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where this equation was obtained from Condition (7.34) by
dividing by ¢. The first thing to notice is that the multi-
plier on r is a fraction with denominator p — 1, since ¢
evenly dividesc(p—1) — {c(p — 1)},4. Thus, weneed only
roundd/q off tothenearest multipleof 1/(p—1) and divide
(modp—1) by

p_cp=1 —A{elp =D}y
q

to find a candidate ». To show that this experiment need
only be repeated a polynomia number of times to find the
correct r requiresonly afew more details. The problemis
again that we cannot divide by anumber whichisnot rela-
tively primetop — 1.

For the general case of the discrete log algorithm, we
do not know that al possible values of ¢’ are generated
with reasonable likelihood; we only know this about one-
tenth of them. Thisadditional difficulty makesthenext step
harder than the corresponding step in the two previous a-
gorithms. If we knew the remainder of » modulo al prime
powers dividing p — 1, we could use the Chinese remain-
der theorem to recover r in polynomial time. We will only
be ableto find thisremainder for primes larger than 20, but
with alittleextrawork we will still be able to recover r.

What we have isthat each good (¢, d) pair is generated
with probability at least .137p/q > 1/164, and that at least
atenth of the possible ¢’sare in agood (¢, d) pair. From
Eq. (7.40), it followsthat these ¢’s are mapped from ¢/ ¢ to
¢'/(p — 1) by rounding to the nearest integer multiple of
1/(p —1). Further, the good ¢'s are exactly thosein which
e/qiscosetoc’ /(p — 1). Thus, each good ¢ corresponds
with exactly one ¢’. We would like to show that for any
prime power p;* dividing p — 1, arandom good ¢’ is un-
likely to contain p;. If wearewillingto accept alarge con-
stant for the al gorithm, we can just ignore the prime powers
under 20; if we know r» modulo al prime powers over 20,
we can try al possible residues for primes under 20 with
only a(large) constant factor increase in runningtime. Be-
cause at least onetenth of the ¢’swereinagood (¢, d) pair,
at least one tenth of the ¢’’s are good. Thus, for a prime
power p7*, arandom good ¢’ isdivisibleby p;** with proba-
bility at most 10/p;**. If wehavet good ¢’’s, the probability
of having a prime power over 20 that dividesdl of themis
therefore at most

C

(7.40)

(7.41)

wherethe sumisover dl prime powers greater than 20 that
dividep — 1. Thissum (over al integers > 20) converges
for t = 2, and goes down by at least afactor of 2 for each

10

further increase of ¢ by 1; thus for some large constant ¢ it
islessthan 1/2.

Recall that each good ¢’ is obtained with probability at
least 1/16¢ from any experiment. Since there are ¢/10
good ¢’’s, after 160¢ experiments, we are likely to obtain
asample of ¢+ good ¢’’s chosen equally likely from al good
¢"’s. Thus, we will be able to find a set of ¢"’s such that all
prime powersp?* > 20 dividingp — 1 arerelatively prime
to at least one of these ¢’s. For each prime p; less than 20,
we thus have at most 20 possibilitiesfor the residue mod-
ulo p**, where «; isthe exponent on prime p; inthe prime
factorization of p — 1. We can thustry all possibilitesfor
residues modulo powers of primes less than 20: for each
possibility we can cal culate the corresponding r using the
Chinese remainder theorem, and then check to see whether
it isthe desired discrete logarithm.

Thisagorithm does not use very many propertiesof Z,,,
sowecan usethesame algorithmto find discretel ogarithms
over other fields such as Z,~. What we need is that we
know the order of the generator, and that we can multiply
and take inverses of elementsin polynomial time.

If one were to actualy program this agorithm (which
must wait until aquantum computer isbuilt) thereare many
waysinwhichtheefficiency could beincreased over the ef-
ficiency shown in this paper.
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Notethat we now havetwo moduli to deal with, p—1 and q.
While this makes keeping track of things more confusing,
wewill still be able to obtain » using aalgorithm similar to
the easy case. The probability of observing astate |¢, d, y)
withy = g* (mod p) is, dmost as before,

1 ori
exp | “L(ac+ bd 7.28
(p—1)q z,,: ( o ( )) (7.28)
a—rb=k
where the sum is over dl (a,b) such that a — rb
k (mod p — 1). We now usetherelation

a=br+k—(p—1) [’;Tﬂ (7.29)

and substitutein the above expression to obtain the ampli-
tude

mpiexp (%ﬂ(mwwbd—c@— 1) {%’“J ))~

= (7.30)
The absolute value of the square of this amplitude is
the probability of observing the state |c, d, g* (mod p)>.
We will now analyze this expression. First, a factor of
exp(2wike/q) can betaken out of al thetermsand ignored,
because it does not change the probability. Next, we split
the exponent into two parts and factor out 4 to obtain

1 = 27 27
where
U = b7,
T = ret+d-{c(p— 1}y, (7.32)

and

Vo= (- 2] -1 (739)

Here by {z}, we mean the residue of z (mod ¢) with
—q/2 < {z}, < q/2. Wewill show that if we get enough
“good” outputs, then we still can deduce », and that fur-
thermore, the chance of gettinga“good” output isconstant.
Theideaisthat if

{T}el = |re+d -

. 1
porielp = Dy —ja| < 5, (7:34)
where j is the closest integer to 7'/q, then as b varies be-
tween 0 and p — 2, the phase of thefirst exponential term
inEq. (7.31) only varies over at most half of theunit circle.
Further, if

He(p — D}yl < ¢/20, (7.35)

then |V is always at most ¢/20, so the phase of the sec-
ond exponential term in Eq. (7.31) never is farther than
exp(wi/10) from 1. By combining these two observations,
wewill show that if both conditionshold, then the contribu-
tion to the probability from the corresponding termis sig-
nificant. Furthermore, both conditionswill hold with con-
stant probability, and a reasonable sample of ¢'sfor which
Condition (7.34) holdswill alow usto deduce r.

