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1 Problem definition

1.1 NS equations

We consider the 2-D fluid motion for falling oil droplets in air, as the cases being studied

in [1]. We denote the density and viscosity inside the droplet by ρl and µl, respectively,

and for the gas phase by ρg and µg. From the conservation of momemtum we get the

incompressible Navier-Stokes equations

ut + (u · ∇)u = F + 1
ρ
(−∇ρ+∇ · (2µD) + σkδ(d)n) (1)

∇ · u = 0 (2)

where u = (u, v) is the fluid velocity, ρ = ρ(x, t) is the fluid density, µ = µ(x, t) is the fluid

viscosity, D is the viscous stress tensor, and F is a body force. The surface tension term

is considered to be a force concentrated on the interface. σ is the surface tension, k is the

curvature of the front, d is the normal distance to the front, δ is the Dirac delta function

and n is the unit outward normal vector at the front. For immiscible liquids the density and

viscosity are constant on particle paths, therefore

ρt + (u · ∇)ρ = 0 (3)

µt + (u · ∇)µ = 0 (4)

Free-slip condition u · n = 0 is used for wall boundaries where n is the normal vector at the

boundary.

If the intial radius of the drop is denoted as R and the only body force considered is

gravity denoted as g. We can get the non-dimensionalized form of Eq.(1)

ut = −(u · ∇)u + gu +
1

ρ

(
−∇p+

1

Re
∇ · (2µD) +

1

B
kδ(d)n

)
(5)

The key parameters are ρl/ρg,density ratio;µl/µg, viscosity ratio; Re = (2R)3/2√gρg/µg; and

B = 4ρggR
2/σ. The dimensionless density and viscosity outside the droplet are equal to 1.
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1.2 Projection method

We correct the intermediate velocity field bu the gradient of a pressure P n+1 to enforce

incompressibility. Hence we get

− ∇P
n+1

ρn
=

1

dt
Un+1 − 1

dt
Un (6)

To compute the projection, we take the divergence of both sides of the above equation to

obtain

−
(
∇ ·
(
∇P n+1

ρn

))
= − 1

dt
∇ ·Un (7)

After the linear system is solved, we can update the intermediate velocity field to the in-

compressible velocity by

U = U− dt∇P
ρ

(8)

1.3 Level set approach

We use a level set function φ to track the interface, and it is taken positive outside the

droplet and negative inside the droplet. The φ is intialized to be the signed normal distance

from the interface. Consider the following equation:

φt + (u · ∇)φ = 0 (9)

It should be noted that while φ is initially a distance function it will remain so (i.e.,

|∇φ| 6= 1. Furthermore, solutions of φ can develop a jump at the interface when interfaces

merge. So we need reinitializing step to reconstruct the distance function. This is achieved

by solving the following problem to steady state

φt = S(φ0)
(

1−
√
φ2
x + φ2

y

)
(10)

φ(x, 0) = φ0(x) (11)

where S is the sign function. The above equation has the property that φ remains unchanged

at the interface; Away from the interface φ will converge to |∇φ| = 1. For numerical purposes

it is smoothed according to

Sε(φ0) =
φ0√
φ2

0 + ε2
(12)

1.4 Algorithm

• Initialize φ(x, 0) to be signed normal distance to the front.

• Solve

ut = Pρ(u), φt + (u · ∇)φ = 0 (13)
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for one time step. Denote the updated φ by φ(n+1/2), and the updated velocity by

u(n+1).

• Reinitializing φ by solving φt = S(φ(n+1/2))(1 − |∇(φ)|) with φ(x, 0) = φ(n+1/2)(x) to

steady state. Denote the steady state solution by φ(n+1).

• Now complete one time step. The zero level set of φ(n+1) gives the new interface

position. Repeat steps 2 and 3.

1.5 Discretization

Discretization is almost in the same scheme with ref.[2]. The density and distance

function are also defined in the center of a cell.

In computing the surface tension term, special care must be put into the δ function. One

can smear the interface or using a smart ghost-fluid method. We cast the surface tension

force in the level set formulation using a smoothed δ function.

(1/B)κδ(d)n = (1/B)κ(φ)δ(φ)∇φ, (14)

where the curvature is κ(φ) = ∇ · (∇φ/|∇φ|) and the smoothed δ function is

δα(φ) ≡

{
1
2
(1 + cos(πφ/α))/α if |φ| < α

0 otherwise.
. (15)

where α is the thickness of the interface, and α = 3
2
δx in this simulation.

In the same sense, we smooth the density in the interface by the following

ρ̄ = (ρb + ρc)/(2ρc)

∆ρ = (ρc − ρb)/(2ρc)

ρ(φ) =


1 ifφ > α

ρb/ρc ifφ < −α
ρ̄+ ∆ρ sin(πφ/(2α)) otherwise.

(16)

where ρc and ρb are the density of surroundings and droplets respectively. And we assume

the same viscosity in the whole simulation.

2 Results

We consider a droplet/bubble in a square box. In all the cases, a non-slip boundary

condition is used in all four walls.
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2.1 Bubble rising

Figure 1 shows a bubble rising in a fluid from rest. Note that a high density ratio up to

1000 is achieved. Figure 2 shows the evolution of two bubbles colliding with each other.
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Figure 1: Bubble rising with medium range Reynolds number; Re=100, B=200, density ratio 1000/1, grid 90×90.
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Figure 2: Bubble merge; Re=100, B=200, density ratio 1000/1, grid 90×90.

2.2 Droplet folling

We consider three cases. The first problem is a drop that is allowed to fall from rest and

hit the bottom of our closed box, the second problem is the same condition without surface

tension, the last problem simulate a drop very a very lower density ratio. Figure 3 show the

evolution of a water drop with surface tension. Figure 4 show the evolution of a water drop

without surface tension. Figure 5 shows the evolution of interface with a small density ratio

and small surface tension. It can be seen that the shape of interface is preserved with a high

density ratio and a high surface tension.
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Figure 3: Evolution of a water drop with surface tension. Drop remains circular as it hits the base; Re=10, B=1/800, density

ratio 1/1000, grid 90×90.
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Figure 4: Evolution of a water drop without surface tension. Re=10, B=Inf, density ratio 1/1000, grid 90×90.
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Figure 5: Evolution of a droplet without surface tension. Re=10, B=Inf, density ratio 1/2, grid 90×90.
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2.3 Limitations

In order to study the limitations of current level set formulation, we let a initial circle

evolving in a lid driven box, with no density differences and surface tension. Figure 6 shows

the evolution of the circle plus the dissipation curve of the circular area. A high loss of area

(i.e. mass) can be observed. This may due to the upwind scheme used. More investigation

shows that smaller dt will introduce more loss of area.
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Figure 6: Evolution of a circular in a lid-driven box, grid 90×90.

3 Conclusions

In summary, a level set method was used to track the interface of two incpmpressible

fluids. The algorithm is easy to code since it uses a Eulerian mesh. By now, a density ratio

up to 1000 can be simulated. In addition, the merging, breakup of the interface can be

handled automatically. However, due to the upwind scheme used in evolving the level set

equation, the area of the droplet/bubble doesn’t conserved. Further investigation of high

order scheme such as ENO may resolve this problem.
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