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Abstract

The symplectic isotopy problem is a question about automorphisms of
a compact symplectic manifold. It asks whether the relation of sym-
plectic isotopy between such automorphism is finer than the relation
of diffeotopy (smooth isotopy). The principal result of this thesis is
that there are symplectic manifolds for which the answer is positive;
in fact, a large class of symplectic four-manifolds is shown to have this
property. This result is the consequence of the study of a special class
of symplectic automorphisms, called generalized Dehn twists.

The hard part of studying the symplectic isotopy problem is how to
prove that two given symplectic automorphisms are not symplectically
isotopic. Symplectic Floer homology theory assigns a ‘homology group’
to any symplectic automorphism. These groups are invariant under
symplectic isotopy, hence an obvious candidate for the task. While
there is no general procedure for computing the Floer homology groups,
it turns out that this is feasible for generalized Dehn twists.

The computation involves an extension of the functorial structure of
the Floer homology groups: we introduce homomorphisms induced
by certain symplectic fibrations with singularities. Then we use the
fact that generalized Dehn twists appear as monodromy maps of such
fibrations. These induced maps on Floer homology groups may be of
interest independently of their contribution to the symplectic isotopy
problem.

The thesis is divided into three parts: the first part presents the sym-
plectic isotopy problem, introduces generalized Dehn twists, and ex-
plains the consequences of the determination of their Floer homology
groups. The second part is devoted to Floer homology; its main focus
are the new induced maps. The final part describes the computation
of the Floer homology groups of a generalized Dehn twist.
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1 Introduction

The symplectic isotopy problem. Let (M, ω) be a compact symplectic
manifold. A symplectic automorphism of (M, ω) is a diffeomorphism φ :
M −→ M such that φ∗ω = ω. Recall that two diffeomorphisms φ0, φ1 :
M −→ M are called diffeotopic if they can be connected by a smooth family
(φt)0≤t≤1 of diffeomorphisms. Similarly, two symplectic automorphisms are
symplectically isotopic if there is a diffeotopy (φt) between them such that
all the φt are symplectic automorphisms. The symplectic isotopy problem
is the following

Question. Are there symplectic automorphisms φ0, φ1 which are diffeotopic
but not symplectically isotopic?

The answer does not change if we consider only the case φ1 = id. A sym-
plectic automorphism which is not symplectically isotopic to the identity
is called essential. Then the question can be phrased as follows: are there
essential symplectic automorphisms which are diffeotopic to the identity?
Let Diff+(M) be the group of orientation-preserving diffeomorphisms of M
(with the C∞-topology) and Aut(M,ω) the subgroup of symplectic auto-
morphisms. Both groups are locally contractible, and any continuous path
in Diff+(M) or Aut(M, ω) can be deformed into a smooth one while keeping
its endpoints fixed. Hence our question is this: let

π0(Aut(M, ω)) −→ π0(Diff+(M))

be the homomorphism induced by inclusion. Is its kernel nontrivial? The
motivations for studying this problem come from different parts of geometry:

Negative examples. There is a small number of cases in which the topology of
Aut(M,ω) is completely known. In all these cases the answer to our question
turns out to be negative. Moser’s theorem on volume forms shows that for
two-dimensional M , Aut(M, ω) is a deformation retract of Diff+(M). The
two other examples are due to Gromov [13]. He showed that for M =
CP2 or CP1 ×CP1, the group Iso(M) of Kähler isometries is a deformation
retract of Aut(M,ω). Iso(CP2) = PU(3) is path-connected; hence any two
symplectic automorphisms are symplectically isotopic. Iso(CP1 × CP1) is
a semi-direct product (PU(2) × PU(2)) o Z/2. It has two components;
one contains the identity and the other one the involution which exchanges
the two CP1’s. By Gromov’s theorem, the same holds for the symplectic
automorphism group. In particular, a symplectic automorphism is essential
iff it acts nontrivially on homology. Gromov’s approach seems to be confined
to the class of rational or ruled symplectic four-manifolds.

Gauge theory. Let E be the unique nontrivial principal SO(3)-bundle over
a closed oriented surface Σ of genus g ≥ 2. The group G(E) of gauge
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transformations acts by pullback on the space Aflat(E) of flat connections
on E. Its maximal connected subgroup G0(E) acts freely, and the quotient
Ng = Aflat(E)/G0(E) is a smooth compact manifold. Ng has a canonical
symplectic structure ωg.

The extended diffeomorphism group Diff+(Σ, E) is the group of pairs (f, f̂)
which consist of an oriented diffeomorphism f of Σ and an isomorphism
f̂ : E −→ f∗E. Γ̂g = π0(Diff+(Σ, E)) is called the extended mapping class
group; it is an extension of Γg = π0(Diff+(Σ)) by H1(Σ;Z/2). The operation
of pulling back connections defines an action of Γ̂g on (Ng, ωg). Dostoglou
and Salamon [8] raised the question whether the induced homomorphism

Γ̂g −→ π0(Aut(Ng, ωg)) (1.1)

is injective. Indications in favour of a positive answer come from unpublished
work of Callahan, who gave an example of a τ ∈ Γ̂2 whose action on (N2, ω2)
is essential even though it acts trivially on H∗(N2). In contrast, it seems
likely that the differentiable counterpart of (1.1),

Γ̂g −→ π0(Diff+(Ng)), (1.2)

is not injective. This likelihood comes from general results about diffeo-
morphism groups, e.g. [28, Theorem 12.4 or Theorem 13.3], together with
the fact that Ng is simply connected (recall that in the case of Σ itself, the
diffeomorphism group is usually studied through its action on π1(Σ), which
distinguishes fully between diffeotopy classes).

The different expectations for the homomorphisms (1.1) and (1.2) leave the
possibility that the symplectic isotopy question on (Ng, ωg) has a positive
answer. For example, this would hold if Callahan’s element τ lies in the
kernel of (1.2).

Holomorphic functions. This motivation is particularly close to the point of
view of the present work. Let π be a holomorphic function from a compact
Kähler manifold (E, J,Ω) to a Riemann surface Σ. The set Σcrit of critical
values of π is finite, and the regular fibres Ez = π−1(z) form a smooth fibre
bundle over Σreg = Σ \ Σcrit. It is a classical idea to study the holomorphic
function π through the monodromy homomorphism

π1(Σreg, z0) −→ π0(Diff+(Ez0))

associated to this smooth fibre bundle. The Kähler form Ω induces a sym-
plectic structure Ωz = Ω|Ez on each regular fibre. Since the cohomology
class [Ωz] is locally constant in z, (Ez, Ωz) is a locally trivial family of sym-
plectic manifolds, by a theorem of Moser. As a consequence, there is a
symplectic monodromy homomorphism π1(Σreg, z0) −→ π0(Aut(Ez0 , Ωz0))
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which fits into a commutative diagram

π0(Aut(Ez0 , Ωz0))

²²
π1(Σreg, z0) //

66lllllllllllll
π0(Diff+(Ez0)).

Whether the symplectic monodromy is actually a finer invariant depends on
the answer to the symplectic isotopy problem.

An important source of holomorphic functions (with Σ = CP1) are the Lef-
schetz fibrations obtained from a generic pencil of hyperplane sections of a
projective variety after blowing up its base. Lefschetz used the monodromy
action on the homology of a regular fibre to study the topology of varieties
by induction on their dimension. One might imagine a parallel attempt to
analyse the symplectic geometry of algebraic varieties in which the differ-
entiable monodromy would be replaced by its symplectic counterpart. For
example, Lefschetz fibrations with the same fibres and differentiable mono-
dromy but with different symplectic monodromy might be a potential source
of inequivalent symplectic structures on the same smooth manifold. Recent
work of Donaldson provides the foundation for extending such an approach
even to non-Kähler symplectic manifolds.

Lefschetz fibrations have an interesting global structure, but their local
structure is simple. For a holomorphic function with critical points of a
more complex kind even the local aspect, that is, the symplectic mono-
dromy along a small loop which winds around a single critical value of π,
is interesting. The smooth monodromy along such small loops is a much-
studied object; the relevance of symplectic geometry to questions of this
kind has been advocated by Arnol’d [1].

Fragile automorphisms. The symplectic isotopy problem compares the
topology of Aut(M,ω) with that of Diff+(M). A related question is how
Aut(M,ω) changes under variations of ω. The contribution of the present
work to this question is the discovery of an unexpected phenomenon which
we have christened fragility. Roughly speaking, a symplectic automorphism
is fragile if after an arbitrarily small perturbation of the symplectic form,
it becomes symplectically isotopic to the identity. The precise formulation
uses deformations (ωt, φt)0≤t<ε, where ωt is a smooth family of symplectic
forms and φt a smooth family of diffeomorphisms such that φt ∈ Aut(M,ωt)
for all t.

Definition 1.1. φ ∈ Aut(M, ω) is fragile if there is such a deformation with
ω0 = ω, φ0 = φ, and such that for all t > 0, φt is isotopic to the identity
symplectically, that is, within Aut(M, ωt).
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If φ is symplectically isotopic to the identity, it is fragile for trivial reasons
(take the constant deformation). The interesting case is when φ is essential:
since a fragile automorphism is diffeotopic to the identity, any such example
provides a positive answer to the symplectic isotopy problem. Note that by
concentrating on the notion of fragility, we narrow the class of symplectic
manifolds under consideration:

Lemma 1.2. On a compact symplectic manifold with b2(M) = 1 every fra-
gile automorphism is symplectically isotopic to the identity.

Proof. Let (ωt, φt) be a deformation of (ω, φ) as in Definition 1.1. Since
b1(M) = 1 and we are free to rescale ωt, we may assume that [ωt] = [ω] ∈
H2(M,R) for all t. Moser’s theorem on deformations of symplectic forms
says that there is a smooth family (ρt) of diffeomorphisms of t with ρ0 = id
and such that ρ∗t ωt = ω for all t. Fix some t0 > 0 and an isotopy (ψs)
between ψ0 = φt0 and ψ1 = id in Aut(M, ωt0). The conjugates φ′t = ρ−1

t φtρt

and ψ′s = ρ−1
t0

ψsρt0 lie in Aut(M,ω). φ′t0 is symplectically isotopic to φ
through (φ′t) and to the identity through (ψ′s). Therefore φ is symplectically
isotopic to the identity.

We will show that many compact symplectic four-manifolds (M, ω) with
b1(M) = 0 have automorphisms which are essential and fragile. The prin-
cipal requirement of our approach is that (M, ω) must contain an embedded
Lagrangian two-sphere. For such manifolds, we prove the existence of an es-
sential and fragile automorphism under a certain algebraic condition, stated
in terms of its quantum homology ring. This algebraic condition can be
dealt with easily as long as (M,ω) is not rational or ruled. In this way one
obtains the following result:

Theorem 1.3. Let (M, ω) be a compact symplectic four-manifold, with
b1(M) = 0, which contains an embedded Lagrangian two-sphere. Assume
that (M,ω) is minimal and irrational, and that dimH2(M ;Z/2) ≥ 3. Then
(M,ω) admits an essential and fragile symplectic automorphism.

There is a slightly more complicated version of this theorem which does
not require that (M, ω) is minimal (Theorem 5.4). One can also consider
rational four-manifolds, but then the condition on the quantum homology
ring needs to be checked separately in every instance.

Our approach is particularly effective for algebraic surfaces, where the ex-
istence of a Lagrangian two-sphere can often be deduced from algebro-
geometric considerations. As an example, consider the class of algebraic
surfaces which are complete intersections in some projective space CPn,
with the induced symplectic structures. The first such surfaces are CP2 it-
self and CP1 × CP1 which is a quadric hypersurface in CP3. As explained

8



before, the answer to the symplectic isotopy problem is negative in these
two cases. In all other cases, the answer is positive:

Theorem 1.4. Any complete intersection of complex dimension two other
than CP2 or CP1 × CP1 admits an essential and fragile symplectic auto-
morphism.

The remainder of this part is structured as follows: the next section intro-
duces a special class of automorphisms of a symplectic four-manifold called
generalized Dehn twists. We prove that the square of any such automorph-
ism is fragile. In section 3 we present some of the main properties of Floer
homology and state the result of its computation for generalized Dehn twists.
We also explain how to apply this to the symplectic isotopy problem. The
outcome is summarized in Corollary 3.6, which is the main result of this
thesis. Section 4 explains how to use degenerations of algebraic surfaces
to produce Lagrangian two-spheres on them. In section 5 we recall some
recent results on symplectic four-manifolds which are not rational or ruled,
and prove Theorem 5.4. Section 6 contains a few sample computations for
rational algebraic surfaces which are necessary to prove Theorem 1.4.

Notation. Unless otherwise specified, (M, ω) always denotes a compact
symplectic four-manifold with b1(M) = 0.

