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NOTES.

n1. The first problem (Rankine Hugoniot conditions for Isentropic Gas Dynamics) involves carrying

out (for each of the two conservation laws that make up the isentropic Euler equations of Gas

Dynamics) exactly the same sort of calculation that was used in the lectures to derive the shock

jump conditions for Traffic Flow or River Flows.

n2. The second problem (Piston problem for Isentropic Gas Dynamics) is a slight variation of the

example done in the lectures (blowing/sucking air at a steady rate into/from a pipe).

n3. Part A (the case V < 0, see the hint) in the second problem (Piston problem for Isentropic

Gas Dynamics) is . . . . . . . . . . . . . . . . . . . . THE SPECIAL PART OF THIS PROBLEM SET.

The rest of the second problem, as well as the

first problem, constitute . . . . . . . . . . . . .THE REGULAR PART OF THIS PROBLEM SET.

1 Statements for the assigned problems.

1.1 Statement for GaDy03:

Rankine Hugoniot conditions for Isentropic Gas Dynamics.

The one dimensional isentropic (constant entropy) Euler equations of Gas Dynamics are given by

ρt + (ρ u)x = 0,

(ρ u)t + (ρ u2 + p)x = 0,

}

(1.1)

1
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where ρ = ρ(x, t), u = u(x, t), and p = p(x, t) are the gas mass density, flow velocity, and pressure,

respectively. The first equation implements the conservation of mass, and the second the conser-

vation of momentum. These equations are complemented by an equation of state, relating the

pressure to the density. This takes the form

p = P (ρ), where P is a function satisfying
dP

dρ
> 0. (1.2)

For example, for an ideal gas P = κργ , where κ > 0 and 1 < γ < 2 are constants.

Use conservation to derive the Rankine-Hugoniot jump conditions that shocks for the equa-

tions above must satisfy. In other words, consider a solution of the equations of the form

ρ = ρL and u = uL for x < s t,

ρ = ρR and u = uR for x > s t,

}

(1.3)

where ρL > 0, ρR > 0, uL, uR, and s are constants. Then find conditions that these constants

have to satisfy so that mass and momentum are conserved.

Hint 1: In a frame of reference moving with the shock, the fluxes of mass and momentum on each

side of the shock must be equal.

Hint 2: Alternatively: use the integral form of the conservation laws across an interval containing

the shock; i.e.: a < s t < b.

Remark 1.1 One may question whether it makes sense to consider shock wave solutions within

the context of the constant entropy assumption.1 However, it can be shown (though we will not do

it here) that the amount of entropy produced within a shock is proportional to the cube of the shock

strength for weak shocks. Hence, as long as we use the equations in situations where only weak shocks

arise, it does make sense to consider shocks within the context of a constant entropy assumption.

1.2 Statement for GaDy04:

Piston problem for Isentropic Gas Dynamics.

Imagine a long pipe full of air at rest, with the piston in it. At time t = 0 you start moving the

piston at a constant velocity V , which is neither too small, nor too large.2 What happens?

1Constant entropy presumes adiabatic conditions, while changes at a shock are anything but slow. Hence shocks

must produce entropy.
2The “neither too small” means that we cannot use linearized equations. The “nor too large” means that we can

use simplifying assumptions, such as constant entropy flow.
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A simple mathematical model for the situation above is as follows: we use the one dimensional

isentropic Euler equations of Gas Dynamics (for a polytropic gas)

ρt + (ρ u)x = 0,

(ρ u)t + (ρ u2 + p)x = 0,

}

(1.4)

to model the air,3 where ρ is the gas density, u is the flow velocity, p = κ ργ is the pressure, κ > 0

is a constant, 1 < γ < 2 is a constant, t is time, and x is the length along the pipe, measured from

the point where the piston started. The solution to these equations must then be found for

t > 0 and x > V t, with the initial and boundary conditions given by

ρ(x, 0) = ρ0 and u(x, 0) = 0 for x > 0.

u(x, t) = V for x = V t > 0.

}

(1.5)

Solve this problem.

