes from BDF2). It is a stabilized option that was proposed in [1] for circuit
simulation. Now it is available in the ADINA finite element code [2–3] and elsewhere. A
good alternative is the Hilber-Hughes-Taylor integrator used successfully by ABAQUS [7].
It is important to control high-frequency ringing produced by changes in the stepsize ∆t.

The computing time in these implicit methods will often be dominated by the solution of
a nonlinear system for Un+1 and then Un+2. Some variant of Newton’s method is the normal
choice. So we need an exact or approximate Jacobian of the “implicit parts” in equations (1)
and (2), when a nonlinear vector f(U) replaces the scalar test case f = au. Writing f ′ for
the matrix ∂fi/∂uj , the Jacobians in the two cases are

(Trapezoidal) I − ∆t

2
f ′ (BDF2)

3

2
I − ∆t f ′

It would be desirable if those Jacobians were equal or proportional. With the same ∆t
in the two methods, they are not.

The neat idea in [1] was to allow different steps α ∆t and (1−α) ∆t for trapezoidal and
BDF2, with 0 < α < 1. The trapezoidal method will now produce Un+α instead of Un+1:

Trapezoidal Un+α − Un =
α ∆t

2

(

f(Un+α) + f(Un)
)

. (3)

Then BDF2 determines Un+1 from Un and the part-way value Un+α. To maintain second-
order accuracy, this requires coefficients A, B, C that depend on α:

BDF2α AUn+1 − BUn+α + CUn = (1 − α)∆t f(Un+1) . (4)

Here A = 2−α, B = 1/α, and C = (1−α)2/α. The standard choice α = 1

2
produces A = 3

2
,

B = 2, C = 1

2
in agreement with (2). (The step ∆t moved to the right side is now ∆t/2.)

2

These values of A, B, C are chosen to give the exact solutions U = t and U = t2 when the
right sides are f = 1 and f = 2t.

The Jacobians in (3) and (4), for Un+α and then Un+1, become

(Trapezoidal) I − α ∆t

2
f ′ (BDF2α) (2 − α)I − (1 − α)∆t f ′ (5)

When α = 2 −
√

2 and f ′ is a constant matrix, JBDF in (4) matches
√

2 JTrap in (3) :

√
2

[

I − (2 −
√

2)∆t

2
f ′

]

=
[√

2 I − (
√

2 − 1)∆t f ′

]

. (6)

Let c = 2−
√

2 denote this “magic choice” for α. It is known to give the least truncation
error [1] among all α (as well as proportional Jacobians). Our goal in this paper is to identify
one more property that makes this choice magic : α = 2 −

√
2 also gives the largest stability

region.

This optimal method is analyzed in [5]: a valuable paper. The recommended start for
Newton’s method is the current U

n
in the trapezoidal step to U

n+c
, and then V

n+c
in the

BDF2 step:

V
n+c

= (1.5 +
√

2)U
n

+ (2.5 + 2
√

2)U
n+c

− (6 + 4.5
√

2)(f
n+c

− f
n
).

This comes from a cubic Hermite extrapolation. A key point of [5] is the estimate of local
truncation error to be used for the stepsize choice in stiff problems. TR-BDF2c as imple-
mented in MATLAB is described by Hosea and Shampine as an “attractive implicit one-step
method”.

It is recognized that f ′ would normally be evaluated at different points in the two half-
steps. In our limited experience, the saving in not computing an extra Jacobian at Un+α

more than compensates for this imperfect start in Newton’s method: Evaluate JTrap at U
n

and multiply by
√

2 for JBDF.

For linear constant-coefficient dynamics, when f ′ is the same matrix throughout, Bathe [2–
3] confirmed the desirability of α = 2 −

√
2. In that case the Jacobian is factored into LU

once and for all.

With the choice α = 2−
√

2, this split-step method is ode23b among the MATLAB solvers
for systems of ordinary differential equations. The documentation mentions that “this solver
may be more efficient than ode15s at crude tolerances.” This is the correct context for many
problems in applied dynamics. The spatial accuracy of finite elements would not justify a
high-order method in time. We will use ode45 (Runge-Kutta with stepsize control) as a test
standard in numerical simulations of a double pendulum.