This is the class of symplectic manifolds in which we will work throughout.
The condition b1(M) = 0 can be removed if one replaces symplectic iso-
topy by Hamiltonian isotopy everywhere. This notion of isotopy, which
coincides with symplectic isotopy for b1(M) = 0 but is more restrictive
in general, is the natural one in Floer homology theory. The restriction to
four-dimensional manifolds has two reasons: one is of a technical nature (the
construction of Floer homology groups is simpler for a class of symplectic
manifolds which contains all four-dimensional ones). The other reason is
that our source of fragile automorphisms is an elementary feature which is
specific to four dimensions. Higher-dimensional examples can be produced
from this by taking products. For example, the products (M, ω)×· · ·×(M, ω)
of a K3 surface (M, ω) with itself admit an essential and fragile symplectic
automorphism. However, we will not pursue this further here.

2 Generalized Dehn twists

The first step towards a positive answer to the symplectic isotopy problem
is to find interesting symplectic automorphisms which are diffeotopic to the
identity. Our examples are constructed from a common local model; we
begin by explaining this model.

9



Let T ∗S2 be the cotangent bundle of S2 and η its canonical symplectic
form. The zero section S2 ⊂ T ∗S2 is a Lagrangian submanifold. We use the
representation

T ∗S2 = {(u, v) ∈ R3 × R3 | |u| = 1 and 〈u, v〉 = 0}.

In these coordinates, η = −∑
j duj ∧ dvj and S2 = {(u, v) ∈ T ∗S2 | v = 0}.

Let T ∗εS2 = {(u, v) ∈ T ∗S2 | |v| < ε} be the subbundle of ε-discs, for
ε > 0. We denote the subgroup of automorphisms φ ∈ Aut(T ∗S2, η) which
are supported inside T ∗εS2 (that is, φ = id outside some compact subset of
T ∗εS2) by Autc(T ∗εS2, η).

Consider the Hamiltonian function µ(u, v) = |v| on T ∗S2 \ S2. It is well-
known that 1

2µ2 induces the geodesic flow (this is true for the corresponding
function on the cotangent bundle of any Riemannian manifold). Given this,
it is not difficult to see what the flow of µ is: it transports every cotangent
vector along the geodesic emanating from it with unit speed, irrespective of
how long the vector is. On S2, all geodesics are closed and of period 2π;
therefore µ induces a Hamiltonian circle action on T ∗S2\S2. Since it is clear
what the geodesic flow is in our coordinates, we can write down this action
explicitly:

σ(eit)(u, v) =
(

cos(t)u + sin(t)
v

|v| , cos(t)v − sin(t)u|v|
)

.

σ(−1)(u, v) = (−u,−v) can be extended to an involution of T ∗S2. We call
this involution the antipodal map and denote it by A.

Notation. The Hamiltonian flow induced by a (time-indepedent or time-
dependent) Hamiltonian function H will be denoted by (φH

t )t∈R.

Take a function r ∈ C∞(R,R). The flow induced by r(µ) on T ∗S2 \ S2 is

φ
r(µ)
t (x) = σ(eitr′(µ(x)))(x); (2.1)

this is an elementary fact which holds for any Hamiltonian circle action. If r
is even, r(µ(u, v)) =

√
r(|v|2) is a smooth function on all of T ∗S2 and every

point in S2 is a critical point of it. As a consequence (2.1) can be extended
to a Hamiltonian flow on T ∗S2 which keeps S2 pointwise fixed.

Lemma 2.1. Let r ∈ C∞(R,R) be a function which satisfies

r(t) = 0 for t ≥ ε
2 and r(−t) = r(t)− t for all t. (2.2)
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(a) The map τ of T ∗S2 into itself given by

τ(x) =

{
φ

r(µ)
2π (x) x /∈ S2,

A(x) x ∈ S2

is a symplectic automorphism supported inside T ∗εS2.

(b) τ commutes with the antipodal map A.

(c) The automorphisms obtained from different choices of r are isotopic in
Autc(T ∗εS2, η).

Proof. (a) The second condition in (2.2) shows that R(t) = r(t)− 1
2 t is even.

As explained above, this implies that R(µ) induces a Hamiltonian flow on
T ∗S2. A simple computation using (2.1) shows that the time-2π map of this
flow is A ◦ τ . It follows that τ itself is also a symplectic automorphism. The
first condition in (2.2) says that for (u, v) /∈ T ∗ε/2S

2 we have e2πir′(|v|) = 1,
hence τ(u, v) = (u, v) by (2.1).

(b) is clear from (2.1).

(c) Let r, r′ be two functions satisfying (2.2) and τ, τ ′ the corresponding
symplectic automorphisms. By (2.1), τ−1τ ′ is the time-2π map of the flow
induced by δ(µ), where δ = r′ − r. (2.2) implies that δ is even and δ(µ)
is supported inside T ∗εS2. Therefore its Hamiltonian flow defines an isotopy
from τ−1τ ′ to the identity in Autc(T ∗εS2, η).

Let (M, ω) be a compact symplectic four-manifold and V ⊂ M an embedded
Lagrangian two-sphere. The symplectic geometry of M near V is described
by the following tubular neighbourhood theorem:

Lemma 2.2 (Weinstein [32]). (a) There is an ε > 0 and a symplectic
embedding i : T ∗εS2 −→ M with i(S2) = V .

(b) Let i, i′ be two embeddings as above and assume that i−1i′|S2 ∈ Diff(S2)
is diffeotopic to the identity. Then there is a δ < ε such that i|T ∗δS2 can be
deformed into i′|T ∗δS2 within the space of symplectic embeddings which map
S2 to V .

Proposition 2.3. Choose an ε > 0, an embedding i as in Lemma 2.2, and
a function r as in Lemma 2.1. Then

τV (x) =

{
iτ i−1(x) x ∈ im(i),
x x /∈ im(i)

defines a symplectic automorphism of M . τV maps V to itself but reverses
its orientation. It is independent of r and i up to symplectic isotopy.
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We call τV the generalized Dehn twist along V because maps of this kind
are natural four-dimensional analogues of the (positive) Dehn twists along
simple closed curves on a surface. Generalized Dehn twists are common in
singularity theory, but they are usually considered only as diffeomorphisms;
the observation that their local model τ is symplectic was made by Arnol’d.

Most of Proposition 2.3 follows immediately from the previous Lemmata.
We need to make one remark on the uniqueness of τV up to symplectic
isotopy. Lemma 2.1 and Lemma 2.2(b) show that [τV ] ∈ π0(Aut(M,ω))
depends only on the diffeotopy class of i|S2. Since we have not fixed an
orientation of V , there are two such classes, represented by any embedding
i and its opposite i′ = i ◦ A. Let τV and τ ′V be the automorphisms of M
constructed from the same local model using these two embeddings. By
Lemma 2.1(b),

τ ′V (x) = iAτA−1i−1(x) = iτ i−1(x) = τV (x)

for x ∈ im(i) and hence τV = τ ′V . This completes the proof of the in-
dependence of [τV ]. Our discussion has a parallel in the two-dimensional
case, where the distinction between positive and negative Dehn twists is
also independent of the orientation of the curve.

For completeness’ sake we include a stronger uniquess result which will not
be used later; it is again an analogue of a well-known property of ordinary
Dehn twists. Recall that two submanifolds V0, V1 ⊂ M are called isotopic if
there is a submanifold V ⊂ M × [0; 1] which intersects M ×{t} transversely
for all t and such that Vt = V ∩ (M × {t}) for t = 0, 1. An isotopy is
Lagrangian if V ∩ (M × {t}) ⊂ M is a Lagrangian submanifold for all t.

Lemma 2.4. The symplectic isotopy class of τV depends only on the Lag-
rangian isotopy class of V .

Proof. It is convenient to consider an apparently stronger notion: two Lag-
rangian submanifolds V0, V1 ⊂ M are ambient isotopic if there is a symplectic
isotopy (φt)0≤t≤1 with φ0 = id and φ1(V0) = V1. It is clear from the construc-
tion that [τV ] ∈ π0(Aut(M, ω)) depends on V only up to ambient isotopy.
However, for two-spheres, as for all compact Lagrangian submanifolds with
vanishing first Betti number, any Lagrangian isotopy can be embedded into
an ambient isotopy.

Lemma 2.5 (Picard-Lefschetz formula). The action of τV on homology
is given by

(τV )∗(d) =

{
d + (d · [V ])[V ] d ∈ H2(V )
d d ∈ Hi(V ), i 6= 2.

12



Proof. τV is trivial outside a tubular neighbourhood U of V . For such a
map there is a variation homomorphism var(τV ) : H∗(M,M \U) −→ H∗(U)
such that the diagram

Hi(M)
(τV )∗−id //

²²

Hi(M)

Hi(M, M \ U)
var(τV ) // Hi(U)

OO

commutes (the unmarked arrows are the obvious maps). Since Hi(M, M \
U) ∼= H4−i(U) ∼= H4−i(S2) and Hi(U) ∼= Hi(S2), the variation vanishes
for i 6= 2. For i = 2, both groups are infinite cyclic: the isomorphism
H2(M, M \ U) ∼= Z is given by d 7−→ d · [V ] and H2(U) is generated by [V ].
It follows that there is a λ ∈ Z such that

(τV )∗(d) = d + λ(d · [V ])[V ]

for all d ∈ H2(M). Take d = [V ]: the local model, Lemma 2.2, shows that
the self-intersection number [V ]·[V ] is the Euler number of the oriented two-
plane bundle T ∗S2 −→ S2, which is e(T ∗S2) = −e(TS2) = −χ(S2) = −2.
Therefore (τV )∗[V ] = (1 − 2λ)[V ]. But since τV |V is orientation-reversing,
(τV )∗[V ] = −[V ] and hence λ = 1.

Recall that we are searching for a class of symplectic automorphisms which
are diffeotopic to the identity. This is certainly not true for τV since it in-
duces a nontrivial map on homology. However, the Picard-Lefschetz formula
shows that this induced map is an involution; consequently, the square τ2

V

acts trivially on homology. We will now prove a much stronger result:

Proposition 2.6. The square of a generalized Dehn twist is fragile. In
particular, it is diffeotopic to the identity.

The proof will be carried out in the local model (T ∗εS2, η). Let β ∈ Ω2(S2) be
the standard volume form, that is, βu(ξ, η) = 〈u, ξ×η〉, and π : T ∗S2 −→ S2

the projection. In principle, we want to deform η by adding small multiples
of π∗β. Some adjustments have to be made to keep that deformation trivial
outside T ∗εS2. Since H2(T ∗S2 \S2,R) = 0 (T ∗S2 \S2 is homotopy equivalent
to RP3), there is a one-form λ ∈ Ω1(T ∗S2\S2) such that dλ = π∗β|T ∗S2\S2.
Choose a function ψ ∈ C∞(T ∗S2,R) with ψ(u, v) = 0 for |v| ≤ 2

3ε and
ψ(u, v) = 1 for |v| ≥ 3

4ε. α = π∗β − d(ψ λ) is a compactly supported closed
two-form on T ∗εS2. Hence there is a δ > 0 such that ηs = η + sα is a
symplectic form for 0 ≤ s < δ.

Choose a function r as in Lemma 2.1 and such that r(t) = 1
2 t for |t| ≤ ε

4 .
Then τ2 is given by

τ2(u, v) =

{
σ(e4πi r′(|v|))(u, v) ε

4 ≤ |v| ≤ ε
2 ,

(u, v) otherwise.
(2.3)
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a(t) = 4πr′(t) goes from a( ε
4) = 2π to a( ε

2) = 0. Let us imagine for a
moment that the circle action σ could be extended smoothly to the whole
of T ∗S2. Then we could define a symplectic isotopy from τ2 to the identity
within Autc(T ∗εS2, η) by

φt(u, v) =

{
σ(eit a(µ(u,v)))(u, v) |v| ≤ ε

2 ,

(u, v) otherwise.

What hinders us from actually doing this is that σ is not continuous at
S2. However, this lack of continuity can be removed by deforming the circle
action in a way which is compatible with the deformation of η. More pre-
cisely, we will construct a family (σs)0<s<δ of Hamiltonian circle actions on
(T ∗2ε/3S

2, ηs) such that σs converges to σ away from S2 as s → 0. The con-
struction necessitates a short digression on Hamiltonian SO(3)-actions. Our
convention is to write the moment map of such an action as an R3-valued
function, using the cross-product and scalar product to identify R3 with so3

and its dual.

Lemma 2.7. Let ρ be a Hamiltonian SO(3)-action on a symplectic man-
ifold (N, η), with moment map m : N −→ R3. Then the function h(x) =
|m(x)| induces a Hamiltonian circle action ζ on N \m−1(0), given by

ζ(eit)(x) = ρ(exp(t
m(x)
|m(x)|))(x). (2.4)

Proof. Let Kξ ∈ Γ(TN) be the infinitesimal action of ξ ∈ R3 ∼= so3. Recall
that moment maps are equivariant with respect to the coadjoint action; in
our terms, this translates into

(Kξ.m)(x) = ξ ×m(x). (2.5)

The Hamiltonian vector field of h is

X(x) = K m(x)
|m(x)|

(x),

because −iXω = d〈m(x),m(x)/|m(x)|〉 = d|m(x)|. By (2.5),

(X.m)(x) =
m(x)
|m(x)| ×m(x) = 0.

Therefore m is constant along the orbits of X, which implies that the flow
of X is given by (2.4). It is a circle action because exp(2πg) = I for any
g ∈ so3 which has length one.

