MIT Dept. of Mathematics
Benjamin Seibold

18.086 spring 2007

Exercise Sheet 5
Out Fri 04/20/07
Due Fri 05/04/07

Exercise 10 Consider the heat equation on a rod of length π, which has a fixed temperature at both ends.

$$
\begin{cases}u_{t}=u_{x x} & \text { for } \left.(x, t) \in] 0, \pi[\times] 0, t_{f}\right] \\ u(x, 0)=u_{0}(x) & \text { for } x \in[0, \pi] \\ u(0, t)=u(\pi, t)=0 & \text { for } \left.t \in] 0, t_{f}\right]\end{cases}
$$

Let the final time be $t_{f}=0.1$. We can measure the temperature distribution at the final time $u\left(x, t_{f}\right)$, and would like to reconstruct the initial temperature distribution $u(x, 0)$ from it.

1. Explain why this problem is ill-posed. Give an example of a function $u\left(x, t_{f}\right)$ which no valid initial function $u(x, 0)$ exists for.
2. We approximate the problem by a finite dimensional problem, by considering a finite number of Fourier coefficients

$$
\begin{equation*}
u(x, t)=\sum_{k=1}^{N} c_{k}(t) \sin (k x) \tag{1}
\end{equation*}
$$

At a given time t, we can then write the solution as a vector

$$
\mathbf{c}(t)=\left(\begin{array}{c}
c_{1}(t) \\
\vdots \\
c_{N}(t)
\end{array}\right)
$$

Give an expression for the coefficients $c_{k}(t)$, using the initial coefficients $c_{k}(0)$. What is the relation between $\|u(\cdot, t)\|_{L^{2}([0, \pi])}=\left(\int_{0}^{\pi} u(x, t)^{2} d x\right)^{\frac{1}{2}}$ and $\|\mathbf{c}(t)\|_{2}$?
3. Give the matrix A_{t} which maps $\mathbf{c}(0)$ to $\mathbf{c}(t)$, i.e. $\mathbf{c}(t)=A_{t} \cdot \mathbf{c}(0)$. Approximate your example function from part 1 by a finite number of Fourier coefficients, using $A_{t_{f}}$ to compute $\mathbf{c}(0)$. Compute and plot the approximate functions $u\left(x, t_{f}\right)$ and $u(x, 0)$ using formula (1).
4. Fix a number of Fourier coefficients N, and choose the initial condition to be $c_{k}(0)=\frac{1}{Z} \exp \left(-\frac{k}{4}\right)$, where the constant Z is chosen, such that $\left\|u\left(\cdot, t_{f}\right)\right\|_{L^{2}([0, \pi])}=$
$\sqrt{\frac{\pi}{2}}$. We try to measure the exact vector $\mathbf{c}\left(t_{f}\right)$, but the measurement involves an error \mathbf{e}, so we actually measure $\mathbf{c}^{e}\left(t_{f}\right)=\mathbf{c}\left(t_{f}\right)+\mathbf{e}$. Choose the error to be of the form $\tilde{e}_{k}=\exp \left(-\frac{k}{4}\right)$ randn, and then scale the components $e_{k}=\frac{1}{Z_{e}} \tilde{e}_{k}$, such that $\|\mathbf{e}\|_{2}=\delta\left\|\mathbf{c}\left(t_{f}\right)\right\|_{2}$.
Give a formula for the reconstruced initial vector $\mathbf{c}^{e}(0)=A_{t_{f}}^{-1} \cdot \mathbf{c}^{e}\left(t_{f}\right)$ and the thus made error $\left\|\mathbf{c}^{e}(0)-\mathbf{c}(0)\right\|_{2}$. Explain why the problem requires regularization.
5. Let $\mathbf{c}^{e, \alpha}(0)$ denote the solution to the Tychonov regularized backwards problem

$$
\mathbf{c}^{e, \alpha}(0)=\left(A^{T} A+\alpha I\right)^{-1} A^{T} \cdot \mathbf{c}^{e}\left(t_{f}\right)
$$

Compute the error to the correct initial condition $\left\|\mathbf{c}^{\boldsymbol{e}, \alpha}(0)-\mathbf{c}(0)\right\|_{2}$ in dependence on the regularization parameter α, and find the $\hat{\alpha}$ which this error becomes minimal for. You can to this either by hand (doable, but technical) or by writing a matlab program, which runs though different values of α and finds the minimizer. Plot the error as a function of α for interesting values of N and δ.
6. For $N=5,10,15$, produce plots of the optimal $\hat{\alpha}$, which minimizes the error, in dependence on the relative error size δ. Again, this can be computed by hand, or in matlab, by running step 5 for a list of values for δ. Compare the results to the theoretical estimate for the optimal α, provided in Section 8.2 in the lecture notes. Explain possible deviations.