II. The growth factors Gα and Gc

Stability is tested here, as usual, on the scalar equation u ′ = au. The number a may be
complex—it represents any of the eigenvalues in a constant-coefficient linear system.

3

The trapezoidal method had a growth factor G in equation (1): Un+1 = G(a ∆t) Un. The
split-step combination in (3-4) will have a growth factor Gα, computed now. The particular
choice α = c = 2 −

√
2 will then have the growth factor Gc. These factors are ratios of

simple polynomials in z = a ∆t.

The tests for stability in the model problem u ′ = au are |Gα(z)| ≤ 1 and |Gc(z)| ≤ 1.
Those tests are passed for Re z ≤ 0, and they are also passed in parts of the half-plane
Re z > 0. This is the split-step improvement on the trapezoidal method, shown in the
graphs of Figure 1, and α = c gives the greatest improvement.

Theorem The choice α = c gives the largest stability region : If there is an α with |Gα(z)| ≤
1 then |Gc(z)| ≤ 1.

To compute these growth factors with f(U) = aU , substitute Un+α from the trapezoidal
step (3) into (4):

A Un+1 − B
1 + αz/2

1 − αz/2
Un + CUn = (1 − α) zUn+1. (7)

With A = 2 − α, B = 1/α, and C = (1 − α)2/α, this simplifies to Un+1 = Gα Un:

Growth factor Gα(z) =
2α − 4 − (2 − 2α + α2)z

α(α − 1)z2 + (2 − α2)z + 2α − 4
. (8)

0 2 4 6 8 10 12
−8

−6

−4

−2

0

2

4

6

8

0 2 4 6 8 10 12
−8

−6

−4

−2

0

2

4

6

8

0 2 4 6 8 10 12
−8

−6

−4

−2

0

2

4

6

8

α = .4 α = .5 α = 2 −
√

2

Figure 1: The stability region outside the curve |G
α
(z)| = 1 is largest for α = 2 −

√
2.

Lemma 1. Suppose z is real and 0 < α < 1. Then |Gα(z)| ≤ 1 if and only if z ≤ 0 or
z ≥ (4−2α)/(α−α2). This ratio Q(α) gives the edge of the stability region for real z = a ∆t.

Lemma 2. The minimum of Q(α) is (4 − 2α)/(α − α2) at α = c = 2 −
√

2. Thus the
unstable real interval (0, Q) is smallest for α = c.

4

Lemma 1 will be proved later, and Lemma 2 now. The key point is the factor 2−4α+α2

which vanishes at the choice α = c :

Q ′(α) =
2(2 − 4α + α2)

(α − α2)2
= 0 at α = 2 ±

√
2. (9)

On the interval 0 < α < 1, Q(α) is large near the endpoints and decreases to its minimum
value at α = c = 2 −

√
2. That minimum value Qc gives the largest stability region z ≥ Qc

on the positive real axis :

min Qα = Qc =
4 − 2c

c − c2
= 6 + 4

√
2. (10)

Now we turn to complex z = x + iy. The growth factor Gα(z) in (8) has numerator N
and denominator D. Compute |N |2 and |D|2 :

|N |2 =
[

2α − 4 − (2 − 2α + α2)x
]2

+ (2 − 2α + α2)2y2

|D|2 =
[

α(α − 1)(x2 − y2) + (2 − α2)x + 2α − 4
]2

+
[

2α(α − 1)x + (2 − α2)
]2

y2

Those are linear and quadratic in the variable m = y2, for fixed x.

Here is an outline of our proof that α = c gives the largest stability region in the z-plane:

1. Set gα(m) = |D|2 − |N |2. Then z = x + iy = a ∆t gives stability if gα(m) ≥ 0.

2. Fix the real part x between 0 and 6 + 4
√

2. Since gα is quadratic in m = y2, it has
two roots m1(α) and m2(α). The expressions for their sum s(α) = m1 + m2 and their
product p(α) = m1m2 are straightforward from the quadratic g

α
:

s(α) =
2

α2 − α

[

8 − 4 α − (2 − α2)x + (α − α2)x2

]

p(α) = x4 − 2

(α2 − α)2

[

(2α − 4)2x + (2 − α2)(α − α2)x3

]

3. The derivatives ds/dα and dp/dα contain the factor 2 − 4 α + α2 which vanishes at
α = c = 2 −

√
2. The derivatives of the individual roots m1 and m2 also vanish at

α = c. Then this choice of α gives the smallest unstable interval −Y (α) < y < Y (α)
for each fixed x. Here m = Y 2 is the smaller root of gα(m) = 0.