Consider the standard SO(3)-action ρ̄ on S2 and the induced action ρ on
T ∗S2, given in our coordinates by ρ(A)(u, v) = (Au,Av). The moment map
of ρ with respect to η is m(u, v) = u × v, and the moment map of ρ̄ with
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respect to β is m̄(u) = −u. By definition, ηs agrees with ω + s π∗β on U =
T ∗2ε/3S

2. Since π is SO(3)-equivariant, it follows that ρ|U is Hamiltonian
with respect to ηs|U , with moment map

ms(u, v) = m(u, v) + s m̄(u) = u× v − su.

For s > 0, ms is nowhere zero; therefore µs = |ms| induces a Hamiltonian
circle action σs on (U, ηs). The expression for ζ given in Lemma 2.7 yields
an explicit formula for σs.

There is a δ′ ∈ (0; δ] such that µs(u, v) = |u× v − su| satisfies

µs(u, v) ≥ ε

2
for |v| ≥ 3

5ε and µs(u, v) ≤ ε

4
for |v| ≤ 1

5ε

for all s < δ′. Let Ts : T ∗S2 −→ T ∗S2, 0 < s < δ′, be the family of maps
defined by

Ts(u, v) =

{
σs(eia(µs(u,v)))(u, v) 1

5ε ≤ |v| ≤ 3
5ε,

(u, v) otherwise.
(2.6)

These maps are smooth because eia(t) = 1 for t /∈ [ ε
4 ; ε

2 ]. As s → 0, ηs

converges to η, and µs converges smoothly to µ on the region 1
5ε ≤ |v| ≤ 3

5ε.
Hence σs converges smoothly to σ on that region. By comparing (2.6) with
(2.3) it follows that (Ts)0<s<δ′ is a smooth deformation of τ2.

Because it is trivial outside U , Ts is the time-4π map of the Hamiltonian
function Hs = r(µs) with respect to the symplectic structure ηs; in partic-
ular, it lies in Autc(T ∗εS2, ηs). Since r(t) = 0 for t ≥ ε/2, Hs is supported
in T ∗εS2 and its flow provides an isotopy from Ts to the identity within
Autc(T ∗εS2, ηs) for any s < δ′. Explicitly, this isotopy (Ts,t)0≤1 is given by

Ts,t(x) =

{
σs(eit a(µs(x)))(x) x ∈ U,

x x /∈ U.

It follows that (ηs, Ts)0<s<δ′ is a deformation of (η, τ2) in the sense of Defini-
tion 1.1, supported inside T ∗εS2. For sufficiently small ε > 0, this deformation
and the maps (Ts,t) can be transported from the local model to a neighbour-
hood of any given Lagrangian two-sphere V in a symplectic four-manifold
(M,ω). This completes the proof of Proposition 2.6.

Remark 2.8. Generalized Dehn twists can be defined in any dimension:
it is sufficient to replace T ∗S2 by T ∗Sr as a local model. The fact that
the square of a generalized Dehn twist acts trivially on homology is true
for any even r. However, the fragility of τ2 is special to four dimensions.
Indeed, a nontrivial deformation of the symplectic form localized near a
Lagrangian sphere is possible only in four dimensions because H2

c (T ∗Sr) = 0
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for r 6= 2. A more conceptual proof of Proposition 2.6 reveals that the
fragility of τ2 is a consequence of an algebro-geometric construction which
works only in complex dimension two, namely, the simultaneous resolution
of ordinary double points [2]. We have chosen to present the argument in
elementary terms because the connection between generalized Dehn twists
and singularities will only be made later on, in Part III.

3 The Floer homology of a generalized Dehn twist

Proposition 2.6 – which says that the square τ2
V of any generalized Dehn

twist is fragile – forms the easier part of our approach to the symplectic
isotopy problem. The difficult part is to prove that there are (M,ω) and
V such that τ2

V is essential, or equivalently, such that τV is not symplect-
ically isotopic to τ−1

V . The theory which we use for this purpose assigns
to (M,ω) a ring QH∗(M, ω) and to each φ ∈ Aut(M,ω) a module HF∗(φ)
over QH∗(M, ω) which is unchanged under symplectic isotopy. QH∗(M, ω)
is called the quantum homology ring of (M,ω) and HF∗(φ) the Floer ho-
mology of φ. Our main result determines HF∗(τV ) for any V . By a simple
duality property, we obtain HF∗(τ−1

V ) at the same time. A comparison of
these two QH∗(M,ω)-modules yields conditions under which τV is essential.

We will use (with minor modifications) the quantum homology ring as
defined by Ruan-Tian [23] and McDuff-Salamon [20]. In the version by Ruan
and Tian, this definition works for the class of ‘weakly monotone’ symplectic
manifolds; this is sufficient for our purpose since any four-manifold satisfies
this condition (we remark in passing that there are more recent approaches
which work for all compact symplectic manifolds). Additively QH∗(M, ω)
does not depend on ω: it is the Z/2-graded group obtained from the or-
dinary homology of M with coefficients in a certain field Λ by reducing the
grading, that is,

QH0(M, ω) = Heven(M ; Λ), QH1(M,ω) = Hodd(M ; Λ).

The choice of coefficients is dictated in part by convenience and in part by
the exigencies of the theory of pseudo-holomorphic curves.

Definition 3.1. Let Λ be the set of functions c : R −→ Z/2 which satisfy
the following condition: for any C ∈ R, there are only finitely many ε ≤ C
such that cε 6= 0. Addition and multiplication on Λ are defined by

(c(1) + c(2))ε = c(1)
ε + c(2)

ε , (c(1)c(2))ε =
∑

δ∈R
c
(1)
δ c

(2)
ε−δ;

the finiteness condition ensures that
∑

δ∈R c
(1)
δ c

(2)
ε−δ has only finitely many

nonzero terms. We call Λ the universal Novikov field over Z/2.
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The proof that Λ is indeed a field is not difficult; it can be found e.g. in
[14]. It is customary to write elements of Λ as formal power series with real
exponents:

c =
∑

ε∈R
cεt

ε,

because addition and multiplication take on the familiar form in this nota-
tion. For elements of QH∗(M, ω) we use the same notation with coeffi-
cients cε ∈ H∗(M ;Z/2). This is justified by the Künneth isomorphism
QH∗(M,ω) ∼= H∗(M ;Z/2)⊗ Λ.

The product on QH∗(M,ω) is defined in terms of the threefold Gromov-
Witten invariants of (M, ω). These invariants are a collection of symmetric
trilinear forms

ΦA : H∗(M ;Z/2)⊗H∗(M ;Z/2)⊗H∗(M ;Z/2) −→ Z/2

indexed by A ∈ H2(M ;Z). Roughly speaking, ΦA(x, y, z) is the number
mod 2 of pseudo-holomorphic spheres in the homology class A which pass
through suitable cycles representing x, y and z. By using Poincaré duality
and summing over all A with the same energy ω(A) ∈ R, we convert the
Gromov-Witten invariants into a family (∗ε)ε∈R of symmetric bilinear forms

H∗(M ;Z/2)⊗H∗(M ;Z/2) −→ H∗(M ;Z/2)

with the following properties:

(1) ∗ε = 0 for all negative ε.

(2) any interval [0;C] ⊂ R contains only finitely many ε with ∗ε 6= 0.

(3) ∗ε respects the grading of H∗(M ;Z/2) mod 2.

(4) ∗0 is the ordinary intersection product.

(5) [M ] ∗ε x = 0 for all x ∈ H∗(M ;Z/2) and ε > 0.

The quantum product ∗ on QH∗(M,ω) is defined by

c(1) ∗ c(2) =
∑

ε∈R


 ∑

δ1,δ2∈R
c
(1)
δ1
∗ε−δ1−δ2 c

(2)
δ2


 tε.

From the first two properties of ∗ε it follows that the sum over δ1, δ2 contains
only finitely many nonzero terms and that the expression on the r.h.s. is
an element of QH∗(M, ω). By definition, ∗ is Λ-bilinear. It is commutative
because the forms ∗ε are symmetric, and it is also associative (a much deeper
result). Property (3) shows that ∗ is Z/2-graded. The last two properties
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imply that u = [M ]t0 is the unit of ∗. By property (1) and (4), the ordinary
intersection product x ◦ y of x, y ∈ H∗(M ;Z/2) is the leading term of x t0 ∗
y t0; that is,

x t0 ∗ y t0 = (x ◦ y)t0 +
∑

ε>0

cεt
ε. (3.1)

In this sense the quantum product is a deformation of the intersection
product.

Let V be a Lagrangian sphere in M . The ideal in (QH∗(M, ω), ∗) generated
by v = [V ]t0 will be denoted by Iv.

Lemma 3.2. Let x ∈ H2(M ;Z/2) be a class which has nonzero mod 2
intersection number with V (such classes exist by Poincaré duality). Set
w = x t0 ∈ QH∗(M,ω). v and w ∗v form a basis of Iv as a vector space over
Λ; in particular, dimΛ Iv = 2.

Proof. First, v itself is nonzero. Indeed, v = 0 would imply that [V ] ∈
H2(M ;Z) is divisible by 2 because, as a part of the universal coefficient
theorem, the canonical homomorphism H2(M ;Z)⊗ Z/2 −→ H2(M ;Z/2) is
injective. But we know that [V ] is not divisible by 2 because [V ] · [V ] = −2
is not divisible by 4.

v ∗ w is linearly independent of v over Λ because

v ∗ w = [pt] t0 + (higher order terms)

by (3.1). It remains to prove that v ∗ c is a linear combination of v and
v ∗ w with Λ-coefficients for any c ∈ QH∗(M,ω). Because the Gromov-
Witten invariants are invariants of the symplectic structure, the action of
Aut(M,ω) on QH∗(M, ω) = H∗(M ; Λ) preserves ∗, hence

(τV )∗((w + v) ∗ c) = (τV )∗(w + v) ∗ (τV )∗(c). (3.2)

The Picard-Lefschetz formula (Lemma 2.5) says that

(τV )∗(z) = z + (z ·Λ v)v

where z ·Λ v ∈ Λ is the ordinary intersection number with coefficients in Λ.
In particular, because (w + v) ·Λ v = −t0, (τV )∗(w + v) = w. Inserting this
into (3.2) yields

v ∗ c = (c ·Λ v)(w ∗ v)− [((w + v) ∗ c) ·Λ v] v.

The Floer homology of a symplectic automorphism φ ∈ Aut(M, ω) is a
Z/2-graded Λ-vector space

HF∗(φ) = HF0(φ)⊕HF1(φ)
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equipped with a graded Λ-bilinear map ∗̂ : QH∗(M, ω)⊗HF∗(φ) −→ HF∗(φ)
which makes it into a unital module over (QH∗(M, ω), ∗). ∗̂ is called the
quantum module structure. Floer homology has the following two basic prop-
erties:

(Isotopy invariance) If φ0 and φ1 are symplectically isotopic, HF∗(φ0)
and HF∗(φ1) are isomorphic as modules over QH∗(M,ω).

(Poincaré duality) For every φ there is a nondegenerate graded pairing

〈·, ·〉 : HF∗(φ−1)⊗Λ HF∗(φ) −→ Λ

which satisfies

〈c ∗̂x, y〉 = 〈x, c ∗̂ y〉 (3.3)

for all c ∈ QH∗(M, ω), x ∈ HF∗(φ−1) and y ∈ HF∗(φ).

The construction of this invariant is discussed in Part II. Our application of
Floer homology is based on the following observation: the classical intersec-
tion rings (H∗(M), ◦) are rings of a very special type. This is a consequence
of classical Poincaré duality, which says that there is a nondegenerate pairing
(the intersection pairing)

〈·, ·〉 : H∗(M)⊗H∗(M) −→ Z

such that 〈c ◦ x, y〉 = ±〈x, c ◦ y〉. Such a pairing relates H∗(M) to its own
dual and thereby places restrictions on its structre. In contrast the ‘Poincaré
duality’ pairing for Floer homology groups involves two different groups
HF∗(φ) and HF∗(φ−1). Hence its existence does not have any consequences
for the structure of HF∗(φ) for general φ. An exception to this occurs
if φ2 is symplectically isotopic to the identity, because then HF∗(φ) and
HF∗(φ−1) are isomorphic. In that case ‘Poincaré duality’ yields the following
information on HF∗(φ):

Definition 3.3. Let P be a Z/2-graded unital module over QH∗(M, ω),.
We say that the QH∗(M,ω)-action on P is self-dual if there is a graded
nondegenerate bilinear form

〈·, ·〉 : P ⊗ P −→ Λ

such that 〈cx, y〉 = 〈x, cy〉 for all c ∈ QH∗(M, ω) and x, y ∈ P .

Lemma 3.4. If φ2 is symplectically isotopic to the identity, the QH∗(M,ω)-
action on HF∗(φ) is self-dual.

The main result of this work is
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Theorem 3.5. For any Lagrangian sphere V ⊂ M there is a Z/2-graded
isomorphism

HF∗(τV ) ∼= QH∗(M, ω)/Iv

which carries ∗̂ to the QH∗(M, ω)-module structure on QH∗(M,ω)/Iv in-
duced by the quantum product ∗.

