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Modeling Elastic Wave Propagation in layered medium with 

Surface Topography  

(Term Report for CSE-2: 18.086 - 2008) 

 

0. Abstract 
The objective of the Term Project is to study the Finite Difference Methods to better approximate and 

model the effect of topography on Wave Propagation. First, wave propagation is modeled using 

Standard Staggered grid in a 2D homogenous medium (in a 1000m*500m space) bounded by rigid 

surfaces on three sides and a free surface on the fourth side. Then, PML boundaries conditions are 

introduced to suppress the waves from rigid surfaces. Vacuum method and Image method for Surface 

topography are discussed. Both are implemented for horizontal plane surface and compared. Vacuum 

method is chosen for modeling Surface Topography. A dipping layer is introduced into the model now. 

To take, a step further, multi-grid/ variable grid is developed and implemented for plane surface case.   

1. Introduction 

 

Understanding wave propagation is particularly important for processing the seismic signal recorded 

during Seismic Survey for Oil Exploration. With conventional oil reserves depleting, we are now forced to 

explore oil in extreme terrains as well. Due to the uneven topography most of the energy sent into the 

ground turns out on seismograms as scatter noise. It is, therefore, natural to understand the wave 

propagation in such topography for us to remove the noise due to scattering. We do are interested in 

exploring the possibilities of using these surface scatters as secondary sources to better image the 

reservoir and enhance resolution.                                                      . 

 

Conventionally, finite differences are used to model the wave propagation. But, approximating the 

topography is a problem due to the complexity in approximating the topography with a Cartesian grid 

and the resolution required. It is also noticed that the corners of the grids would act as diffractors and 

disturb the solution. These aspects are observed in the project.                                                   . 

 

I have applied the model to the Seismic Survey done in a field trip to compare how well we could do to 

simulate the wave propagation. The Seismic Survey is done in the California Desert at Vidal (River Side 

Mountains). The geological structure to be imaged was the fault below.                                 . 
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A schematic diagram of the feature is shown below. 

 

  

We have deployed Geophones along the surface (at every 30m for 1 kilometer) at equal intervals and 

shot Betsy gun at certain source locations (at every 30m along the seismic line) to record the 

seismogram.  Analyzing the seismograms by refraction seismology we have arrived at the above model. I 

would like to verify if our model would reproduce the observed seismograms. 

 

I would like to present the physics behind wave propagation and then proceed to the modeling and 

results. 

2. Physics of Elastic Wave Propagation                                                           . 

 

Consider a Homogenous, Isotropic and 3-D infinite medium. Let the material properties be given by: E – 

Young’s Modulus, K- Bulk Modulus, G- Shear Modulus, ν – Poisson’s ratio. But, all the above four 

parameters are inter related and can be expressed in terms of only two parameters. Usually Lame’s 

constants ( , ) are used to denote the medium parameters. These are related to the above 

parameters as:                                            . 
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Consider the infinitesimal cube presented below. σxx, σyy, σzz are the Normal Stresses acting on the faces 

of the element and σxy,σyx,σzx,σxz,σyz,σzy  are the shear stresses acting on the faces of the cube. The 

strains are given by:                           . 
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Figure showing the directions of stress components.                                           .  

 

Stress and strain are related as:                                             . 

 xxxx  2 ; yyyy  2 ; zzzz  2 ; xyxy   ; yzyz   ; zxzx    

 

Applying equation of motion to the above cube we arrive at : 
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The above differential equations describe the wave motion. For simplicity of modeling we consider a 2D 

model. So our equations reduce to:                                             .  
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We can rewrite the above equations as below, known as Velocity – Stress Formulation. Since, 

we would be recording velocities in field and boundary conditions are associated with stresses, 

it is a better formulation.                                          . 
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We would use finite difference scheme to solve the above system of differential equations 

3. Standard Staggered Grid                                                                                     .  
 
The two popular methods of modeling the elastic wave propagation are Standard Staggered Grid (J. 
Virieux et. Al, 1986) and Rotated Staggered Grid (Saenger et.al, 1997). Standard Staggered grid is the 
traditional one. Though, rotated staggered is good at handling material discontinuity and easier to code 
and implement, I have chosen Standard Staggered Grid because the surface condition (Normal Stress is 
zero) can be implemented well by image method. And I see smart imaging of stresses as the best way 
for Topography. Whereas, rotated staggered method is not so comfortable in implementing the stress 
imaging methods, due to rotation in the co-ordinate axes.                                        .   
 