The boundary points x ± iY of the stability region for α = c form the last (and
smallest) curve in Figure 1. The points z inside the curve give instability for α = c
and for all 0 < α < 1. The “magic choice” gives the largest stability region for the
split-step method.

Computations for Step 3. The derivatives of s = m1 + m2 and p = m1m2 are

5

ds

dα
=

8 − 2x

(α2 − α)2
(2 − 4α + α2)

dp

dα
=

16(α − 2)x + 2(α2 − α)x2

(α2 − α)3
(2 − 4α + α2)

These vanish at α = c = 2 −
√

2 since 2 − 4c + c2 = 0.

Then s ′ = 0 and p ′ = 0 yield

m ′

1 + m ′

2 = 0 and m2m
′

1 + m1m
′

2 = 0.

Those two equations imply m ′

1 = 0 and m ′

2 = 0 unless m1 = m2. This exceptional
case also gives m ′

1 = m ′

2 = 0 by analysis of the discriminant of gα(m).

May we acknowledge that the formulas for m1, m2, m
′

1 , and m ′

2 were first
produced by Maple, before it was realized that s and p would allow computations
by hand.

Computations for Lemma 1. When z = x is real and y = 0, the numerator and
denominator of Gα = N/D have

N + D = α(α − 1)x2 − 2 α(α − 1)x + 4α − 8

N − D = α(α − 1)x2 + (4 − 2α)x

The sum N + D remains negative for all 0 < α < 1, because its discriminant is
4α(α − 1)(α2 − 5α + 8) < 0. (That quadratic is positive because its discriminant is
−7.) Then |Gα| = 1 only when N = D. This occurs at x = 0 and at x = (4 − 2α)/
(α − α2). Between those two values we have instability. Lemma 2 says that this real
instability interval is smallest when α = 2 −

√
2.

III. Examples: The Double Pendulum

We test the improved stability of the split-step TR-BDF2 combination by comparison
with the trapezoidal method and BDF method alone. A simple pendulum of length ` is
governed by the equation θ ′′ = (g/`) sin θ. The mild nonlinearity of sin θ is compounded
when a second pendulum is attached (Figure 2). For simplicity we choose equal masses
(which cancel from the equations of motion) and equal lengths `. The tumbling of the
second mass over the top of the first gives a convenient model of complex behavior—not
easy for a finite difference method to follow.

6

α

β
m

mass m

length `

`

Figure 2: A double pendulum with enough energy can send the lower mass “over the top.”
The angle β can leave (−π, π).

We write α and β for the angles from the vertical. The potential energy is lowest when
these angles are zero:

V = −mg` (cos α + (cos α + cos β)) .

With angular velocities A = α ′ and B = β ′, the kinetic energy of the double pendulum is

K =
1

2
m`2(A2 + 2 cos(α − β)AB + B2).

Then the Euler-Lagrange equations minimize the action integral of the Lagrangian L = K−V
and express Newton’s second law:

(∂L/∂A) ′ = ∂L/∂α and (∂L/∂B) ′ = ∂L/∂β. (11)

The unknown is u(t) = (α, β, A, B). The system to solve is u ′ = f(u) = (A, B, f3, f4), in
which f3(u) and f4(u) come from solving equations (11) for A ′ and B ′.

The Jacobian of f(u) is a 4 by 4 matrix. It is evaluated at u = U
n

in the first iteration
of Newton’s method, for the trapezoidal rule U

n+α
= U

n
+ α ∆t(f

n
+ f

n+α
)/2.

IV. Numerical Simulations

The double pendulum is evolved using four different time integrators:

1. Trapezoidal method (TR)

2. Second-order backward differences (BDF2)

3. The split-step method (TR-BDF2) with α = 2 −
√

2

4. MATLAB’s explicit Runge-Kutta code ode45.

We take ode45, with its higher accuracy, as the standard. The choice α = 0.5 for the split-
step gives answers very close to the “magic” choice—it is the difference in the Jacobian
evaluation and factorization for Newton’s method that is significant.