The proof of this Theorem is contained in Part III. Together with Lemma
2.6 and Lemma 3.4 it leads to the following consequence:

Corollary 3.6. If M contains a Lagrangian two-sphere V such that the
QH∗(M,ω)-action on QH∗(M, ω)/Iv is not self-dual, it has an essential
and fragile symplectic automorphism, namely τ2

V .

4 Vanishing cycles

We now discuss the two conditions on (M, ω) which appear in Corollary
3.6, beginning with the existence of a Lagrangian sphere. In a sense, most
symplectic four-manifolds do not contain Lagrangian spheres: by a generic
perturbation of [ω] ∈ H2(M ;R), one can achieve that the hyperplane

ω⊥ = {c | ω(c) = 0} ⊂ H2(M ;R)

intersects the integer lattice H2(M ;Z) only at the origin. In other examples
(such as when π2(M) = 0) there are no Lagrangian spheres even though [ω]
is integral. Once the obvious topological restrictions have been exhausted,
the existence and position of Lagrangian spheres remains a rather subtle
invariant. We will now explain how a degeneration of a Kähler manifold (of
arbitrary dimension) can be used to produce a Lagrangian sphere in it. This
sphere is called a vanishing cycle.

Definition 4.1. Let X be a compact Kähler manifold. An ordinary de-
generation of X is a Kähler manifold E with a proper holomorphic map
π : E −→ D to the open unit disc D ⊂ C with the following properties:

(1) π has at least one critical point.

(2) Any critical point x of π lies in π−1(0), and the second derivative of π
at x is a nondegenerate quadratic form.

(3) There is a z ∈ D \ {0} such that Ez = π−1(z) is isomorphic to X.

Proposition 4.2. Any compact Kähler manifold which admits an ordinary
degeneration contains a Lagrangian sphere.

Because of its importance, we give two proofs of this result (for the reader’s
benefit we point out that the second proof is much shorter).
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First proof. We begin with a linear analogue:

Let β be a (complex) bilinear form on Cn which is symmetric and nondegen-
erate. There is an n-dimensional real subspace L ⊂ Cn which is Lagrangian
for the standard symplectic form ω0, and such that β|L×L is real and pos-
itive definite.

Let b = re(β) be the real part of β, and B the R-linear map on Cn = R2n

such that b(v, w) = 〈Bv,w〉R. Since b is nondegenerate and symmetric,
B is invertible and self-adjoint. Let R2n = L+ ⊕ L− be the orthogonal
splitting into the R-linear subspaces generated by the positive and negative
eigenvectors of B. B is C-antilinear: 〈B(iv), w〉R = b(iv, w) = b(v, iw) =
〈B(v), iw〉R = 〈−i Bv, w〉R. Hence L− = iL+. The fact that L+ is ortho-
gonal to iL+ means that it is a Lagrangian subspace. It also implies that
b(v, iw) = 〈Bv, iw〉R = 0 for all v, w ∈ L+. Hence the imaginary part of
β vanishes on L+. By construction, the real part of β is positive definite
on L+. Hence L = L+ has all desired properties. We note the following
consequence:

Let q be the quadratic form associated to β. For all t > 0, Vt = q−1(t)∩L is
a Lagrangian (n− 1)-sphere in the symplectic manifold (q−1(t), ω0|q−1(t)).

The other preliminary is a fact from local Kähler geometry:

Let ω be a Kähler form in some ball Bε ⊂ Cn around 0, which agrees with
the standard form ω0 at 0. There is a Kähler form ω′ on Bε such that ω′ = ω
on Bε \Bε/2 and ω′ = ω0 in some neighbourhood of 0.

This is proved as follows: according to [31, p. 72, Corollaire 2], there is a
δ ∈ (0; ε) such that ω0 − ω|Bδ = i∂∂f for some f ∈ C∞(Bδ,R). Since ω
agrees with ω0 at 0, we may assume that f(0) = f ′(0) = (D2f)0 = 0 (take
any f and subtract the first three terms in its Taylor expansion around 0).
Hence

|f(x)| ≤ C|x|3 and |dfx| ≤ C|x|2 (4.1)

for some constant C. Choose a ψ ∈ C∞(Cn,R) with ψ|B1 = 1 and ψ|Cn \
B2 = 0, and set ψr(x) = ψ(x/r). For any r < δ

2 , ηr = i∂∂(ψrf) is a real
(1, 1)-form on Cn. We can estimate

|(ηr)x| ≤ C ′(|(ω0)x − ωx|+ r−1|dfx|+ r−2|f(x)|)
where C ′ is independent of r. Using (4.1) we conclude that

|(ηr)x| ≤ C ′′r

for all x ∈ B2r. On the other hand (ηr)x = 0 for all x /∈ B2r. It follows that
the forms ηr converge to 0 uniformly as r → 0. In particular, if we choose r
sufficiently small, ω′ = ω + ηr is a Kähler form. It is easy to see that ω′ has
the desired properties.
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Let π : E −→ D be an ordinary degeneration with Kähler form Ω. Choose a
critical point x0 of π. The holomorphic Morse Lemma [2, Lemma 2] shows
that there is a holomorphic chart

Cn ⊃ Bε
c−→ E

around x0 such that q(z) = π(c(z)) is a nondegenerate quadratic form. After
a linear change of c, we can assume that c∗Ω agrees with ω0 at 0. Using
the local technique explained above, replace Ω by a Kähler form Ω′ such
that c∗Ω′ = ω0 near 0. This brings us back to the case discussed above: it
follows that for small t > 0, (Et, Ω′|Et) contains a Lagrangian sphere. Now
assume that we want to prove that (Ez,Ω|Ez), for some z 6= 0, contains a
Lagrangian sphere. Since the modification of the Kähler form is local near
x0, we can carry it out in such a way that Ω′|Ez = Ω|Ez. It follows from
Moser’s theorem that all regular fibres of a degeneration are symplectically
isomorphic. Applying this to (E, Ω′), we see that (Ez,Ω|Ez) is isomorphic
to (Et, Ω′|Et) for all t > 0. This completes the proof.

Second proof (Donaldson). Let π : E −→ D be an ordinary degeneration
with Kähler form Ω and corresponding Riemannian metric g. Let x0 be a
critical point of π. Since the real part of a nondegenerate complex quadratic
form is a nondegenerate real quadratic form with signature zero, x0 is a
nondegenerate critical point of f = re(π) whose Morse index is half the
(real) dimension of E. Let (φr) be the negative gradient flow of f with
respect to g, and W s ⊂ E the stable submanifold of x0 under this flow.

The (real) Morse Lemma shows that for small t > 0, Vt = W s ∩ f−1(t) is an
embedded sphere. A straightforward computation shows that the negative
gradient flow of f is equal to the Hamiltonian flow induced by h = im(π);
in particular, φr preserves h. It follows that W s ⊂ h−1(0), hence Vt ⊂
h−1(0) ∩ f−1(t) = Et.

We will now prove that W s is a Lagrangian submanifold of (E,Ω). The
proof is based on the fact that the flow (φr) ‘compresses’ W s. More precisely,
consider the derivative

Dφr(x)|TxW s : TxW s −→ Tφr(x)W
s

at some point x ∈ W s. The fact which we use is that its norm |Dφr(x)| with
respect to g goes to 0 as r → ∞. Since Ω is clearly bounded with respect
to g, this implies that (φ∗rΩ)(X, Y ) → 0 for all X,Y ∈ TxW s. Because
φ∗rΩ = Ω, it follows that Ω(X, Y ) = 0.

Since W s is Lagrangian, Vt is a Lagrangian sphere in (Et,Ω|Et) for small
t > 0. Moser’s theorem shows that all regular fibres of a degeneration are
symplectically isomorphic; hence any fibre contains a Lagrangian sphere.
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Proposition 4.3. Let X ⊂ CPn be a smooth projective variety and H ⊂
CPn a smooth hypersurface of degree d ≥ 2 which intersects X transversely.
Then X0 = X ∩H admits an ordinary degeneration.

Combining this with Proposition 4.2 one obtains

Corollary 4.4. Any smooth complete intersection in CPn which is non-
trivial (that is, not an intersection of hyperplanes) contains a Lagrangian
sphere.

Proof of Proposition 4.3. The idea is to construct the degeneration of X0

as a family of hypersurface sections of X. Let (Hλ)λ∈CP1 be a pencil of
hypersurfaces of degree d, with H0 = H. Consider

X(Hλ) = {(x, λ) ∈ X × CP1 | x ∈ Hλ}.

We will call the projection X(Hλ) −→ CP1 the fibration induced by (Hλ),
and denote it by π(Hλ). Recall that (Hλ) is called a Lefschetz pencil on X
if X(Hλ) is smooth and all critical points of π(Hλ) are nondegenerate. It is
a well-known fact that a generic pencil containing H0 is a Lefschetz pencil.
From a Lefschetz pencil for which π(Hλ) has at least one critical point one can
obtain an ordinary degeneration of X0, simply by restricting the fibration
to a suitable subset of CP1. It remains to show that such a Lefschetz pencil
exists.

Consider the set of pencils (Hλ) containing H, which have the following
property:

(N) There is a point (x, λ) ∈ X(Hλ) which is smooth and a nondegenerate
critical point of π(Hλ).

This is an open set because nondegenerate critical points persist under per-
turbations. Choose a point x ∈ X \H; we can assume that x = (1 : 0, . . . , 0),
and that the rational functions zi

z0
(i = 1, . . . r, where r = dimX) are co-

ordinates on a neighbourhood of x in X. It is not difficult to see that the
pencil generated by H and

zd−2
0

r∑

i=1

z2
i = 0

has property (N). By a small perturbation, we obtain a Lefschetz pencil with
the same property, hence one whose fibration has a critical point.

23



5 The irrational case

The second condition in Corollary 3.6 depends only on the Gromov-Witten
invariants which define the quantum product and the mod 2 homology class
of the Lagrangian sphere. These Gromov-Witten invariants carry rather less
information than one might expect; in fact, they vanish for a large class of
symplectic four-manifolds. A simple example of this phenomenon is

Lemma 5.1. Assume that the first Chern class of (M, ω) satisfies c1 = λ[ω]
for some λ ≤ 0. Then ∗ε = 0 for all ε > 0.

Proof. Let J be an ω-tame almost complex structure. For A ∈ H2(M ;Z),
we denote by Ms(A, J) the moduli space of simple J-holomorphic maps
w : CP1 −→ M representing A. The group PSL(2,C) of holomorphic auto-
morphisms of CP1 acts freely on Ms(A, J). According to the transversality
theorem for pseudo-holomorphic curves [20, Theorem 3.1.2] there is an ω-
tame almost complex structure J0 which is regular, that is, such that for any
A the quotient Ms(A, J0)/PSL(2,C) is a manifold of dimension 2c1(A)− 2
(here, as later on, we write c1(A) for 〈c1(TM, ω), A〉). By assumption, any A
with c1(A) > 0 satisfies ω(A) ≤ 0, henceMs(A, J0) = ∅. On the other hand,
Ms(A, J0)/PSL(2,C) = ∅ for all A with c1(A) ≤ 0 because its dimension
is negative. Since any nonconstant pseudo-holomorphic sphere is a multiple
cover of a simple one, it follows that there are no J0-holomorphic spheres
except for the constant ones. This implies that ∗ε = 0, by definition.

The vanishing of ∗ε for ε > 0 means that

c ∗ c′ = c ◦Λ c′

for all c, c′ ∈ QH∗(M, ω), where ◦Λ is the intersection product with Λ-
coefficients. In this case we say that the quantum product is undeformed.
More specifically, we say that the quantum product with a class X ∈
H∗(M ;Z/2) is undeformed if

X t0 ∗ c = X t0 ◦Λ c

for all c. For instance, the quantum product with [M ] is always undeformed.

As we have seen, there are situations in which the quantum product is unde-
formed because of the interplay between the nonnegativity of the energy of a
J-holomorphic sphere and the dimension formula for moduli spaces of such
spheres. Arguments of this kind can be applied to symplectic manifolds of
any dimension. For symplectic four-manifolds there is a much deeper theory
of pseudo-holomorphic curves, including Taubes’ results on the connection
between such curves and Seiberg-Witten invariants. McDuff [17] pointed
out that this theory has the following consequence:
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Theorem 5.2. Let (M,ω) be a compact symplectic four-manifold which is
not rational or the blowup of a ruled symplectic manifold. Let E1, . . . , Er be
a maximal family of disjoint embedded symplectic spheres in M with self-
intersection (−1). Then the quantum product with any class in

im(H∗(M \ (E1 ∪ · · · ∪Er);Z/2) −→ H∗(M ;Z/2)) (5.1)

is undeformed.

The proof of this theorem combines results of McDuff [19], Taubes [29] [30]
and Liu [16]. What the proof shows is that there is an ω-tame almost com-
plex structure J on M such that the exceptional curves Ej and their multiple
covers are the only non-constant J-holomorphic spheres. This implies the
result stated above.