We now give alower bound on the probability of each
good output, i.e., an output that satisfies Conditions (7.34)
and (7.35). We know that as b rangesfrom O to p — 2, the
phase of exp(27il//q) ranges from 0 to 27iW where

v= p; : (re+d=Zfe(p— 1)}, —ja) (7.30)

and j isasin Eq. (7.34). Thus, the component of the am-
plitudeof thefirst exponential in Eq. (7.31) inthedirection

exp (wilV) (7.37)

isat least cos(2m |W/2 — Wb/ (p — 2)|). Now, by Condi-
tion (7.35), the phase can vary by a most 7:/10 dueto the
second exponentia exp(27iV/q). Applying thisvariation
in the manner that minimizes the component in the direc-
tion (7.37), we get that the component inthisdirectionisat
least cos(27 |W/2 — Wb/(p — 2)| + «/10). Sincep < ¢,
and from Condition (7.34), |W| < 1/2, putting everything
together, the probability of arriving at a state |¢, d, y) that
satisfies both Condition (7.34) and (7.35) is at least

; 7m/20 2
(13/ cost dt) , (7.38)
97 Jx/10

orat least .137/4¢%.

We will now count the number of pairs (¢, d) satisfying
Conditions (7.34) and (7.35). The number of pairs (¢, d)
such that (7.34) holdsis exactly the number of possiblec’s,
sincefor every ¢ thereisexactly oned suchthat (7.34) holds
(round off the fraction to the nearest integer to obtain this
d). The number of ¢'s for which (7.35) holds is approxi-
mately ¢/10. Thus, there are q/10 pairs (¢, d) satisfying
both conditions. Multiplyingby p — 1, whichisthe number
of possible y’s, gives approximately pq/10 states ¢, d, y).
Combining this calculation with the lower bound on the
probability of each good state gives us that the probabil-
ity of obtaining any good stateis at least p/80¢, or &t least
1/160 (sinceq < 2p).

We now want to recover r» from apair ¢, d such that

_;§§+E<C_M)Si (mod 1),
29 " q ¢ p—1
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Figure 1: The probability of observing valuesof ¢ between 0 and 239, giveng = 240 and r = 13, using the quantum algorithm described
for factoring. With high probability the observed value of ¢ is near an integer multiple of 240/13.

i.e, if thereisad such that

_,7’“ <re—dg< g (6.24)
Dividing by rq and rearranging the terms gives
d 1
%<, (6.25)
¢ T 2

We know ¢ and ¢. Because ¢ > 2n?, thereis at most one
fraction d/r with r < n that satisfies the above inequal-
ity. Thus, we can obtain the fraction d/» in lowest terms
by rounding ¢/ ¢ to the nearest fraction having adenomina-
tor smaller than n. This fraction can be found in polyno-
mid time by using a continued fraction expansion of ¢/q,
which findsall the best approximationsof ¢/q by fractions
[17, Chapter X].

If wehavethefraction d/r inlowest terms, and if d hap-
pensto berelatively primeto r, thiswill giveusr. We will
now count the number of states |c, 2* (mod n)) which en-
able us to compute r in thisway. There are ¢(r) possible
valuesfor d relatively primeto r, where ¢ isEuler’s¢ func-
tion. Each of thesefractionsd/r iscloseto onefractionc/q
with |¢/q — d/r| < 1/2q. There are also r possible val-
ues for =¥, since r isthe order of z. Thus, there are ré(r)
states |, 2* (mod n)) which would enable us to obtain r.
Since each of these states occurs with probability at |east
1/3r%, we obtain » with probability at least ¢(r)/3r. Us-
ing the theorem that ¢(r)/r > k/loglogr for some fixed
k [17, Theorem 328], this shows that we find r at least a

k/loglogr fraction of the time, so by repeating this ex-
periment only O(loglog r) times, we are assured of ahigh
probability of success.

Notethat inthe agorithmfor order, we did not use many
of the properties of multiplication (mod n). In fact, if we
have a permutation f mapping the set {0,1,2,...,n — 1}
intoitsdlf suchthat its kthiterate, £(*)(a), iscomputablein
time polynomia inlog n andlog &, the same algorithmwill
be able to find the order of an element a under f, i.e, the
minimum r such that f(") (a) = a.

7 Discretelog: thegeneral case

For the genera case, we first find a smooth number ¢
such that g iscloseto p, i.e, withp < ¢ < 2p (see Lemma
3.2).