Hint 1.1 The equations have two sets of characteristics. On the right moving (C+ characteristics)

given by
dx

dt
= u + c the quantity r = u +

2 c

γ − 1
is constant. (1.6)

Similarly, on the left moving (C
−

characteristics) given by

dx

dt
= u − c the quantity s = u −

2 c

γ − 1
is constant. (1.7)

Here c =
√

dp/dρ =
√

γ p/ρ > 0 is the sound speed, r is called the right Riemann invariant, and s is

called the left Riemann invariant.

You can now reformulate the problem completely in terms of r and s as follows:

1. r is constant along
dx

dt
=

γ + 1

4
r +

3 − γ

4
s,

2. s is constant along
dx

dt
=

3 − γ

4
r +

γ + 1

4
s,

3. r = −s =
2 c0

γ − 1
on x = 0,

4. r + s = 2 V on x = V t,















































(1.8)

where c0 is the sound speed corresponding to ρ0. Then u and c follow from u = (r + s)/2 and

c = (γ − 1) (r − s)/4. Since c is an increasing function of ρ, ρ follows from knowledge of c. Note

that, since c > 0, a realistic physical solution requires r > s everywhere.

3For dry air starting at one atmosphere and 15 degrees Celsius: p = p0 (ρ/ρ0)
γ , where p0 = 1.013 × 106 dyn/cm2,

ρ0 = 1.226× 10−3 g/cm
3
, and γ = 1.401.
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Note also that the C
−

characteristics that start on x > 0 move backwards through the gas particles

(since their velocity u − c is less than the gas velocity) and so must eventually approach the gas

particles that start next to the piston at time t = 0. Hence it can be argued that

Every parcel of gas, at any time, is connected with

the initial data (t = 0) on x > 0 via a C
−

characteristic.
(1.9)

Since, along x > 0 for t = 0, s = −2 c0/(γ − 1) is identically constant, and since s is constant along

the C
−

characteristics, we can use (1.9) to argue that

The left Riemann invariant s ≡ −2 c0/(γ − 1) is constant throughout the flow. (1.10)

HOWEVER, there is a proviso to this conclusion. The argument that s is constant along the C
−

characteristics depends on the solution being smooth. It will not apply across shocks. Thus (1.10)

holds as long as the flow develops no shocks.

At any rate, you can start solving the problem by assuming that (1.10) applies. Then the problem

reduces to calculating the C+ characteristics, along which is r is constant. These are straight lines,

since along each of them both r and s are constant, as follows from (1.10). But then the problem

becomes very simple, and it is very similar to the light turns from red to green and from green to

red type of problems in traffic flow.

There are two distinct cases that you must consider:

A. Case V < 0. In this case no shock waves arise.

Start with the assumption that (1.10) holds, and then

a1. Solve for the C+ characteristics that start along x > 0 on t = 0. These carry the value

r = 2 c0/(γ − 1) — why? — and all have the same slope (calculate it).

a2. Solve for the C+ characteristics that start along x = V t for t > 0. These carry the value

r = 2 V + 2 c0/(γ − 1) — why? — and all have the same slope (calculate it).

a3. You will find that a1 and a2 leave an unfilled gap in the C+ characteristic field — a

wedge shaped region in space-time, with its tip at the origin. An expansion fan is needed

to fill this region.

As long as −2 c0/(γ − 1) = Vc < V < 0, the process above will yield a complete solution for

the problem. Give explicit formulas for u and c as functions of x and t.

CHALLENGE QUESTIONS: CQ1. What is special about V = Vc?

CQ2. What is the solution for V < Vc?

B. Case V > 0. In this case a shock wave arises.

Start as in the prior case. When you reach step a3, you will find that instead of a gap in the

C+ characteristic field, there is region where the characteristics cross: a wedge in space time,

with its tip at the origin. Thus a shock is needed to stop the C+ characteristics from crossing.
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Thus, look for a solution where there is a shock along a path x = σ(t), into which the C+ char-

acteristics converge (where they end, so the crossing is prevented). In order to proceed further,

you will need the jump conditions at the shock. These arise from enforcing conservation of

mass and momentum across the shock, which yields two equations. Do not worry about the

details of these two equations. The important thing is that, at least in principle (see below for

why “in principle”), you can think of them in the following way

The shock jump conditions for a (right) moving shock with speed speed U have the form:

U = f(rL, rR, sR) and sL = g(rL, rR, sR), (1.11)

where

— f and g are some (known) functions.