Now we return to our discussion of Corollary 3.6. Information about when
the quantum product is undeformed is relevant for the following reason:

Lemma 5.3. Let (M,ω) be a compact symplectic four-manifold which con-
tains a Lagrangian sphere V . Assume that there are X,Y ∈ H2(M ;Z/2)
with the following properties:

(1) The quantum product with X and Y is undeformed;

(2) X · [V ] = 1;

(3) X, Y and [V ] are linearly independent elements of H2(M ;Z/2).

Then the QH∗(M, ω)-action on QH∗(M,ω)/Iv is not self-dual.

Proof. We will use the same notation for an element of QH∗(M,ω) and its
image in QH∗(M,ω)/Iv throughout the proof. This should not cause any
confusion.

Let v = [V ]t0, x = Xt0 and y = Y t0. By Lemma 3.2, Iv = Λv ⊕ Λ(v ∗ x).
Since the quantum product with X is undeformed, v ∗ x = [pt]t0 and hence

Iv = Λv ⊕H0(M ; Λ). (5.2)

Let 〈·, ·〉 be a graded Λ-bilinear form on QH∗(M, ω)/Iv which satisfies (3.3).
We have to prove that this form is degenerate. Let u = [M ]t0 be the unit
element of ∗. There is a nontrivial linear combination c (with coefficients in
Λ) of x and y such that

〈u, c〉 = 0.

Equation (5.2) and the fact that V , X and Y are linearly independent imply
that c /∈ Iv. To prove that 〈·, ·〉 is degenerate it is sufficient to show that
〈·, c〉 vanishes. Using the property (3.3) one sees that

〈b, c〉 = 〈b ∗ u, c〉 = 〈u, b ∗ c〉
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for all b ∈ QH∗(M,ω). Since the quantum product with c is undeformed,
b ∗ c ∈ Λc ⊕ H1(M ; Λ) ⊕ H0(M ; Λ) for all b. By construction, 〈u, c〉 =
0. 〈u,H1(M ; Λ)〉 vanishes because of the grading, and 〈u,H0(M ; Λ)〉 = 0
because H0(M ; Λ) goes to zero in QH∗(M, ω)/Iv. This proves that 〈u, b∗c〉 =
0 for all b.

Theorem 5.4. Let (M, ω) be a compact symplectic four-manifold, with
b1(M) = 0, which contains a Lagrangian sphere V . Assume that (M, ω)
is irrational, with minimal model

p : M −→ M.

Moreover, assume that dimH2(M ;Z/2) ≥ 3 and that [V ] ∈ H2(M ;Z/2)
does not lie in the kernel of p∗. Then (M, ω) admits an essential and fragile
symplectic automorphism.

Proof. Let E1, . . . , Er be the family of exceptional curves contracted by p.
The two-dimensional homology of M splits into H2(M ;Z/2) = ker(p∗)⊕R,
where

R = im(H2(M \ (E1 ∪ · · · ∪Er);Z/2) −→ H2(M ;Z/2))
∼= H2(M ;Z/2).

The two parts are orthogonal with respect to the intersection form. Since
[V ] /∈ ker(p∗), there is an X ∈ R such that [V ] ·X = 1. X 6= [V ] because V
has self-intersection (−2). Because dimR ≥ 3 we can find a third element
Y ∈ R such that [V ], X and Y are linearly independent. By Theorem 5.2,
the quantum product with X and Y is undeformed. Lemma 5.3 implies that
the QH∗(M, ω)-action on QH∗(M,ω)/Iv is not self-dual, and Corollary 3.6
completes the proof.

The Theorem 1.3 stated in the Introduction is the special case when (M, ω)
is minimal.

6 Three rational algebraic surfaces

In this section we consider the quadric and cubic hypersurfaces M2,M3 ⊂
CP3 and the intersection of two quadrics M2,2 ⊂ CP4. We denote the in-
duced symplectic forms by ω2, ω3 and ω2,2 respectively, and normalize them
in such a way that their cohomology class equals the first Chern class. Co-
rollary 4.4 shows that these three manifolds contain Lagrangian spheres. In
the case of M2, we can describe such a sphere explicitly: M2 is symplectically
isomorphic to CP1 × CP1, and the ‘antidiagonal’

∆ = {(x, y) ∈ CP1 × CP1 | x0x1 + y0y1 = 0}
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is a Lagrangian sphere.

The quadric is interesting for the following reason: the results of the previous
section show that on a large class of symplectic four-manifolds, the square of
any generalized Dehn twist is essential. One could ask whether this is always
true, and M2 provides a counterexample. In fact, Gromov’s theorem, which
we have quoted in the introduction, shows that π0(Aut(M2, ω2)) has order
two; hence the square of any generalized Dehn twist is symplectically isotopic
to the identity (for τ∆, this can be proved by an explicit isotopy). Running
Corollary 3.6 backwards, it follows that for any Lagrangian sphere V ⊂ M2,
the action of QH∗(M2, ω2) on QH∗(M2, ω2)/Iv is self-dual. It is instructive
to verify this directly, and we will do so now.

We will identify M2 = CP1 × CP1. Let

c4 = [M ]t0, c2 = [CP1 × pt]t0, c′2 = [pt× CP1]t0, c0 = [pt]t0

be the standard basis of QH∗(M2, ω2). The quantum product is determined
by the relations

c2 ∗ c2 = c′2 ∗ c′2 = c4 t2, c2 ∗ c′2 = c0.

Up to sign, [CP1 × pt] − [pt × CP1] is the only class in H2(M ;Z) with
self-intersection (−2). It follows that for any Lagrangian sphere V ,

Iv = Λ(c2 − c′2)⊕ Λ(c4 t2 − c0).

Define a symmetric bilinear form on QH∗(M2, ω2) by

〈b, c〉 = (c2 + c′2) ·Λ (b ∗ c) ∈ Λ,

where ·Λ denotes the intersection number with Λ-coefficients. An easy com-
putation shows that 〈·, Iv〉 = 0. Therefore 〈·, ·〉 induces a bilinear form on
QH∗(M2, ω2)/Iv. By definition, this form satisfies (3.3). The classes of c2

and c4 form a basis of QH∗(M2, ω2)/Iv; with respect to this basis, 〈·, ·〉 is
given by the invertible matrix

(
0 1
1 0

)
. This shows that the QH∗(M2, ω2)-

action on QH∗(M2, ω2)/Iv is self-dual.

The two other examples M3,M2,2 are del Pezzo surfaces: they are isomorphic
to CP2 blown up at six resp. five points in ‘general position’. We will treat
M3 and M2,2 simultaneously and refer to either manifold as (M, ω).

We denote the mod 2 Poincaré dual of c1(M) by K ∈ H2(M ;Z/2). Let
L ⊂ H2(M ;Z/2) be the subspace of classes X with K · X = 0. Because
K 6= 0 (for instance, K ·E = 1 for any exceptional divisor E), L is a subspace
of codimention one. The corresponding subspace L ⊗ Λ ⊂ QH∗(M, ω) will
be denoted by LΛ.

Let V ⊂ M be a Lagrangian sphere and v = [V ] t0 ∈ QH∗(M, ω).
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Lemma 6.1. Iv ∩ LΛ is one-dimensional (over Λ).

Proof. Iv ∩LΛ is not zero since the nontrivial class v lies in it. On the other
hand, Iv 6⊂ LΛ because for any W ∈ H2(M ;Z/2) with W · [V ] = 1 we have

W t0 ∗ v = [pt] t0 + (higher order terms)

and this does not lie in LΛ. This completes the proof because by Lemma
3.2 Iv is two-dimensional.

Proposition 6.2. LΛ ∗ LΛ ⊂ Iv.

We postpone the proof to an Appendix at the end of this section.

Theorem 6.3. For any Lagrangian sphere V ⊂ M , τ2
V is an essential and

fragile symplectic automorphism.

Proof. Assume that 〈·, ·〉 is a nondegenerate Λ-bilinear form on
QH∗(M,ω)/Iv which satisfies (3.3). As we saw in the proof of Lemma 5.3,
this implies that

〈b, c〉 = 〈[M ] t0, b ∗ c〉. (6.1)

Consider LΛ = LΛ/(LΛ∩Iv) ⊂ QH∗(M,ω)/Iv. Proposition 6.2 and equation
(6.1) imply that LΛ is an isotropic subspace for 〈·, ·〉. Because of the non-
degeneracy of the bilinear form, an isotropic subspace must satisfy

dimΛ LΛ ≤ 1
2 dimΛ QH∗(M,ω)/Iv. (6.2)

By Lemma 3.2, the r.h.s. of this inequality is

1
2 dimΛ QH∗(M, ω)/Iv = 1

2(dimH∗(M ;Z/2)− 2) =

{
7
2 M = M3,

3 M = M2,2.(6.3)

As mentioned above, dimΛ LΛ = dim H2(M ;Z/2)− 1. Lemma 6.1 says that
dimΛ LΛ = dimΛ LΛ − 1. Hence

dimΛ LΛ =

{
5 M = M3,

4 M = M2,2.
(6.4)

By comparing (6.3) with (6.4) one sees that the inequality (6.2) is viol-
ated for both M3 and M2,2. This shows that a bilinear form 〈·, ·〉 with
the properties stated above cannot exist, hence that the QH∗(M, ω)-action
on QH∗(M, ω)/Iv is not self-dual. Applying Corollary 3.6 completes the
proof.

We can now prove the Theorem 1.4 stated in the Introduction.
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Proof of Theorem 1.4. Let M ⊂ CPr be a complete intersection of type
d = (d1 . . . dr−2). We assume that r ≥ 3, di ≥ 2 and d 6= (2). This excludes
the trivial intersection CP2 and the quadric M2 = CP1 × CP1. Corollary
4.4 shows that M contains a Lagrangian sphere.

By the Lefschetz hyperplane theorem, M is simply connected; hence b1(M)=
0 and dimH2(M ;Z/2) = χ(M) − 2. The Euler characteristic of complete
intersections is well-known:

χ(M) =
1
2

(∏

i

di

) 


(∑

i

di − (r + 1)

)2

− (r + 1) +
∑

i

d2
i


 .

For r ≥ 4, we have −(r +1)+
∑

i d
2
i ≥ −(r +1)− 4(r− 2) ≥ 3 and therefore

χ(M) ≥ 1
22r−23 ≥ 6. For r = 3, χ(M) = d1[(d1 − 2)2 + 2] ≥ 9 because

d1 ≥ 3 by assumption. It follows that dimH2(M ;Z/2) ≥ 3.

The first Chern class of M is c1 = λ[ω] with λ = (r + 1)−∑
i di. The only

cases with λ > 0 are d = (3), (2, 2); these are the two del Pezzo surfaces
which we have studied before, see Theorem 6.3. In all other cases (M, ω) is
a minimal irrational surface and the result follows from Theorem 1.3. Note
that it is not really necessary to appeal to Theorem 5.2 to prove that the
quantum product is undeformed; Lemma 5.1 is sufficient.

Appendix: Proof of Proposition 6.2

The quantum product of M has been computed in [5] and [6]. Proposition
6.2 could be derived from this computation, but prefer a slightly less direct
route which uses only partial information about QH∗(M, ω).

Since [ω] = c1(M), the only nontrivial coefficients in the quantum product
on H2(M ;Z/2) are the intersection form

∗0 : H2(M ;Z/2)⊗H2(M ;Z/2) −→ H0(M ;Z/2) ∼= Z/2

and its first two ‘quantum corrections’

∗1 : H2(M ;Z/2)⊗H2(M ;Z/2) −→ H2(M ;Z/2),
∗2 : H2(M ;Z/2)⊗H2(M ;Z/2) −→ H4(M ;Z/2) ∼= Z/2.

The first quantum correction comes from the lines on M (there are 27 on
M3 and 16 on M2,2). It is not difficult to compute that

X ∗1 Y =

{
0 M = M3,

K(X · Y ) M = M2,2

(6.5)

for all X, Y ∈ L.
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The other property of ∗ which we will use is that it is invariant under the
action of the Weyl group W . Recall that the Weyl group is the (finite)
group of automorphisms of H2(M ;Z) which preserve the intersection form
and the Poincaré dual of c1. The invariance of ∗ under W can be read off
from the computations in the papers quoted above. (In order to understand
this geometrically one would have to prove that any element of W is induced
by a symplectic automorphism of (M, ω); this can probably be derived from
known results about Del Pezzo surfaces.) It is not difficult to see that L
is an irreducible W -module; therefore there is only one invariant quadratic
form on it, up to multiples. We conclude that ∗2 is either zero or equal
to the intersection form. Together with (6.5) this shows that there is an
a ∈ QH∗(M, ω) such that

x ∗ y = (x ·Λ y)a (6.6)

for all x, y ∈ LΛ.

There is a W ∈ L such that W · [V ] = 1. This can be proved as follows: since
the intersection form on H2(M ;Z/2) is unimodular and L = K⊥, W ·[V ] = 0
for all W ∈ L would imply that [V ] = K. Then the self-intersection number
of V would be congruent to c1(M)2 mod 4. But V · V = −2 whereas
c1(M3)2 = 3 and c1(M2,2)2 = 4.