Next, wedo thesamethingasintheeasy case, thatis, we
choose ¢ and & uniformly (mod p — 1), and then compute
g%z~% (mod p). Thisleaves our machine in the state

1 p—2p-—-2
]Tl Z Z |a, b,g%z" (mod p)> .

a=0 b=0

(7.26)

As before, we use the Fourier transform A, tosend ¢ —
cand b — d(mod q), with amplitude %exp(?ﬂ'i(ac +
bd)/q), giving usthe state

p—2 q-1

m Z Z €Xp (%([IC—de)) |Ca d7gam_b(m0dp)> .

a,b=0 ¢,d=0
(7.27)

) )



for quantum agorithms. Although Bernstein and Vazirani
[4] show that the number of bits of precision needed is
never more than the logarithm of the number of computa-
tional steps a quantum computer takes, in some a gorithms
it could conceivably require less. Interesting open ques-
tionsare whether it is possible to do discrete logarithms or
factoring with less than polynomial precision and whether
some tradeoff between precision and timeis possible.

6 Factoring

The agorithm for factoring is similar to the one for the
genera case of discrete log, only somewhat simpler. |
present this algorithm before the general case of discrete
log so as to givethe three agorithmsin this paper in order
of increasing complexity. Readersinterested indiscretelog
may skip to the next section.

Instead of giving aquantum computer algorithmto fac-
tor n, we will give a quantum computer agorithm for
finding the order of an element » in the multiplicative
group (mod n); that is, the least integer » such that ™ =
1 (mod n). Thereis arandomized reduction from factor-
ing to the order of an element [24].

To factor an odd number n, given amethod for comput-
ing the order of an element, we choose a random =z, find
the order r, of z, and compute ged(z"=/? — 1,n). This
fallsto giveanon-trivia divisor of n only if r,, isodd or if
z"=/? = —1 (mod n). Usingthiscriterion, it can be shown
that thea gorithmfindsafactor of n with probability at |east
1—1/2%~1, wherek isthenumber of distinct odd primefac-
torsof n. This scheme will thuswork aslong asn ishot a
prime power; however, factoring prime powerscan bedone
efficiently with classical methods.

Given z and n, tofind  such that z” = 1 (mod n), we
dothefollowing. First, wefind asmooth ¢ with2n? < ¢ <
4n?. Next, we put our machine in the uniform superposi-
tion of states representing numbersa (mod ¢). Thisleaves
our machine in state

1
v > ay. (6.16)
a=0
Asinthealgorithm for discrete log, we will not writen, z,
or q in the state of our machine, because we never change
these values.
Next, we compute z? (mod n). Sincewekeep z and a

onthetape, thiscan bedonereversibly. Thisleavesour ma-
chinein the state

<
|
—

1
q*/

|a, z* (mod n)) .

(6.17)

¥
I
=)

a

We then perform our Fourier transform A, mappinga — ¢
with amplitude > exp(2miac/q). This leaves our ma-
chinein state

g—1

é Z exp(2wiac/q) |c, z* (mod n)) .

a=0

(6.18)

Finally, we observe the machine. 1t would be sufficient
to observe solely the value of ¢, but for clarity we will as-
sume that we observe both ¢ and z® (mod n). We now
compute the probability that our machine endsin a particu-
lar state |c, 2" (mod n)), where we may assume 0 < k <
r. Summing over al possible ways to reach this state, we
find that this probability is

2
1

p Z exp(2wiac/q)

a:xr=xk

(6.19)

wherethesum isover dl a,0 < a < ¢, such that z? =
z¥ (mod n). Becausetheorder of z isr, thissumisequiv-
dently over all a satisfyinga = & (mod r). Writinga =
br + k, we find that the above probability is

| Wa=k=1y/7) E

p Z exp(2mi(br + k)c/q)
b=0

(6.20)

We can ignore theterm of exp(2xikc/q), asit can be fac-
tored out of the sum and has magnitude 1. We can aso
replace rc with {rc},, where {rc}, is the residue which
is congruent to rc (mod ¢) and isin the range —q/2 <
{re}q < ¢/2. Thisleaves uswith the expression

2

1 l(g—k-1)/r]

- Z exp(Qﬂ'ib{'PC}q/Q)
1 b=0

(6.21)

Wewill now show that if {rc}, issmall enough, all theam-
plitudes in this sum will be in nearly the same direction,
giving alarge probability. If {rc}, issmall with respect to
q, we can use the change of variables¢ = b/q and approx-
imate this sum with the integral

2

s la=k=1)/7]
/ exp(2mi{re} t)dt (6.22)
0

If |[{rc},| < r/2, thisquantity can be shown to be asymp-
totically bounded below by 4/(7%r?), and thus at least
1/3r2. The exact probabilitiesas given by Equation (6.21)
for an example case are plotted in Figure 1.