Standard Staggered Grid is as below. Consider a cell as shown. Axial Stresses and Elastic modules ( xx ,

yy ,λ,μ) lie at the centre of the cell, shear stress and density ( xy ,ρ) at the corners and the velocities  
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on the edges. The velocities in x and y direction are staggered by half a grid distance in both directions. 

Stresses lie in between the velocities and as a result they are also staggered. Also, the velocities and 

stresses are not coexistent in time. They are staggered by half time step.       

                             .   

 

 

 

 

 

 

 

 

Implementing this grid to our differential equations, our finite differences equations look like: 
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Note: ‘j’ is along x-axis and ‘I’ is along y axis.                                                 . 
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Stability and Accuracy of the Method:                                      . 

 

After analyzing the finite difference equations for stability by Von Neumann Analysis we arrive at the 

following condition: 

                                                                        

Where,   is the Velocity of the wave at any grid point. So, we take it to be the Maximum Velocity 

possible in the domain. This very intuitive result which says that the grid velocity ( ) should be at least 

equal to the Wave Velocity.From Taylors expansion, we can see that the method is Second Degree 

accurate in space and Time as well. (Since it is central Scheme in space and Time) 

Grid Dispersion: 

Though the method is stable if it satisfies the above mentioned condition, we may end up with 

inaccurate solutions if we don’t have enough grid resolution for the wavelengths we are interested in. 

We should sample at least 10 grid points per wavelength. This result comes from the dispersion analysis. 

We look at the ratio of grid velocity (which is the group velocity of waves, cgrid) to phase velocity (which 

differs for different frequencies if the grid velocity is not close enough to wave velocity in the media).

   

See that   both are same at wave length = 10*h; 
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Boundary Conditions and Material Interfaces: 

Fixed Boundary: 

Fixed boundary is simulated by applying Velocities to be zero at the boundary. But, at the boundary, 

since we are using staggered grid, we don’t have the both Vx and Vy simultaneously. So, we put 

whatever the Velocity point available to zero. The other is conceptually made zero by assuming a gauss 

point on the other side of the grid. 

Free Boundary: 

Fixed boundary is simulated by applying Normal Stress and Shear Stress to be zero (
yy =0 and 

xy =0) at 

the boundary. But, at the boundary, since we are using staggered grid, we don’t have both 
yy  and 

xy

simultaneously. So, we put whatever the Stress point available to zero. The other is conceptually made 

zero by assuming a gauss point on the other side of the grid.  

Gauss points are used to satisfy the boundary conditions as shown in the figure.  
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Material Interfaces:  

The interaction at material interfaces is automatically taken care (as all the Stresses and Displacements 

are Continuous) by using the harmonic average of Elastic Parameters at Grid points around and 

Arithmetic average of densities for the points on the material interfaces. 

PML Boundary Conditions: 

Since, I want to use a source at surface and want to record only reflections from layers below and  

reflections due to material discontinuity, I don’t want a perfect rigid conditions at all the other three 

sides. So, I want the wave to be damped at the boundaries, except the surface. 

 

This is accomplished by implementing Perfectly Matching Layer Boundary Conditions. Here, we 

transform the x and y axes to complex plane given by the transformation below: 

and  ;   are chosen such that they are equal to zero within 

the domain  and a positive values depending on the damping you need, outside the domain. This implies 

that we solve the same differential equation within the domain. We add few more layers of grid to 

damp the wave outside the domain. So, now the boundary is just not a single line but a region where 

the energy is damped. 

For implementing the PML conditions, transformations for x and y are not applied simultaneously. We 

decouple the system and solve once transforming x and the transforming y and then club them. Our 

differential equations: 

  

These would transform to:  
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For detailed study one may refer to G. Festa. Et al 

 

4. Surface Topography 

As we have discussed earlier, we can handle material to material transformation easily. Then, why do we 

have problems with Free Surface? The reason is that we no longer have Stress Continuity and the 

contrast is so high. xx
 
is discontinuous at the boundary. We need to treat the Free Surface specially 

such that we satisfy the condition that normal and shear stresses are zero at the Free Surface.  Since we 

can approximate surface only as discrete blocks, Finite Element Methods are more suitable for surface 

topography problems. But, the problem finally boils down to the computational expense we can afford. 

Finite element methods are more computationally expensive and are not suitable for 3D seismic imaging 

given the present capabilities of computers. So, it’s more important to develop efficient methods in 

Finite Differences to better approximate the Free Surface Topography 

Two methods well discussed in the literature are:  

1) Direct Method/ Vacuum Method (Hestholm et.al, 1994)                                     . 