According to (6.6),
v · (W t0) = ([V ] ·W )a = a;

and this shows that a ∈ Iv. From this and (6.6) it follows that LΛ∗LΛ ⊂ Iv.
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7 Floer homology as a functor

In this part we get to grips with the Floer homology groups HF∗(φ). Our
aim is to present some known properties of Floer homology in a certain
perspective and then to introduce a new extension of its structure. The
emphasis throughout will be on the functorial nature of Floer homology.
This aspect is not usually considered to be of much interest: homomorphisms
between Floer homology groups appear in one step of the construction of
Floer homology, but they all turn out to be isomorphisms. We choose to
make this part of the structure more explicit. This leads to a picture of
Floer homology as a functor on a category whose objects are symplectic
fibre bundles over S1 and whose morphisms are such fibre bundles over a
cylinder. This is part of a larger picture in which Floer homology appears as
a topological quantum field theory for symplectic fibre bundles over Riemann
surfaces, but the cylinder alone is sufficient for our purpose.

Up to that point, our description to Floer homology contains only known
results. The next step, however, is new: we extend the set of morphisms
from symplectic fibre bundles to a larger class of fibrations which may have
singular fibres of a simple kind. This introduces new induced maps between
Floer homology groups; one of these maps will be used in Part III to compute
the Floer homology of generalized Dehn twists.

This first section serves as an introduction. We begin by defining the ‘sym-
plectic fibre bundles’ which have been mentioned above.

Definition 7.1. Let B be a smooth manifold. A symplectic fibre bundle
over B is a smooth proper submersion π : E −→ B together with a closed
two-form Ω ∈ Ω2(E) whose restriction to any fibre Ez = π−1(z) is nonde-
generate.

Ω determines a connection on the fibre bundle E −→ B, that is, a ‘ho-
rizontal’ subbundle TEh ⊂ TE which is complementary to the ‘vertical’
subbundle TEv = ker(Dπ). It is defined by

TEh
x = (TEv

x)⊥ = {X ∈ TEx | Ω(X, Y ) = 0 for all Y ∈ TEv
x}.

We denote the horizontal lift of Z ∈ TB by Z\.

Lemma 7.2. The parallel transport Pγ : Eγ(0) −→ Eγ(1) along any path
γ : [0; 1] −→ B satisfies P ∗

γ (Ω|Eγ(1)) = Ω|Eγ(0).

Proof. Consider the family of parallel transports Pt = Pγ|[0;t] : Eγ(0) −→
Eγ(t). Since Ω is closed,

d

dt
(P ∗

t Ω) = P ∗
t (L(∂tγ)\Ω) = d

[
P ∗

t (i(∂tγ)\Ω)
]
.

But i(∂tγ)\Ω|Eγ(t) vanishes by definition. Hence P ∗
t Ω = Ω for all t.
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Remark 7.3. We have proved that (E, Ω|TEv) is a locally trivial family of
symplectic manifolds, that is, a fibre bundle whose structure group is the
symplectic automorphism group of (Ez, Ω|Ez). However Ω contains more
information than Ω|TEv (for instance, it determines the connection TEh).
Therefore the name ‘symplectic fibre bundle’ is not entirely appropriate; a
more accurate one might be ‘symplectic fibre bundle with a Hamiltonian
connection’.

From now on, it will be assumed that all fibre bundles which occur have
four-dimensional fibres. This dimensional condition does not have any fun-
damental importance; it arises from the technical details of our definition of
Floer homology, and could problably be removed by using more sophistic-
ated techniques.

In its formulation in terms of symplectic fibre bundles, Floer homology
theory assigns to every symplectic fibre bundle (T, Θ) over S1 a group
HF∗(T, Θ) which, as before, is a Z/2-graded Λ-vector space. Moreover,
every symplectic fibre bundle (E,Ω) over a cylinder Z = [s0; s1] × S1 de-
termines a graded homomorphism

Φ(E, Ω) : HF∗(Es0×S1 , Ωs0×S1) −→ HF∗(Es1×S1 , Ωs1×S1),

where (Esi×S1 ,Ωsi×S1) is the restriction of (E, Ω) to {si} × S1 ⊂ Z. These
objects have the following properties:

(Duality) Let ι : S1 −→ S1 be the orientation-reversing involution given
by ι(t) = −t for t ∈ S1 = R/Z (from now on we always identify S1

with R/Z). The pullback of a symplectic fibre bundle (T, Θ) over S1

by ι will be denoted by (T , Θ). For any (T, Θ) there is a canonical
graded bilinear map

〈·, ·〉(T,Θ) : HF∗(T , Θ)⊗HF∗(T, Θ) −→ Λ

which is non-degenerate. These pairings are symmetric in the sense
that

〈a, b〉(T,Θ) = 〈b, a〉(T ,Θ).

Let (E, Ω) be a symplectic fibre bundle over Z and (E, Ω) its pullback
by the involution of Z given by (s, t) 7−→ (s1 + s0 − s,−t). Then

〈a, Φ(E, Ω)b〉(Es1×S1 ,Ωs1×S1 ) = 〈Φ(E, Ω)a, b〉(Es0×S1 ,Ωs0×S1 ).

(Gluing) We divide Z = [s0; s1]× S1 into two parts Z− = [s0; s]× S1 and
Z+ = [s; s1]×S1 for some s ∈ (s0; s1). Let (E,Ω) be a symplectic fibre
bundle over Z and (E−,Ω−), (E+, Ω+) its restrictions to Z±. Then

Φ(E,Ω) = Φ(E+,Ω+) ◦ Φ(E−, Ω−).
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Moreover, the homomorphism induced by a product bundle [s0; s1]×
(T, Θ) is

Φ([s0; s1]× (T, Θ)) = idHF∗(T,Θ). (7.1)

(Deformation invariance) Let π : E −→ Z be a smooth proper submer-
sion and Ω0, Ω1 ∈ Ω2(E) two two-forms which turn it into a symplectic
fibre bundle. (E,Ω0) and (E, Ω1) are called deformation equivalent if

(1) Ω0|Ez = Ω1|Ez for all z ∈ Z,
(2) Ω0|Es0×S1 = Ω1|Es0×S1 and Ω0|Es1×S1 = Ω1|Es1×S1 , and if
(3) the cohomology class [Ω1−Ω0] ∈ H2(E, Es0×S1 ∪Es1×S1 ;R) van-

ishes.

The reason for this terminology is that (E, tΩ1 + (1− t)Ω0) is a sym-
plectic fibre bundle for t ∈ [0; 1]. (E,Ω0) and (E,Ω1) induce ho-
momorphisms of the same Floer homology groups; the deformation
invariance property says that these homomorphisms coincide.

We will now explain how the groups HF∗(φ) used in Part I are related to
this framework1. Let Tφ be the mapping torus of φ ∈ Aut(M,ω), that is,
the manifold obtained from R ×M by identifying (t, x) with (t − 1, φ(x)).
This manifold is canonically fibered over S1, and since φ is symplectic, the
pullback of ω to R ×M induces a closed two-form Θφ on Tφ. (Tφ, Θφ) is a
symplectic fibre bundle over S1 with fibre (M, ω); we define

HF∗(φ) = HF∗(Tφ,Θφ).

The quantum module structure on HF∗(φ) can also be defined in terms of
invariants of symplectic fibre bundles. This requires a certain generaliza-
tion of the homomorphisms Φ(E, Ω); we postpone this to section 10. We
will now consider the two basic properties (isotopy invariance and ‘Poin-
caré duality’) of HF∗(φ) used in section 3. These properties (at least, the
part which does not concern the multiplicative structure) can be reduced to
the properties of HF∗(T, Θ) and Φ(E,Ω) listed above. One case is simple:
(Tφ−1 , Θφ−1) is naturally isomorphic to (Tφ, Θφ), and hence ‘Poincaré dual-
ity’ is a consequence of the ‘duality’ property of HF∗(T, Θ). The argument
which derives the isotopy invariance of HF∗(φ) from the ‘gluing’ and ‘de-
formation invariance’ properties is more complicated; we preface it by some
remarks on symplectic fibre bundles.

Fix some φ ∈ Aut(M, ω). A function H ∈ C∞(Tφ,R) can be used to perturb
the form Θφ ∈ Ω2(Tφ) in the following way:

Θφ,H = Θφ − d(H dt),
1We remind the reader that (M, ω) denotes a compact symplectic four-manifold with

zero first Betti number.
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where dt is the pullback of the standard one-form on S1. By definition, Θφ,H

is closed and agrees with Θφ on each fibre of Tφ −→ S1. Hence (Tφ,Θφ,H) is
again a symplectic fibre bundle. These bundles can be identified with more
familiar objects by considering the Hamiltonian flow (φH

t )t∈R on M induced
by the pullback of H to R × M . This flow determines a diffeomorphism
pH : Tφ◦φH

1
−→ Tφ, given by pH(t, x) = (t, φH

t (x)). A straightforward
computation shows that p∗HΘφ,H = Θφ◦φH

1
. Hence (Tφ,Θφ,H) is isomorphic

to (Tφ◦φH
1

,Θφ◦φH
1

). We call φ ◦ φH
1 a Hamiltonian perturbation of φ.

Let us denote the product fibre bundle [s0; s1]×(Tφ, Θφ) −→ Z by (Eφ,Ωφ).
As in the case of Tφ, a function K ∈ C∞(Eφ,R) determines a perturbation

Ωφ,K = Ωφ − d(K dt) ∈ Ω2(Eφ).

The boundary values K0 = K|{0}×Tφ and K1 = K|{1}×Tφ determine the
symplectic fibre bundle (Eφ,Ωφ,K) up to deformation equivalence. Therefore
the homomorphism induced by (Eφ,Ωφ,K) depends only on K0,K1. We
denote it by

C(φ,K0,K1) : HF∗(Tφ, Θφ,K0) −→ HF∗(Tφ,Θφ,K1).

Using the ‘gluing’ property of Φ(E, Ω) and a suitable choice of K, it is not
difficult to prove that

C(φ, H, H) = id and C(φ,H, H ′′) = C(φ, H ′,H ′′) ◦ C(φ,H, H ′)

for all H,H ′, H ′′ ∈ C∞(Tφ,R). Hence all maps C(φ,H, H ′) are isomorph-
isms. In particular HF∗(Tφ,Θφ) ∼= HF∗(Tφ, Θφ,H) for any H.

We can now prove the isotopy invariance of HF∗(φ): let φ, φ′ be two auto-
morphisms of (M, ω) which are symplectically isotopic. Since H1(M,R) = 0
(it is here that this assumption becomes important) φ′ is a Hamiltonian per-
turbation of φ, say φ′ = φ ◦ φH

1 . Therefore

HF∗(φ′) = HF∗(Tφ, Θφ,H) ∼= HF∗(Tφ,Θφ) = HF∗(φ).

Remark 7.4. If φ and φ′ lie in the same component of Aut(M, ω), a func-
tion H ∈ C∞(Tφ,R) such that φ′ = φ ◦ φH

1 determines an isomorphism of
HF∗(φ) with HF∗(φ′). In general, this isomorphism depends on the choice
of H; there is no canonical isomorphism between the two Floer homology
groups.

Our point of view so far has been to view the groups HF∗(T, Θ) and the
maps Φ(E,Ω) as fundamental and to derive the Floer homology groups of
symplectic automorphisms and their properties from them. One might won-
der whether the groups HF∗(T, Θ) are in fact more general invariants than
HF∗(φ), or whether the ‘duality’, ‘gluing’ and ‘deformation invariance’ of
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HF∗(T, Θ) and Φ(E, Ω) say more about HF∗(φ) than what we have already
derived from them. The answer to the first question is negative because
every symplectic fibre bundle over S1 is isomorphic to some bundle (Tφ,Ωφ).
As to the second question, there is one more property of HF∗(φ) which we
have not mentioned up to now, its conjugation invariance, which can be
derived from the definition HF∗(φ) = HF∗(Tφ,Θφ). Apart from this, the
answer is again negative because every fibre bundle over a cylinder is iso-
morphic to (Eφ, Ωφ,K) for some φ and K. In particular, all maps Φ(E,Ω)
are isomorphisms.

Bibliographical note. Because of its application to the Arnol’d conjec-
ture, it is customary to define Floer homology only for automorphisms which
are Hamiltonian perturbations of the identity map. For an exposition of
the basic construction in this case, see the surveys [18] and [24]. To the
author’s knowledge, Floer homology for general symplectic automorphisms
appears in the literature only in the work of Dostoglou-Salamon [7] [8] on
the Atiyah-Floer conjecture. Their definition follows the approach of Floer
[9] and works for simply-connected monotone symplectic manifolds (of any
dimension). They also suggested that the definition could be generalized to
a larger class of symplectic manifolds using the ideas of Hofer-Salamon [14].
This is the method adopted here. As mentioned above, recent progress on
the Arnol’d conjecture seems to indicate that Floer homology can be defined
for automorphisms of any compact symplectic manifold.

Homomorphisms which are essentially equivalent to Φ(E,Ω) were introduced
by Floer [9] to prove isotopy invariance. A detailed exposition of his con-
struction can be found in [25, section 6]. The ‘topological quantum field
theory’ picture of Floer homology occurs in [22] and [27].

Almost holomorphic fibrations

The new structure on Floer homology which will be constructed in the next
sections involves a generalization of the concept of symplectic fibre bundle
in which the fibres are allowed to be singular, with singularities modelled on
singular points of holomorphic hypersurfaces.