The probability of seeing agiven state |c, z* (mod n))
will thusbe at least 1/3r? if

—-Tr r
7 S {T’C}q S 5, (623)



in polynomial time on a quantum machine. Thisleavesthe
machinein state

p—2

ﬁ Z exp (pzl”l (ac—i—bd)) |c, d, g%~ (mod p)> .

a,b,c,d=0

(4.13)
We now compute the probability that the computation ends
with the machine in state |c, d, y) withy = ¢* (mod p).
This probability is the absolute value of the square of the
sum over all ways the machine could produce this state, or

2

ﬁ > e (Ziac+bd) |, (414

a—rb=k

where the sum is over al a,b satisfying a — rb =
k (mod p—1). Thisconditionarisesfromthefact that com-
putational paths can only interferewhen they givethe same
y = g2~ "% = g* (mod p). We now substitutethe equation
a = k + rb (mod p — 1) in the above exponentia. The
above sum then reduces to

%)Z pz_f exp (1)21”1 (ke+ b(d+ rc)))

(p o b=0

(4.15)

However, if d+r¢ Z 0 (mod p— 1) theabove sum isover
aset of (p — 1)** roots of unity evenly spaced around the
unit circle, and thus the probability is0. If d = —rc the
above sum is over the same root of unity p — 1 times, giv-
ing (p—1)e2mike/(P=1) sothe probabilityis1/(p—1)%. We
can check that these probabilities add up to one by count-
ing that there are (p — 1)? states |e, —re, y) since there
arep — 1 choices of ¢ (mod p — 1) and p — 1 choices of
y # 0 (mod p).

Our computation thusproducesarandome (mod p—1)
andthecorrespondingd = —r¢ (mod p—1). Ifcandp—1
are relatively prime, we can find » by division. Because
we are choosing among al possible ¢'s with equal proba-
bility, the chance that ¢ and p — 1 are relatively prime is
é(p — 1)/(p — 1), where ¢ isthe Euler ¢-function. It is
easy to check that ¢(p — 1)/(p — 1) > 1/log(p). (Actu-
aly, from[17, Theorem 328], liminf ¢(p — 1)/(p — 1) ~
e~7/loglogp.) Thus we only need a number of experi-
mentsthat ispolynomia inlog p to obtain » with high prob-
ability. In fact, we can find aset of ¢’ssuch that at least one
is relatively prime to every prime divisor of p — 1 by re-
peating the experiment only an expected constant number
of times. This would also give us enough information to
obtainr.

5 A noteon precision

The number of bits of precision needed in the ampli-
tude of quantum mechanical computers could be a barrier
to practicality. The generally accepted theoretical divid-
ing line between feasible and infeasibleis that polynomia
precision (i.e., anumber of bitslogarithmicin the problem
size) isfeasible and that moreisinfeasible. Thisisbecause
on a quantum computer the phase angle would need to be
obtained through some physical device, and constructing
such devices with better than polynomia precision seems
unquestionably impractical. In fact, even polynomial pre-
cision may prove to be impractical; however, using thisas
thetheoretical dividinglineresultsin nicetheoretical prop-
erties.

We thus need to show that the computationsin the pre-
vious section need to use only polynomial precision in the
amplitudes. The very act of writing down the expression
exp(2miac/(p—1)) seemstoimply that we need exponen-
tial precision, as this phase angle is exponentially precise.
Fortunately, thisis not the case. Consider the same ma-
trix A,_; with every termexp(2wiac/(p — 1)) replaced by
exp(2miac/(p — 1) £ wi/20). Each positivecase, i.e., one
resultingin d = —re, will still occur with nearly as large
probability as before; instead of adding p — 1 amplitudes
which have exactly the same phase angle, weadd p — 1 am-
plitudes which have nearly the same phase angle, and thus
the size of the sum will only be reduced by a constant fac-
tor. Thedgorithmwill thusgivea(c, d) withd = —rc with
constant probability (instead of probability 1).

Recdl| that we obtain the matrix A,_1 by multiplying at
most log p matrices A,,. Further, each entry in A,_; isthe
product of at most log p terms. Supposethat each phase an-
gle were off by a most ¢/ logp inthe 4,,’s. Thenin the
product, each phase angle would be off by at most ¢, which
is enough to perform the computation with constant proba-
bility of success. A similar argument shows that the mag-
nitude of the amplitudesin the A4,, can be off by apolyno-
mial fraction. Similar arguments hold for the genera case
of discretelog and for factoring to show that we need only
polynomial precision for the amplitudes in these cases as
well.

We still need to show how to construct A,, from con-
stant size unitary matriceshaving limited precision. Thear-
guments are much the same as above, but we will not give
them in this paper because, in fact, Bennett et al. [4] have
shown that it is sufficient to use polynomia precision for
any computation on a quantum Turing machine to obtain
the answer with high probability.

Since precision could easily be the limiting factor for
practicality of quantum computation, it might be advis-
able to investigate how much precision is actualy needed



b= B1q1 + P2, and ¢ = 71 q1 + 72. Notethe asymmetry in
the definitionsof a, b and c.
We can now define C' and D:

0 ifas # B
C(a’ b) = { % walﬁzqz+ﬁlﬁ2(u+1) 0therWi$,
! (3.7)
and
0 if B2 # 72
D(b, C) = { 11/2 whrriaa—pF16zu otherwise.
4z
(38)

Itisesasy to seethat C'D(a,c) = C(a, b)D(b, c) whereb =
a@sqy + 2 Sincewe need as = F; and f = v, to ensure
non-zero entriesin C'(a, b) and D(b, c). Now,

CD(a,c) = —gagg w*PretAbalutDibima—fbau
q q
1 2
= 1 wa17242+a27141+0z272
ql 2
= = w(a1‘12+052)(7141+’}/2)
e w? (3.9
SOCD((I,C) = Aq(a’c)_