2) Imaging Method (Robertsson et. al 1996, 1997) 

Direct Method/ Vacuum Method: 

Since, we are using staggered grid, we don’t have all the stresses on the boundary however we may 

choose to discretize the Surface. We end up having either shear stress or Normal Stress to be on the 

Surface. When we have complex surface both may appear on the surface, but not at the same space 

location. So, direct method relies on the fact that we apply zero normal stress and zero shear stress in 

two layers, but not one layer.  So, our boundary is not distinct but diffuse. When we talk in terms of two 

layers to implement boundary it is referred to as Direct Method in the literature. 

 

But, implementing the above conditions, though on two layers by picking up point to point along the 

surface when there is topography is difficult. So, people have come up with implementing the above 

conditions by assuming the velocity  of air above the Free Surface is zero and Shear/ Normal Stress 

whichever is existing on the boundary is zero. By putting the Elastic coefficients of grid points above the 

user defined boundary to be zero, we accomplish the previously stated B.C.s in two layers at h and h/2. 
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Where h is the grid spacing normal to the surface. This is like treating the medium above the surface as 

vacuum. The figure illustrates the method. 

   

 

  

   

  

  

  

  

 

  

 

I have implemented Vacuum Method in my code for Surface Topography. We have compared both the 

methods for flat surface. 

 

Image Method 

Image Method is introduced by Robertsson et. Al (1996). This method implements stress free conditions 

along a single layer but not two. This is based on the Gauss Point idea we have discussed earlier. We 

force Normal Stress and Shear Stress to go to zero at the same space point by assuming a gauss point. 

Here, we won’t assume Elastic parameters to go to zero in the grid points above the free surface. But, 

we take inverse of density to go to zero so that while applying the numerical scheme velocities 

automatically go to zero. We need not apply special attention to make velocities above free surface to 

go to zero. 

Though it sounds so simple, the major problem with the method is how to image as the normal to the 

boundary changes and what about points in the corner. To address this problem Robertson has 

classified the entire possible outcome into 7 cases as shown below and addresses how to deal with each 

case. Its critical at corners. Except that, either we have to image in x direction or Y direction. Imaging the 

stresses along x and y axes sequentially will avoid the problem of cross imaging. 

 

 

 

    

    

    

    

Elastic Parameters are zero here 

 

xy =0 

yy =0 /
xx =0  depending on surface 

orientation
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(Figures taken from Robertsson et. al). The Seven Possible Cases are shown here 

Solid Circles Represent Vx Components, Light Circles the Vy Components, Light squares represent 
xy  

Solid Squares represent 
yy

 xx  

Separately for vertical and horizontal derivatives, the computational procedure can be summarized as 

follows:  

1) Classify the free surface boundary points before FD calculations 

2) Set reciprocal values of densities to zero above free surface 

3) First Stress conditions are updated in every step. Normal Stresses along horizontal and vertical 

boundary are made to go to zero. Inner and outer corners  have all stresses go to zero 

4) Particle velocities are calculated by imaging along vertical direction only. Then by imaging along x 

direction and both are added 

I couldn’t implement this method right now because of the difficulty in formulating the imaging and 

classification algorithm in this short time available. 

But, I have implemented the method for flat surface and compared it to the vacuum Method. 

COMMENT:  Both the methods discussed here are not completely accurate for we still discrete the 

surface as stair cases. This produces some diffraction effects at the corners. 

 

5. Multi- Grid/ Non-Uniform grid 

My ultimate goal is to model Surface Scattering. So, I would wish to discretise the boundary as best as 

possible and also need more resolution at the surface to study the scattering phenomenon. But, I cannot 

increase the resolution in the complete computational domain. So, I chose to solve the problem by 

refining the mesh near the surface. The idea is: 

1) Solve the FD scheme for velocities on the entire grid 

2) At the Fine-Coarse grid interface interpolate the velocities. 

3) Using this as boundary for fine grid, solve the FD scheme for solving velocities on fine grid. 
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4) Update the velocities on Coarse grid in fine grid region by interpolating. 

5) Now solve for Stresses on Coarse grid and then on fine grid. Repeat the process. 

The interpolation scheme from Coarse to fine grid (along x direction) is as below. I have created 

interpolation matrices for the below in x and y directions and then restricted to find the coarse grid 

values from fine grid. 

 

 

 

6. Modeling, Results and Discussions.                                                                                      .  

I would present the numerical experiments carried out in the following order and present discussions in 

the order.                                                        . 