Definition 7.5. Let (Σ, j) be a Riemann surface (possibly with boundary).
An almost holomorphic fibration over Σ consists of

(1) a smooth manifold E and a proper surjective map π : E −→ Σ whose
critical point set Crit(π) lies in π−1(intΣ);

(2) a closed two-form Ω ∈ Ω2(E) whose restriction to TEv
x = ker(Dπx) is

nondegenerate for any x ∈ E. Since TEv
x = TEx for x ∈ Crit(π), such

an Ω is symplectic in a neighbourhood of Crit(π).
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(3) an integrable almost complex structure J ′, defined in a neighbourhood
U of Crit(π) in E, compatible with Ω|U and with respect to which
π|U is a holomorphic function (strictly speaking, only the germ of J ′

at Crit(π) matters).

An ordinary almost holomorphic fibration is one such that the second dif-
ferential

(D2π)x : TEx ⊗C TEx −→ Tπ(x)Σ

at any point x ∈ Crit(π) is a nondegenerate complex quadratic form. In
particular, the critical points of such a fibration are isolated. The notion of
an ordinary almost holomorphic fibration bears an obvious resemblance to
the ‘ordinary degenerations’ used in section 4.

Let (E,Ω, J ′) be an ordinary almost holomorphic fibration over Z = [s0; s1]×
S1. Its boundary components (Es0×S1 , Ωs1×S1) (i = 0, 1) do not contain any
singular points, that is, they are symplectic fibre bundles. What we will do
is define induced maps

Φ(E, Ω, J ′) : HF∗(Es0×S1 , Ωs0×S1) −→ HF∗(Es1×S1 ,Ωs1×S1).

These maps generalize those induced by symplectic fibre bundles and satisfy
similar properties:

(Duality) The pullback of (E, Ω, J ′) by the holomorphic map Z −→ Z,
(s, t) 7−→ (s0 + s1 − s,−t) is again an ordinary almost holomorphic
fibration; we denote it by (E,Ω, J

′). The last part of the ‘duality’
property extends to almost holomorphic fibrations in a straightforward
way:

〈a,Φ(E,Ω, J ′)b〉(Es1×S1 ,Ωs1×S1 ) = 〈Φ(E, Ω, J
′)a, b〉(Es0×S1 ,Ωs0×S1 ).

(Gluing) This property extends to the maps Φ(E, Ω, J ′) provided that the
circle {s}×S1 ⊂ Z along which we cut Z does not contain any critical
values.

(Deformation invariance) This property holds for Φ(E, Ω, J ′) without
any essential modifications; to be precise, the situation in which de-
formation invariance holds is when there are two two-forms Ω0,Ω1

and a single almost complex structure J ′ such that (E, Ω0, J
′) and

(E, Ω1, J
′) are ordinary almost holomorphic fibrations.

The induced maps Φ(E,Ω, J ′) are the main topic of this Part. We proceed in
the following way: the next section sets out the basic notions used to define
Floer homology. In section 9 we state the definition of Floer homology
and of the maps Φ(E,Ω, J ′) and their main properties, without proof, and
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explain how these imply that the Floer homology groups are independent
of the various choices involved in their definition. Section 10 concerns the
quantum module structure and its relationship to the maps Φ(E,Ω, J ′). In
sections 11–15 we discuss some of the details involved in defining the maps
Φ(E, Ω, J ′). The reader who is not interested in these details can skip these
sections and proceed to Part III.

8 Preliminaries on sections

The Floer homology groups HF∗(T, Θ) and the homomorphisms Φ(E, Ω, J ′)
are defined in terms of two classes of sections with special properties: hori-
zontal sections of a symplectic fibre bundle over S1 and, more importantly,
J-holomorphic sections of an almost holomorphic fibration over a Riemann
surface. This section contains as much of the theory of these two classes
of sections as is necessary to formulate the definition of HF∗(T, Θ) and
Φ(E, Ω, J ′).

Horizontal sections

Definition 8.1. Let (E,Ω) be a symplectic fibre bundle over a manifold B.
A smooth section ν : B −→ E is horizontal if Dν(Z) ∈ TEh for all Z ∈ TB.

We will denote the set of such sections by H(E, Ω). An important property
of a horizontal section ν is that the pullback vector bundle ν∗(TEv, Ω|TEv)
carries a canonical symplectic connection ∇ν , defined as follows: let X ∈
C∞(TB) and Y ∈ C∞(ν∗TEv). Choose a Ỹ ∈ C∞(TEv) such that ν∗Ỹ =
Y ; we define

∇ν
X(Y ) = ν∗([X\, Ỹ ]).

Consider first the case Y = 0. Then [X\, Ỹ ]ν(z) is the derivative of Ỹ in
X\-direction at ν(z). Since X\ is tangent to ν and Ỹ vanishes along ν it
follows that ν∗([X\, Ỹ ]) = 0 for all Ỹ . This proves that in general, ∇ν

X(Y )
is independent of the choice of Ỹ . To prove that ∇ν is a connection we use
the standard formulae

[fW,Z] = f [W,Z]− (Z.f)W and
[W, gZ] = g[W,Z] + (W.g)Z

for W,Z ∈ C∞(TE) and f, g ∈ C∞(E,R). Set W = X\, Z = Ỹ and let f be
the pullback of a function h on B. Then (Ỹ .f)X\ = 0 because Ỹ is vertical.
This proves that ∇ν

hX(Y ) = h∇ν
XY and ∇ν

X(hY ) = h∇ν
X(Y )+ (X.h)Y . To

see that ∇ν is symplectic, consider

(∇ν
XΩ)(Y1, Y2) = ν∗

[
X\.Ω(Ỹ1, Ỹ2)− Ω([X\, Ỹ1], Ỹ2)− Ω(Ỹ1, [X\, Ỹ2])

]
.
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Since X\ is horizontal and Ỹk is vertical, Ỹ1.Ω(X\, Ỹ2) = Ỹ2.Ω(X\, Ỹ1) = 0
and Ω(X\, [Ỹ1, Ỹ2]) = 0. It follows that

(∇ν
XΩ)(Y1, Y2) = ν∗(dΩ(X\, Ỹ1, Ỹ2)) = 0.

Y ∈ C∞(ν∗TEv) is parallel for ∇ν iff [X\, Ỹ ] = 0 for all X. Hence the
parallel transport of ∇ν is given by the derivative of the symplectic parallel
transport on the fibre bundle E. This is another possible approach to ∇ν .

Consider a horizontal section ν of a symplectic fibre bundle (T, Θ) over S1.
The monodromy of ∇ν around S1 defines a symplectic linear map of the
vertical tangent space of T at ν(t) to itself for any t ∈ S1. We denote this
map by mν(t). The monodromy maps corresponding to different choices of
z are conjugate, and when only conjugation-invariant properties are con-
cerned, we will usually omit t from the notation. We call ν nondegenerate
if (id−mν) is invertible. (T, Θ) is called nondegenerate if all its horizontal
sections are nondegenerate. The degree deg(ν) ∈ Z/2 of a nondegenerate
horizontal section ν is defined by

deg(ν) =

{
0 det(id−mν) > 0,

1 det(id−mν) < 0
.

The meaning of these notions becomes clear if we consider the fibre bundle
(Tφ, Θφ). Sections of Tφ correspond to maps v : R −→ M which satisfy
v(t) = φ(v(t + 1)). Horizontal sections correspond to constant maps v(t) ≡
x ∈ M . Because of the periodicity condition, there is one such section
for every fixed point x of φ, and if ν denotes this section, mν is conjugate
to Dφ(x). Hence ν is nondegenerate iff x is a nondegenerate fixed point,
and (−1)deg(ν) is the local Lefschetz fixed point index of x. Because any
symplectic fibre bundle over S1 is isomorphic to (Tφ, Θφ) for some φ, one
can always think of horizontal sections of such a fibre bundle as fixed points:
for example, this is the most convenient way to prove that a nondegenerate
fibre bundle (T, Θ) has only finitely many horizontal sections.

Tubular ends

The setup which is used to actually define Floer homology differs from that
described in section 7 in several respects. One difference is that the finite
cylinders Z are replaced by the infinite cylinder C = R × S1. We begin by
considering a product bundle

(E,Ω) = R× (T, Θ) −→ C.

This bundle carries a natural action of R by translation. Let K be the
vector field which generates this action. It satisfies iKΩ = 0 because Ω is
the pullback of Θ under the quotient map E −→ E/R = T . This implies
that K is horizontal; it is the horizontal lift of the vector field ∂/∂s on C.
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Lemma 8.2. Any horizontal section of (E, Ω) is of the form

σ(s, t) = (s, ν(t)),

where ν is a horizontal section of T . Conversely, any section σ of this form
is horizontal.

Proof. If σ is a horizontal section, σ|{s} × S1 is a horizontal section of T
for all s ∈ R. On the other hand, ∂σ/∂s = K, which implies that σ is
translation-invariant. The proof of the converse is similar.

Instead of symplectic fibre bundles over Z as in section 7 we will use sym-
plectic fibre bundles over C which are isomorphic to product bundles outside
a compact subset:

Definition 8.3. Let (T−, Θ−) and (T+, Θ+) be symplectic fibre bundles
over S1. A symplectic fibre bundle over C with tubular ends modelled on
(T±,Θ±) is a symplectic fibre bundle (E,Ω), together with isomorphisms

η− : (−∞;−R]× (T−, Θ−) −→ (E,Ω)|(−∞;−R]× S1 and

η+ : [R;∞)× (T+, Θ+) −→ (E,Ω)|[R;∞)× S1
(8.1)

for some R > 0. Usually, we identify the image of η± directly with the
corresponding parts of R× (T±, Θ±) and do not mention the maps η±.

Choose a Riemannian metric g on E whose restriction to the tubular ends
is the product of the standard metric on (−∞;−R] or [R;∞) and of metrics
on T±. We denote its Levi-Civita connection by ∇g and its exponential map
by expg.

Let ν+ be a horizontal section of (T+, Θ+) and σ+ the corresponding ho-
rizontal section of E|[R;∞) × S1. We say that a section σ of E converges
exponentially to ν+ if there is an R′ ≥ R, a δ > 0, and a vector field
ξ+ ∈ (σ+)∗TEv with

|ξ+(s, t)|+ |∇gξ+(s, t)| ≤ e−δs, (8.2)

such that
σ(s, t) = expg

σ+(s,t)
(ξ+(s, t))

for all (s, t) ∈ [R′;∞) × S1. ν+ is called the positive limit of σ. Negative
limits, which are horizontal sections of (T−,Θ−), are defined in the same
way. A section with horizontal limits is one which has both a negative and
a positive limit. These are our ‘boundary conditions’ for sections of E.
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Energy and index

We will now define two numbers associated to a smooth section σ with
horizontal limits: its energy e(σ) ∈ R and its (Maslov) index ind(σ) ∈ Z.
The energy is very much the simpler one:

e(σ) =
∫

C
σ∗Ω.

This integral converges for the following reason: let ν+ be the horizontal
limit of σ. (ν+)∗Θ+ = 0 because any two-form on S1 vanishes. Let σ+ be
the section of E|[R;∞) × S1 to which σ is asymptotic, that is, σ+(s, t) =
(s, ν+(t)). This section satisfies [(σ+)∗Ω](s,t) = [(ν+)∗Θ+]t = 0. Because of
the decay condition (8.2), it follows that

|σ∗Ω|(s,t) ≤ Const.e−2δs

for s ≥ R′. Hence the integral
∫

σ∗Ω converges for s → ∞; the same holds
on the other end.

The index is defined for sections of E whose horizontal limits are nonde-
generate. Let σ be such a section, with limits ν−, ν+, whose asymptotic
behaviour is

σ(s, t) = expg
σ−(s,t)

(ξ−(s, t)) for s ≤ −R′ and

σ(s, t) = expg
σ+(s,t)

(ξ+(s, t)) for s ≥ R′.

with σ± and ξ± as above. Choose a cutoff function ψ ∈ C∞(R,R) with
ψ(s) = 1 for |s| ≤ R′ and ψ(s) = 0 for |s| ≥ R′ + 1. The partial sections σ±

of E are horizontal. Therefore the section

σ′(s, t) =





expg
σ−(s,t)

(ψ(s)ξ−(s, t)) s ≤ −R′

σ(s, t) −R′ ≤ s ≤ R′

expg
σ+(s,t)

(ψ(s)ξ+(s, t)) s ≥ R′

is horizontal at any point (s, t) ∈ C with |s| ≥ R′ + 1. From our dis-
cussion of horizontal sections it follows that the symplectic vector bundle
(σ′)∗(TEv, Ω|TEv) carries a canonical symplectic connection defined outside
[−R′− 1;R′+1]×S1 ⊂ C. Let ∇σ′ be an extension of that connection over
all of C. After choosing a trivialization of (σ′)∗(TEv, Ω|TEv) (any sym-
plectic vector bundle over C is trivial), the monodromy of ∇σ′ around the
circles {s} × S1 ⊂ C defines a smooth path

mσ′ : R −→ Sp(4,R).

which is locally constant for |s| ≥ R′ + 1. By construction mσ′(±(R + 1)) is
conjugate to mν± . Hence mσ′ |[−R′ − 1;R′ + 1] is a path whose endpoints
lie in the subset Sp(4,R)∗ of symplectic matrices A with det(id−A) 6= 0.
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The definition of the index of σ is based on an invariant of such paths called
the Maslov index. It can be characterized as follows: The Maslov index is
the unique map

µ : π1(Sp(2n,R),Sp(2n,R)∗) −→ Z

such that

(1) µ is additive under composition of paths.