We will now sketch how to rearrange the rows and
columnsof C toget thematrix B, A,,. Thematrix C' can
be put in block-diagonal form where theblocksareindexed
by ay = 1 (sincedl entrieswith as # (; ae0). Let
u+ 1 = tg2 (mod ¢q). Withinagiven block a; = 34, the
entrieslook like

Vi Clab) =

wa1ﬁzqz+/31/32(u+1)

exp(2mi(a1 Pz + P1at)q2/q)
= exp(2mi(a1 + aat)fB2/q1). (3.10)

Thus, if we rearrange the rows within this block so that
they are indexed by o' a1 + ast (modqq), we
obtain the transformation o/ — 35 with amplitude

1/2 exp(2mia’ By /q1); that is, the transformation given

,B=2) entry equa to
. The matrix D can

by the unitary matrix with the (o
1/2 exp(2mia’ B2 /q1), which is A4,

S| m|IarIy be rearranged to obtain the matrix EBq Aqg,.

We also need to show how to find a smooth ¢ that lies
between n and 2n in polynomial time. There are actually
smooth ¢ much closer to n than this, but thisisall we need.
It is not known how to find smooth numbers very close to
n in polynomial time.

Lemma3.2 Givenn, thereisapolynomial-timealgorithm
to find a number ¢ withn < ¢ < 2n such that no prime
power larger than clog ¢ divides ¢, for some constant ¢ in-
dependent of n.

Proof: To find such a ¢, multiply the primes2 -3 -5 -7 -
11---py until the product is larger than n. Now, if this
product islarger than 2n, divideit by the largest prime that
keeps the number larger than . This produces the desired
q. There is dways a prime between m and 2m [17, The-
orem 418], son < ¢ < 2n. The prime number theorem
[17, Theorem 6] and some cal culation show that thelargest
primedividing ¢ isof sizeO(logn). |

Note that if we are using Coppersmith’s transformation
Ay usingthe 2Fth rootsof unity, weset ¢ = 2* wherek =
|log, n] + 1.

4 Discretelog: the easy case

Thediscretelog problemis: givenaprime p, agenerator
g of the multiplicative group (mod p) and an = (mod p),
find an r such that ¢" = x (mod p). We will start by giv-
ing apolynomia-timea gorithmfor discretelog on aquan-
tum computer in the case that p — 1 is smooth. Thisalgo-
rithm is analogous to the algorithm in Simon’s paper [29],
with the group Z% replaced by Z,_;. The smooth case is
not in itself an interesting accomplishment, since there are
already polynomial time agorithms for classica comput-
ersinthiscase [25]; however, explaining thiscase iseasier
than explaining either the general case of discretelogor the
factoring algorithm, and asthethree algorithmsare similar,
this example will illuminate how the more complicated -
gorithmswork.

We will start our algorithm with =, ¢ and p on the tape
(i.e., in the quantum memory of our machine). We are try-
ing to compute r such that ¢" = = (mod p). Since we will
never delete them, z, ¢, and p are constants, and we will
specify a state of our machine by the other contents of the
tape.

The algorithm starts out by “choosing” numbers a and
b (mod p — 1) uniformly, so the state of the machine after
thisstepis

—2p-2
— E > a,b). (4.12)
a=05=0
The agorithm next computes g%z ~* (mod p) reversibly,
so we must keep the values a and b on the tape. The state
of the machine is now

ZZ|a,b,g x~

aObO

(mod p)) . (4.12)

What we do now is use the transformation A,_; to map
a — c with amplitude (ﬁ exp(2wiac/(p — 1)) and
b — d with amplltude( 1)1/2 exp(2mibd/(p — 1)). As
was discussed inthe previoussection, thisisaunitary trans-
formation, and since p — 1 issmooth it can be accomplished



Fromresultsonreversiblecomputation[3, 19, 31],
we can compute any polynomial time function
f(a) aslong as we keep the input, a, on the ma-
chine. To erase a and replaceitwith f(a) weneed
in additionthat f isone-to-oneand that a iscom-
putable in polynomia time from f(a); i.e, tha
both f and f~' are polynomial-time computable.

Fact 2: Any polynomia size unitary matrix can be ap-
proximated using a polynomial number of ele-
mentary unitary transformations [10, 5, 33] and
thus can be approximated in polynomial timeon a
guantum computer. Further, thisapproximationis
good enough so as to introduce at most a bounded
probability of error into the results of the compu-
tation.

3 Building unitary transformations

Since quantum computation deal s with unitary transfor-
mations, it is helpful to be able to build certain useful uni-
tary transformations. In this section we give some tech-
niques for constructing unitary transformations on quan-
tum machines, which will result in our showing how to
congtruct one particular unitary transformation in polyno-
mial time. These transformations will generally be given
as matrices, with both rows and columnsindexed by states.
These states will correspond to representations of integers
on the computer; in particular, the rows and columns will
be indexed beginning with 0 unless otherwise specified.