1)  Comparison between models run with PML boundary conditions and without PML conditions. 

2) Effect of Source Frequency and Grid Dispersion effects.            .                                                                                 

3)    Comparison between Vacuum Method and Image Method for flat Free Surface.                                   . 

4)    Implementation of Multi-Grid to Flat Free Surface with image method.                                                  . 

5)    Surface Topography modeling for the field problem with and without fault.                                       . 

 

For the first four cases the model is a 1000m long and 500 m deep 2D region with PML Boundary 

conditions on right, left and bottom boundaries. Free surface is on the Top.  

 

Source: A Ricker wavelet of dominant frequency 25Hz is used for 1-4 and a source of 40 Hz is used for 

case 5. Source location is at 40th grid point for the first four cases and on the 196th grid point on the 5th 

case. Source is always located on the Surface. We include source by adding a forcing term in the 

differential equation to calculate Vx. This force is given by Ricker wavelet. 

Receivers:  For the first four cases receivers are located at 30th 50th and 70th grid point, while for 5th case 

we have receivers at every 6th grid point starting from 11. This is to simulate the field studies. 

Grid Spacing and Time: Grid spacing is taken as 5m in x and y directions for all the cases except multigrid 

where fine grid have a special resolution of 2.5 m. For first 4 cases we have use 200*100 grid and for the 

5th case I have used 221*100 grid. Time steps of 0.5*10^-03 are used. 

Fine Grid                           Vy and 
xx yy  

                                          

 

                                                   Vx,
 xy

Coarse Grid 
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PML Boundary Layer:  Where ever present PML layer is 10 grid points thick.  

Air Above: Where ever air is present above free surface, it is 20 grid points thick  

Material Properties: For the first four cases P wave velocity is 2000m/s, S Wave Velocity is 1200m/s and 

Density is 2360kg/m3. Model is discussed for the 5th case while the case is presented. 

 

Model for cases 1 to 4: 

 

 

 

 

 

 

 

Model for Case 5: 

  

Free Surface 

 

                         500m 

          100grid points 

 

1000m , 200 grid points 

 

             Receivers                      1                 2       3 

             Source 

30 grid points, 

Fine Grid 

thickness for 

Case 5  

 

Air: 

Vp =0,Vs=0 

 

 

Sediment : 

Vp 3800  m/s 

Vs  2500 m/s 

Density 2400 

Kg/m3 

 

Bed Rock: 

Vp 4700m/s 

Vs  3100m/s 

Density 2700 

kg/m3 

 

Surface Profile from field GPS data 

Fault 
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1) PML Vs No PML 

             

                                   Figure: Simulation without PML BCs.                                             .  

 

 

            
 

                                                    Figure: Simulation with PML BCs.                                .                                             
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Free Surface 

Surface Waves 

 

Reflections 

No Reflections, 

Wave Energy is 

absorbed. 

Surface Waves 
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Discussion: 

1) We can see the generation of Surface waves and reflection phenomenon very well. 
2) See that PML Boundary Conditions are very efficient in absorbing the wave energy. 

 

 

 

2) Effect of Source Frequency and grid Dispersion.                                        . 

                                      Figure: With 100Hz frequency Source.                                        . 

 

Artifacts due to Grid Dispersion. 
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Seismogram for Source Frequency = 25Hz (Free Surface by Image Method) 

 

Seismogram for Source Frequency = 100 Hz 
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               Discussion: 

               1)  We have used a frequency of 100Hz, whose wavelength is 1200/100 = 12. But, we need 12/10 = 

                         1.2m grid spacing to accurately simulate such high frequency. We have grid spacing of 5m only.  

                  2)  Observe the seismograms presented. We almost reproduce the input signal in the low frequency  

                         (25Hz). But, at 100 Hz, we have many arrivals. This is due to the arrival of different frequencies at  

                        different times.They are all not travelling with the same velocity- Dispersion phenomenon 

3)  Comparison between vacuum and Image Method 

               

 

                        Figure: Simulation with Vaccum Condition for free Surface at 25Hz Source 

 Observe that energy is trapped at the surface. Though it looks like surface wave it is not 

the surface wave. Compare it with 25Hz figure image BC earlier. We don’t see those 

spots 
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                                  Figure: Seismogram for Vacuum Free Surface Condition at 25Hz Source 

Discussion: 

1) We can clearly see that Vacuum Method is not so robust. Energy is being trapped at the surface. 

And also when run for very long times, instability develops at the surface. 