— rL and rR are the values of the right Riemann invariant along the C+ characteristics

converging into the shock — one from the left, and the other from the right, respectively.

The condition that these characteristics converge into the shock is equivalent to

uL + cL > U > uR + cR, (1.12)

since the C+ characteristics have speed u + c.

— The C
−

characteristics CROSS the shock path, entering from the right (fluid ahead

of the shock) and leaving on the left. They carry the value sR when they enter the shock,

and come out on the other side with the value sL.

The best way to understand what all this means is to draw a picture in space time, with

the shock path, and some typical characteristics: the C+ converging into the shock and the

C
−

crossing it, right to left as time increases.

Note: why do we say that the above is “in principle”? The reason is that no explicit

expressions for the functions f and g above exist. These functions are defined implicitly, and

(to evaluate them) one must resort to numerical methods.

IMPORTANT! Once a shock is introduced, the validity of (1.10) must be questioned.

When a C
−

characteristic crosses a shock, the argument leading to the conclusion that along

it s is constant breaks down — since it depends on derivatives existing. In fact, s will have a

discontinuity across the shock, so that we can ONLY argue that

The left Riemann invariant is constant s ≡
−2 c0

γ − 1
ahead of the shock at x = σ(t).

Now you are ready to do the V > 0 case. Proceed as follows.
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b1. Argue that the solution to (1.4 – 1.5) should be a function of x/t only. Hence:

—The shock speed
dσ

dt
= U ; should be constant, with the shock path given by x = Ut.

—The the left Riemann invariant should be constant s = s1 immediately behind the shock,

that is: along x = U t − 0.

Hint: Let u = ũ(x, t) and ρ = ρ̃(x, t) be the solution to the problem in (1.4 – 1.5).

What problem does u = ũ(α x, α t) and ρ = ρ̃(α x, α t) (where α > 0 is an arbitrary

constant) solve? If the solution to (1.4 – 1.5) is unique, what do you conclude? Use

this conclusion to show that ũ and ρ̃ are, in fact, functions of x/t only.

Now you should be able to argue (do the argument!) that

The left Riemann invariant is constant s ≡ s1 behind the shock at x = σ(t),

where s1 is some constant to be determined, different from the constant value

ahead of the shock s = s0 =
−2 c0

γ − 1
.

b2. Solve the problem in the region ahead of the shock x > U t. The solution here is de-

termined by the characteristics (both C+ and C
−
) that start on x > 0 for t = 0. Write

formulas for these characteristics.

b3. The solution in the region V t < x < U t between the piston and the shock is determined

as follows:

-1- The C
−

characteristics start on x > 0 at t = 0, and move backwards, carrying the

value s = s0 = −
2 c0

γ − 1
for the left Riemann invariant s. When they reach the shock,

they go through it, and the value of s they carry jumps to a new value s = s1, that

should satisfy (1.11).
-2- When a C

−
characteristic reaches the piston, the boundary condition there determines

a value r = r1 for the C+ characteristic that starts there.
-3- The C+ characteristic that start at the piston move to the right, and carry a value

r = r1 for the right Riemann invariant.
-4- When the C+ characteristics starting at the piston reach the shock, they end there.

However, through (1.11), and the values carried by the other characteristics, they

determine the shock speed U , and the value s1 with which the C
−

characteristics

leave the shock (see item -1-).

Of course, you do not know the values of U , s1, and r1 mentioned above. However, you

should be able to write equations (involving the functions f and g in (1.11)) that can be

used to determine them. WRITE THESE EQUATIONS. You will not be able to solve

the equations because you do not have expressions for f and g. This is fine; however,
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note that it can be shown that the equations have a unique solution that satisfies (1.12).

Describe what the solution to the problem looks like, in terms of these values.

Hint/IMPORTANT: in order to fully understand what the stuff in items -1- through

-4- above means, draw a picture in space-time showing typical characteristics and the

shock path.

C. Finally: what happens in the case V = 0?

THE END.