A tool we will use repeatedly inthis paper isthefollow-
ing unitary transformation, the summation of which gives
a Fourier transform. Consider anumber a with0 < a < ¢
for some ¢ where the number of bitsof ¢ ispolynomial. We
will performthetransformationthat takesthestate |a) tothe
State

1=

V] bZ% |b) exp(2miab/q). (3.6)
That is, we apply the unitary matrix whose (a, b)'th entry
is q% exp(2miab/q). Thistransformationisat the heart of
our agorithms, and we will call thismatrix A,. Since we
will use A, for ¢ of exponentia size, we must show how
thistransformation can be donein polynomid time. Infact,
we will only be able to do thisfor smooth numbers ¢, that
is, oneswith small primefactors. Inthispaper, wewill deal
with smooth humbers ¢ which contain no prime power fac-
tor that is larger than (log ¢)¢ for some fixed ¢. Itisaso
possibleto do thistransformation in polynomial timefor all
smooth numbers ¢; Coppersmith shows how to do thisfor
q = 2% usingwhat is essentially the fast Fourier transform,
and that thissubstantially reduces the number of operations
required to factor [8].

If we know a factorization ¢ = q1g293- - - q; where
ged(gs, ¢;) = 1 and where k and al of the ¢; are of poly-
nomia size we will show how to build the transformation
A, inpolynomial time by composing the A,,. For this, we
first need alemma on quantum computation.

Lemma3.1 Suppose the matrix B is a block-diagonal
mn x mn unitary matrix composed of n identical unitary
m x m matrices B’ along the diagonal and 0'severywhere
else. Suppose further that the state transformation B’ can
bedoneintimeT(B’) onaquantumTuring machine. Then
the matrix B can bedonein T'(B’) + (log mn)° timeon a
guantum Turing machine, where ¢ is a constant.

Wewill call thismatrix B the direct sum of n copies of B’
and use the notation B = p,, B’. This matrix B isthe
tensor product of B’ and I,,, where I, isthen x n identity
meatrix.

Proof: Suppose that we have a number a on our tape. We
can reversibly compute «; and a» from ¢ where a =
may + ay. This computation erases a from our tape and
replaces it with oy and a2. Now «; tellsin which block
therow a is contained, and a5 tells which row of the ma-
trix withinthat block istherow a. We can then apply B’ to
a4 toobtain 3, (erasing « in the process). Now, combin-
ing a; and B, to obtain b = may + F- givesthe result of
B appliedto a (withtheright amplitude). The computation
of B’ takes T'(B’) time, and the rest of the computationis
polynomia inlogm + logn. 1

We now show how to obtain A, for smooth q. We
will decompose A, into a product of a polynomia num-
ber of unitary transformations, all of which are performable
in polynomia time; this enables us to construct A, in
polynomia time. Suppose that we have ¢ = ¢1¢2 with
ged(g1, ¢2) = 1. What wewill doisrepresent A, = C'D,
where by rearranging the rows and columns of D we ob-
tain P . Az @nd rearranging the rows and columns of
weobtain€p,, A,, . Aslong astheserearrangements of the
rows and columns of C' and D are performable in polyno-
mial time (i.e., given row r, we can find in polynomial time
the row r’ to which it is taken) and the inverse operations
are aso performable in polynomial time, then by using the
lemma above and recursion we can obtain a polynomial-
time way to perform A, on aquantum computer.

We now need to define C' and D and check that A, =
C'D. To define C and D we need some preliminary def-
initions. Recal that ¢ = q192 with ¢; and ¢, relatively
prime. Let w = exp(27i/q). Let u bethenumber (mod ¢)
such that v = 0 (mod ¢;) and u = —1 (mod ¢2). Such a
number exists by the Chinese remainder theorem, and can
be computed in polynomial time. We will decompose row
and column indices a, b and ¢ asfollows. a = a1¢5 + as,



toring,isin use. We show that these problems can be solved
in BQP.

Currently, nobody knows how to build a quantum com-
puter, athough it seems as though it could be possible
within the laws of quantum mechanics. Some suggestions
have been made as to possible designs for such comput-
ers[30, 22, 23, 12], but there will be substantial difficulty
in building any of these [18, 32]. Even if it is possible
to build small quantum computers, scaling up to machines
large enough to do interesting computations could present
fundamenta difficulties. It is hoped that this paper will
stimul ate research on whether it is feasible to actually con-
struct a quantum computer.

Even if no quantum computer isever built, thisresearch
does illuminate the problem of simulating quantum me-
chanics onaclassical computer. Any method of doing this
for an arbitrary Hamiltonian would necessarily be able to
simulate a quantum computer. Thus, any general method
for simulating quantum mechanics with at most a polyno-
mial slowdown would lead to a polynomia agorithm for
factoring.

2 Quantum computation

In this section we will give abrief introduction to quan-
tum computation, emphasizing the properties that we will
use. For amore complete overview | refer the reader to Si-
mon's paper in this proceedings[29] or to earlier paperson
guantum computational complexity theory [5, 33].

In quantum physics, an experiment behaves asiif it pro-
ceeds down all possible paths simultaneously. Each of
these paths has a complex probability amplitude deter-
mined by the physics of the experiment. The probability of
any particular outcome of the experiment is proportional to
the square of the absolute value of the sum of the ampli-
tudes of al the paths leading to that outcome. In order to
sum over a set of paths, the outcomes have to be identica
in all respects, i.e, the universe must bein the same state.
A guantum computer behaves in much the same way. The
computation proceeds down al possible paths at once, and
each path has associated with it a complex amplitude. To
determine the probability of any final state of the machine,
we add the amplitudesof al the pathswhich reach that final
state, and then square the absol ute value of thissum.