2) From the seismogram, comparing it to image method, we see that vacuum Method adds some 

numerical noise to the seismogram. So, ideally, if we have an alternative, Vacuum Method is not the 

right choice to go for to model Surface topography.                                           .  

 

 

 

 

 

 

 

Numerical Artifacts 
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4) Multi-Grid Method:                                                                          . 

            

 

                                    Figure: Simulation with multi Grid. 

       

               Discussion: 

1) Though Multi-Grid would come to great help in saving memory, the artificial reflections created by 

the fine coarse –grid interface are always painful. They would disturb the entire simulation if not 

taken care properly. 

5) Surface Topography: 

            The GPS measurements of the Topography present at the field camp is shown below: 

 

Most of the energy is being reflected at 

the fine Coarse Grid interface. 

Interpolation scheme not good enough!!! 
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                       Figure:  Simulation after Introducing Topography (Fault Not introduced yet) 

 

                       Figure:  Simulation after Introducing Topography and Fault 

Scattering Due to 

the Surface 

Topography 

Wave Front 

deflected due 

to the Fault 

interface 
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Discussion: 

1) We can observe the Surface Scattering Phenomenon. But still we see the energy being concentrated 

at the surface, which now we cannot judge if it is due to numerical artifact or due to topography 

effect. 

2) We can also observe that the wave front is deflected by the Fault present. This is according to the 

snells law which we would physically anticipate. 

7. Conclusions: 
1) Vacuum Method is easy to CODE. But, it introduces numerical artifacts. And is unstable. The Imaging 

Method is theoretically robust.                                                    . 

2) Frequency of source matters a lot in what you see. If you use very high frequency more than what 

your grid can handle, it would be a mess.                                              . 

3) Multi-grid method though helps you to reduce the computational expense, produces numerical 

reflections which you don’t want to. Interpolation is very crucial in Multi-Grid. Interpolation is crucial in 

multi-gris methods. Orelse you pay with large reflections which spoil your simulation.                                 . 

4) Understanding source mechanism is crucial. You get entirely different results if source behavior is 

different. 
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8. Future Work                                                          

1) I have implemented Surface topography by vacuum Method here. But, the robust way is to    

     develop the imaging algorithm for Imaging Method. Future work would be focused on  

     developing Code to handle Surface topography by Imaging Method.  

2) I have implemented Multi-Grid method to plane Free Surface Condition. It should be  

    extended to Topography.   

3) Explore effect of Source in the Seismic Signal recorded and search for better alternatives. 

 

9. References 

 
1)J.Virieux, Velocity-stress finite-difference method, Geophysics 51 (1986) 889-901.                    .                                       
 
2)Modeling the propagation of elastic waves using a modified finite-difference grid Erik H.  
     Saenger _, Norbert Gold, Serge A. Shapiro1, Wave Motion 31 (2000) 77–92.      
 
3) Hestholm, S. O., and Ruud, B. O., 1994, 2-D finite-difference elastic wave modeling including surface  
     topography: Geophys. Prosp., 42,371–390.                             . 
 
4)Discontinuous-Grid Finite-Difference Seismic Modeling Including Surface Topography by 
    Koichi Hayashi et. Al, Bulletin of the Seismological Society of America, 91, 6, pp. 1750–1764,  
    December 2001.                                           . 
 
5)A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the  
    presence of topography, Geophysics, Vol. 61, no. 6 .                                               . 
 
6)Modeling of seismic wave propagation near the earth' s surface J.O.A. Robertsson , K.  
    Holliger, Physics of the Earth and Planetary Interiors 104 (1997).                                         . 
 
7)Simulation seismic propagation in topographic structures using asymmetric staggered 
    grids,by Sun Wei Tao,Applied Mathematics and Mechanics,Vol 25, No 7,Jul 2004.                               . 
 
8)The Finite-Difference Method for Seismologists- An introduction’ by Peter MOCZO, Jozef  
     KRISTEK, and Ladislav HALADA, SPICE.                                         . 
 
9)PML Absorbing Boundaries by G. Festa and S. Nielsen, Bulletin of the Seismological Society of  
     America, Vol. 93, No. 2, pp. 891–903, April 2003.                                             . 
 
10)Application of the PML absorbing layer model to the linear elasto-dynamic problem in  
    anisotropic heterogeneous media Francis Collino, Chrysoula Tsogaka  
 

 
 



 
Sudhish Kumar Bakku 

sudhi@mit.edu 
 

10. Appendix 

 

CODE attached in email 

 

 

 

 

      

                             

 

                                        