7

We report here on the motion of the lower pendulum, which is more erratic (physically
and also computationally). The graphs will show β and β ′ against t, and the movement
of β ′ against β in the phase plane (Poincaré plot). Many more graphs are on the website
math.mit.edu/cse associated with the textbook [7] on computational science and engineering.
(Section 2.6 of the book describes variants of Newton’s method and a range of engineering
applications.)

The masses will be initially raised to α(0) = 9π/10 and β(0) = π with angular velocities
α ′(0) = 0.7 and β ′(0) = 0.4. The time step is 0.02 and the simulation runs to t = 10.
Near t = 6.5 both TR and BDF2 (but not the split-step combination) break away from the
accurate solution given by ode45. The first graphs compare the angle β(t) and the velocity
β ′(t) of the second pendulum from BDF2 and TR-BDF2.

0 2 4 6 8 10 12
−35

−30

−25

−20

−15

−10

−5

0

5

10

Time

A
n
g
u
la

r
d
is

p
la

ce
m

en
t
β

Angular displacement plot, Pendulum 2

MATLAB
BDF2

0 1 2 3 4 5 6 7 8 9 10
−35

−30

−25

−20

−15

−10

−5

0

5

10

Time

A
n
g
u
la

r
d
is

p
la

ce
m

en
t
β

Angular displacement plot, Pendulum 2

MATLAB
TRBDF2

Figure 3: The split-step method stays near the solution from ode45.

0 2 4 6 8 10 12
−15

−10

−5

0

5

10

15

Time

A
n
g
u
la

r
ve

lo
ci

ty
β̇

Angular velocity plot, Pendulum 2

MATLAB
BDF2

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

Time

A
n
g
u
la

r
ve

lo
ci

ty
β̇

Angular velocity plot, Pendulum 2

MATLAB
TRBDF2

Figure 4: The sign of β ′ stays positive at t = 6.5 for TR-BDF.

8

Figure 5 shows the same experiments (now for TR versus TR-BDF2 in the β − β ′ phase
plane. This “Poincaré plot” starts at the right and moves left as time increases.

−35 −30 −25 −20 −15 −10 −5 0 5 10
−15

−10

−5

0

5

10

15

Angular displacement β

A
n
g
u
la

r
v
el

o
ci

ty
β̇

Poincare plot, Pendulum 2

MATLAB
TR

−35 −30 −25 −20 −15 −10 −5 0 5 10
−15

−10

−5

0

5

10

15

Angular displacement β

A
n
g
u
la

r
v
el

o
ci

ty
β̇

Poincare plot, Pendulum 2

MATLAB
TRBDF2

Figure 5: Divergence of the trapezoidal method, shown in the phase plane.

References

[1] Bank, R. E., W. C. Coughran, Jr., W. Fichtner, E. Grosse, D. Rose, and R. Smith,
Transient simulation of silicon devices and circuits, IEEE Trans. CAD 4 (1985) 436–
451 and IEEE Trans. Electr. Devices 32 (1985) 1992-2007.

[2] Bathe, K. J. and M. M. I. Baig, On a composite implicit time integration procedure for
nonlinear dynamics, Computers and Structures 83 (2005) 2513-2524.

[3] Bathe, K. J., Conserving energy and momentum in nonlinear dynamics : A simple
implicit time integration scheme, Computers and Structures 85 (2007) 437-445.

[4] Kuhl, D. and M. A. Crisfield, Energy-conserving and decaying algorithms in non-linear
structural dynamics, Int. J. Num. Meth. Eng. 45 (1999) 569-599.

[5] Shampine, L. F. and M. E. Hosea, Analysis and implementation of TR-BDF2, Applied

Numerical Mathematics 20 (1996) 21–37.

[6] Shampine, L. F., I. Gladwell, and S. Thompson, Solving ODE’s with MATLAB, Cam-
bridge University Press (2003).

[7] Strang, G., Computational Science and Engineering, Wellesley-Cambridge Press (2007).

9