An equivaent way of looking at thisprocessistoimag-
ine that the machine is in some superposition of states at
every step of the computation. We will represent this su-
perposition of states as

> ai|Si), (2.2)

)

where the amplitudes a; are complex numbers such that

> la;]* = 1 and each | S;) isabasis state of the machine;
in a quantum Turing machine, a basis state is defined by
what is written on the tape and by the position and state
of the head. In a quantum circuit a basis state is defined
by the values of the signals on all the wires at some level
of the circuit. If the machine is examined at a particular
step, the probability of seeing basisstate|S;) is|a;|*; how-
ever, by the Hei senberg uncertainty principle, lookingat the
machine during the computation will disturb therest of the
computation.

The laws of quantum mechanics only permit unitary
transformations of the state. A unitary matrix isonewhose
conjugate transpose is equa to its inverse, and requiring
state transformations to be represented by unitary matrices
ensures that the probabilities of obtaining all possible out-
comes will add up to one. Further, the definitions of quan-
tum Turing machine and quantum circuit only allow loca
unitary transformations, that is, unitary transformationson
afixed number of bits.

Perhaps an example will be informative at this point.
Suppose our machine isin the superposition of states

75 1000) + 3 [100) — 3 [110) (2.2)

and we apply the unitary transformation

00 01 10 11
U
01 1 i -f i (2.3)
L T
wly o

to the last two bits of our state. That is, we multiply the
last two bits of the components of the vector (2.2) by the
matrix (2.3). The machinewill then go to the superposition
of states

575 (1000) +1001) +1010) +]011)) + 5 [101) + 5 [111) .

(2.9)
Notice that the result would have been different had we
started with the superposition of states

5 1000) + 3 [100) + 3 [110), (2.5)

which has the same probabilities of being in any particular
configuration if it is observed.

We now givecertain propertiesof quantum computation
that will be useful. These facts are not immediately appar-
ent from the definition of quantum Turing machine or quan-
tum circuit, and they are very useful for constructing a go-
rithmsfor quantum machines.

Fact 1: A deterministic computation is performable on a
guantum computer if and only if it is reversible.



of exponential search problems. These are problemswhich
may require the search of an exponentia size space to find
the solution, but for which the solution, once found, may
be verified in polynomial time (possibly with apolynomia
amount of additional supporting evidence). We will aso
discuss two other traditional complexity classes. One is
BPP, which are problems which can be solved with high
probability in polynomial time, given access to a random
number generator. The other isP#¥, which are those prob-
lems which could be solved in polynomia time if sums
of exponentially many terms could be computed efficiently
(where these sums must satisfy the requirement that each
term is computable in polynomial time). These classes are
related as follows:

P C BPP,NP C P#F C PSPACE.

The relationship of BPP and NP is not known.

The question of whether using quantum mechanicsin a
computer allows one to obtain more computational power
has not yet been satisfactorily answered. This question
was addressed in [11, 6, 7], but it was not shown how to
solveany problemin quantum polynomial timethat was not
known to be solvablein BPP. Recent work on this problem
was stimul ated by Bernstein and Vazirani’ s paper [5] which
laid the foundations of the quantum computation theory of
computationa complexity. One of the results contained in
this paper was an oracle problem (a problem involving a
“black box” subroutine, i.e., a function that the computer
isallowed to perform, but for which no code isaccessible.)
which can be donein polynomial time on aquantum Turing
machine and requires super-polynomial time on a classica
computer. Thiswas the first indication, other than the fact
that nobody knew how to simulate a quantum computer on
aclassica computer without an exponential slowdown, that
guantum computation might obtain a greater than polyno-
mial speedup over classica computation augmented with
arandom number generator. This result was improved by
Simon [29], who gave a much simpler construction of an
oracle problem which takes polynomial time on a quantum
computer and requires exponentia timeon aclassical com-
puter. Indeed, by viewing Simon’s oracle as a subroutine,
thisresult becomes a promise problem which takes polyno-
mial time on a quantum computer and looks asif it would
bevery difficult on aclassical computer (apromiseproblem
is one where the input is guaranteed to satisfy some con-
dition). The algorithm for the “easy case” of discrete log
given in this paper is directly analogous to Simon’s algo-
rithm with the group Z# replaced by thegroup Z,,_+; | was
only able to discover this algorithm after seeing Simon’s
paper.

Inanother result in Bernsteinand Vazirani’s paper, apar-
ticular class of quantum Turing machinewas rigorously de-

fined and a universal quantum Turing machine was given
which could simulate any other quantum Turing machine
of thisclass. Unfortunately, it was not clear whether these
guantum Turing machines could simulate other classes of
guantum Turing machines, so this result was not entirely
satisfactory. Yao [33] has remedied the situation by show-
ing that quantum Turing machines can simulate, and be
simulated by, uniform families of polynomial size quantum
circuits, withat most polynomial slowdown. He hasfurther
defined quantum Turing machineswith £ headsand showed
that these machines can be smulated with slowdown of a
factor of 2% . This seems to show that the class of problems
which can be solved in polynomia time on one of these
machines, possibly with a bounded probability ¢ < 1/3
of error, isreasonably robust. Thisclassiscaled BQP in
analogy to the classical complexity class BPP, which are
those problemswhich can be solved with abounded proba
bility of error on aprobabilistic Turing machine. Thisclass
BQP could be considered the class of problemsthat are ef-
ficiently solvable on a quantum Turing machine.

Since BQP C P#P C PSPACE [5], any non-rel ativized
proof that BQP is strictly larger than BPP would imply the
structural complexity result BPP ¢ PSPACE which is not
yet proven. In view of this difficulty, several approaches
come to mind; oneis showing that BQP C BPP would lead
to a collapse of classical complexity classes which are be-
lieved to be different. A second approach is to prove re-
sultsrelative to an oracle. In Bennett et al. [4] it is shown
that relative to a random oracle, it is not the case that NP
C BQP. This proof in fact suggests that a quantum com-
puter cannot invert one-way functions, but only provesthis
for one-way oracles, i.e. “black box” functionsgiven as a
subroutine which the quantum computer is not alowed to
look inside. Such oracleresultshave been mideadinginthe
past, most notably in the case of IP = PSPACE [15, 28].
A third approach, which we take, isto solvein BQP some
well-studied problem for which no polynomia time algo-
rithmisknown. This shows that the extra power conferred
by quantum interference is at least hard to achieve using
classical computation. Both Bernstein and Vazirani [5] and
Simon [29] a so gave polynomial time al gorithmsfor prob-
lems which were not known to be in BPP, but these prob-
lemswereinvented especially for thispurpose, although Si-
mon’s problem does not appear contrived and could con-
ceivably be useful.

Discrete logarithms and inte-
ger factoring are two number-theory problems which have
been studied extensively but for which no polynomial-time
algorithmsare known [16, 20, 21, 26]. In fact, these prob-
lems are so widely believed to be hard that cryptosystems
based on their hardness have been proposed, and the RSA
publickey cryptosystem[27], based on the hardness of fac-
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Abstract

A computer is generally considered to be a universal
computational device; i.e, it is believed able to smulate
any physical computational device with aincreasein com-
putation time of at most a polynomial factor. It is not
clear whether thisis till true when quantummechanicsis
takeninto consideration. Several researchers, startingwith
David Deutsch, have developed models for quantum me-
chanical computers and have investigated their computa-
tional properties. This paper gives Las \iegas algorithms
for finding discrete logarithms and factoring integers on
a quantum computer that take a number of steps which is
polynomial in the input size, eg., the number of digits of
the integer to be factored. These two problems are gener-
ally considered hard onaclassical computer and have been
used as the basis of several proposed cryptosystems. (\We
thus give the first examples of quantum cryptanalysis.)

1 Introduction

Sincethediscovery of quantum mechanics, people have
found the behavior of the laws of probability in quan-
tum mechanics counterintuitive. Because of this behavior,
guantum mechanical phenomena behave quite differently
than the phenomena of classical physics that we are used
to. Feynman seems to have been the first to ask what ef-
fect this has on computation [13, 14]. He gave arguments
as to why thisbehavior might make it intrinsically compu-
tationally expensive to simulate quantum mechanics on a
classical (or von Neumann) computer. He also suggested
the possibility of using a computer based on quantum me-
chanical principles to avoid this problem, thus implicitly
asking the converse question: by using quantum mechan-
icsinacomputer can you compute more efficiently than on
aclassica computer. Other early work in thefield of quan-

tum mechanics and computing was done by Benioff [1, 2].
Although he did not ask whether quantum mechanics con-
ferred extrapower to computation, he did show that a Tur-
ing machine could be simulated by the reversible unitary
evolution of a quantum process, which is a necessary pre-
requisitefor quantum computation. Deutsch[9, 10] wasthe
first to givean explicit model of quantum computation. He
defined both quantum Turing machines and quantum cir-
cuits and investigated some of their properties.

The next part of thispaper discusses how quantum com-
putation relates to classical complexity classes. We will
thus first give a brief intuitive discussion of complexity
classes for those readers who do not have this background.
There are generaly two resources which limit the ability
of computersto solve large problems: time and space (i.e.,
memory). The field of analysis of agorithms considers
the asymptotic demands that algorithms make for these re-
sources as afunction of the problem size. Theoretical com-
puter scientists generally classify agorithms as efficient
when thenumber of stepsof theal gorithmsgrowsasapoly-
nomial inthesize of theinput. The class of problemswhich
can be solved by efficient agorithmsis known as P. This
classification has several nice properties. For one thing, it
does a reasonable job of reflecting the performance of al-
gorithmsin practice (although an a gorithm whose running
time is the tenth power of the input size, say, is not truly
efficient). For another, this classification is nice theoreti-
caly, as different reasonable machine models produce the
same class P. We will see this behavior reappear in quan-
tum computation, where different model s for quantum ma-
chineswill vary in running times by no more than polyno-
mial factors.

There are aso other computational complexity classes
discussed in this paper. One of these is PSPACE, which
are those problems which can be solved with an amount
of memory polynomial in the input size. Another impor-
tant complexity class is NP, which intuitively is the class