(2) The path γ : [−1; 1] −→ Sp(2n,R), γ(t) = exp(J diag(t, 1, . . . 1)),
has Maslov index 1. The same holds if we replace diag(t, 1, . . . , 1)
by diag(t,−1, 1, . . . , 1).

The homotopy invariance implies that µ is conjugation invariant in the fol-
lowing sense: if γ : [0; 1] −→ Sp(2n,R) is a path with γ(0), γ(1) ∈ Sp(2n,R)∗

and θ : [0; 1] −→ Sp(2n,R) is an arbitrary path, the Maslov index of the
path γ′(t) = θ(t)γ(t)θ(t)−1 is equal to the Maslov index of γ. We refer to
[25, section 3] for an extensive discussion of the Maslov index (in a slightly
different form).

We can now define the index of a section σ with nondegenerate horizontal
limits:

ind(σ) = µ(mσ′ |[−R′ − 1;R′ + 1]).

µ(mσ′) is independent of the choice of trivialization of (σ′)∗(TEv, Ω|TEv)
because different choices lead to paths in Sp(4,R) which are conjugate. The
path mσ′ also depends on the choice of ∇σ′ and of σ′ itself, but the homo-
topy invariance of µ ensures that µ(mσ′) is independent of these choices.
Therefore ind(σ) is well-defined. We refer again to [25] for the proof of the
equality

ind(σ) ≡ deg(ν+)− deg(ν−) mod 2, (8.3)

where ν− and ν+ are the limits of σ.

J-holomorphic sections

Let (E, Ω) be a symplectic fibre bundle over a Riemann surface (Σ, j), with
projection π : E −→ Σ.

Definition 8.4. An almost complex structure J on E is partially Ω-tame if
π is (J, j)-linear (that is, Dπ◦J = j ◦Dπ) and Ω(X, JX) > 0 for all nonzero
X ∈ TEv.
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With respect to the splitting TE = TEv ⊕ TEh, a partially Ω-tame almost
complex structure has the form

J =
(

Jvv Jvh

0 Jhh

)
. (8.4)

Jhh is the almost complex structure on TEh which corresponds to j un-
der the isomorphism Dπ|TEh : TEh −→ π∗TΣ; Jvv is an almost complex
structure on TEv tamed by Ω|TEv, and Jvh : (TEh, Jhh) −→ (TEv, Jvv) is
a C-antilinear homomorphism. Conversely, every pair (Jvv, Jvh) with these
properties determines a partially Ω-tame almost complex structure.

Definition 8.5. Let J be a partially Ω-tame almost complex structure.
A smooth section σ : Σ −→ E is J-holomorphic if its differential Dσ :
(TΣ, j) −→ (TE, J) is C-linear.

Assume that Σ = C and that (E,Ω) has tubular ends modelled on (T±, Θ±).
We will use the following notation:

Notation. For J− ∈ J (T−, Θ−) and J+ ∈ J (T+, Θ+), J (E,Ω; J−, J+) is
the space of partially Ω-compatible almost complex structures on E which
agree with J− on E|(−∞;−R′]×S1 and with J+ on E|[R′;∞)×S1, for some
large R′. For J ∈ J (E, Ω;J−, J+), M(E, J) is the set of J-holomorphic
sections of E with horizontal limits. The subset of sections with limits
ν± ∈ H(T±,Θ±) will be denoted by M(E, J ; ν−, ν+), the subset of sections
with energy ε ∈ R by Mε(E, J) and the subset of sections with index k ∈ Z
by Mk(E, J) (the ambiguity of this notation will not cause any problems).
We will also use various intersections of these subsets, e.g. Mk(E, J ; ν−, ν+)
and Mk,ε(E, J ; ν−, ν+).

Product bundles

Let us return for a moment to the case of a product (E,Ω) = R × (T, Θ),
where (T, Θ) is a symplectic fibre bundle over S1. Such a product bundle
satisfies

Ω|TEh = 0.

To prove this it is sufficient (because TEh is two-dimensional) to find a
nowhere vanishing X ∈ C∞(TEh) such that iXΩ = 0. As mentioned above,
the vector field K generating the R-action has this property. We will now
introduce a particular class of almost complex structures on (E,Ω) which
are important for the definition of Floer homology groups.

Definition 8.6. J (T, Θ) is the space of almost complex structures J on
E = R× T with the following properties:
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(1) The map E −→ C is (J, j)-linear (here j is the standard complex
structure on R× S1);

(2) J is translation-invariant;

(3) Ω(·, J ·) is a symmetric bilinear form on TE which is positive definite
on the vertical subbundle TEv.

Because of the last condition, any J ∈ J (T, Θ) is an Ω-tame almost complex
structure. Moreover, such a J preserves the subbundles TEv, TEh ⊂ TE;
the first one is preserved by any Ω-tame almost complex structure, and since
the second one is orthogonal to the first one with respect to Ω, its invariance
under J follows from the fact that Ω(·, J ·) is symmetric. J(TEh) = TEh

implies that a horizontal section of E is J-holomorphic for any J ∈ J (T, Θ)
because for such a section σ, im(Dσz) = TEh

σ(z) is a J-linear subspace for
all z ∈ C.

J(TEh) = TEh means that

J =
(

Jvv 0
0 Jhh

)
(8.5)

with respect to TE = TEv ⊕ TEh, where Jhh is the horizontal lift of j and
Jvv is an Ω-compatible almost complex structure on TEv. Because J is
R-invariant Jvv is in fact given by a family of almost complex structures on
the fibres of T . For (T, Θ) = (Tφ, Θφ) it follows that J is determined by a
family (Jt)t∈R of ω-compatible almost complex structures on M such that
Jt = Dφ ◦ Jt+1 ◦Dφ−1 for all t.

Lemma 8.7. If J ∈ J (T, Θ), Ω(X, JX) ≥ 0 for all X ∈ TE, with equality
iff X ∈ TEh.

Proof. Let X = Xv +Xh be the vertical and horizontal parts of X. Because
J preserves TEv and TEh,

Ω(X,JX) = Ω(Xv, JXv) + Ω(Xh, JXh).

The second term vanishes because Ω|TEh = 0, and since J is Ω-tame,
Ω(Xv, JXv) ≥ 0, with equality iff Xv = 0.

Note that if J ∈ J (T, Θ) and σ is J-holomorphic, its translates

σr(s, t) = r · σ(s− r, t)

(· is the R-action by translation) are again J-holomorphic. If σ has hori-
zontal limits so do its translates; and the energy and index are invariant
under translation.
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Lemma 8.8. Let σ be a J-holomorphic section of E = R×T with horizontal
limits, for some J ∈ J (T, Θ). Then e(σ) ≥ 0 and the following conditions
are equivalent:

(i) e(σ) = 0;
(ii) σ is a horizontal section;
(iii) σ is translation-invariant;
(iv) there is an r ∈ R such that σr = σ.

If T is nondegenerate, any horizontal section σ has index zero.

Proof. The nonnegativity of the energy is a consequence of Lemma 8.7 and
so is the equivalence (i) ⇔ (ii). If σ is a horizontal section, ∂σ/∂s is the
horizontal lift of ∂/∂s, and therefore ∂σ/∂s = K. This shows that σ is
translation-invariant and hence that (ii) ⇒ (iii). (iii) ⇒ (iv) is obvious.
Finally, note that if σ = σr for some r, the form σ∗Ω is r-periodic and
(by Lemma 8.7) nonnegative. The integral

∫
C σ∗Ω is finite because σ has

horizontal limits; but the integral of a nonnegative periodic two-form on C
can only be finite if the form vanishes identically. This shows that (iv) ⇒
(i).

Finally, note that the definition of ind(σ) becomes much simpler for ho-
rizontal σ: one can choose σ′ = σ, and the path mσ′ is given by the
monodromies of ∇σ around {s} × S1. In our case, because σ has the form
σ(s, t) = (s, ν(t)) for some ν ∈ H(T, Θ), the path mσ′ is constant; a constant
path has zero Maslov index.

Sections of almost holomorphic fibrations

Definition 8.9. An almost holomorphic fibration over C with tubular ends
modelled on symplectic fibre bundles (T±, Θ±) over S1 consists of an almost
holomorphic fibration (E,Ω, J ′) over C and isomorphisms

η− : (−∞;−R]× (T−, Θ−) −→ (E,Ω)|(−∞;−R]× S1 and

η+ : [R;∞)× (T+, Θ+) −→ (E,Ω)|[R;∞)× S1

for some R > 0.

Everything we have said about sections of symplectic fibre bundles applies
equally to sections of such fibrations, for the following simple reason: a
smooth section σ can never go through a critical point of the map π : E −→
C. This is obvious: π ◦ σ = id implies Dπ◦ = id, which implies that Dπσ(z)

is onto for all z ∈ C.

In particular, we retain the definitions of TEv = ker(Dπ) and of TEh (note
that these are only vector bundles away from Crit(π)) and of the horizontal
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limits, energy and index of a section. The definition a partially Ω-tame
almost complex structure remains the same; however, for technical reasons,
we will use only those Ω-tame almost complex structures which agree with
J ′ in a neighbourhood of Crit(π). The space of such J will be denoted
by J (E,Ω, J ′), and the subspace of almost complex structures which agree
with J± ∈ J (T±, Θ±) outside a compact subset by J (E,Ω, J ′;J−, J+) ⊂
J (E, Ω, J ′).

9 The Floer chain complex and the induced ho-
momorphisms

Let (T, Θ) be a nondegenerate symplectic fibre bundle over S1. The Floer
chain group CF∗(T, Θ) is the Z/2-graded Λ-vector space freely generated by
the (finite) set of horizontal sections of (T, Θ), that is,

CFi(T, Θ) =
⊕

ν∈H(T,Θ)
deg(ν)=i

Λ <ν>

for i = 0, 1. Floer homology is the homology of a certain boundary operator
on CF∗(T, Θ). The definition of this boundary operator is based on deep
results about the spaces M(R × T, J) of J-holomorphic sections, for J ∈
J (T, Θ). These results are summarized in the next Theorem. Recall that
the spaces M(R×T, J) carry a natural action of R by translation; we denote
the quotients by M(R× T, J)/R.

Theorem 9.1. There is a dense subset Jreg(T, Θ) ⊂ J (T, Θ) such that any
J ∈ Jreg(T, Θ) has the following properties:

(1) For all ε ∈ R and ν−, ν+ ∈ H(T, Θ), M1,ε(R × T, J ; ν−, ν+)/R is a
finite set.

(2) For any ν−, ν+ and any C > 0, there are only finitely many ε ≤ C
such that M1,ε(R× T, J ; ν−, ν+) 6= ∅.

(3) Each of the sets M2,ε(R × T, J ; ν−, ν+)/R can be given the structure
of a smooth one-dimensional manifold. This manifold has a compac-
tification which is a compact one-dimensional manifold; the boundary
of this compactification is the disjoint union of the sets

M1,δ(R× T, J ; ν−, ν)/R×M1,ε−δ(R× T, J ; ν, ν+)/R,

where (ν, δ) runs over H(T, Θ)×R (the first two properties imply that
this boundary is a finite set).

46



Remark 9.2. We do not define Jreg(T, Θ) as the set of all almost com-
plex structures having property (1)–(3) (otherwise the results stated later
on, which involve Jreg(T, Θ), would be false). The correct definition of
Jreg(T, Θ) is given in section 11.

For J ∈ Jreg(T, Θ), ν−, ν+ ∈ H(T, Θ), and ε ∈ R, let nε(J ; ν−, ν+) ∈ Z/2
be the number of points mod 2 in M1,ε(R × T, J ; ν−, ν+)/R. Property (2)
of J implies that the formal sum

n(J ; ν−, ν+) =
∑

ε∈R
nε(J ; ν−, ν+)tε (9.1)

is an element of the Novikov field Λ. This ‘number’ can be thought of as
the ‘number of points’ in the (possibly infinite) set M1(R×T, J ; ν−, ν+)/R.
Lemma 8.8 implies that M1,ε(R × T, J ; ν−, ν+) = ∅ for all ε < 0. By the
same Lemma, this is true for ε = 0 as well: any J-holomorphic section
with zero energy is horizontal, and all horizontal sections have zero index.
Therefore all nonzero coefficients in (9.1) have positive exponents.

The Floer differential ∂(T, Θ;J) on CF∗(T, Θ) is defined by its values on
the generators <ν>:

∂(T, Θ;J)(<ν−>) def=
∑

ν+∈H(T,Θ)

n(J ; ν−, ν+) <ν+> .

Because the boundary of a compact one-manifold consists of an even number
of points, property (3) of J implies that

∑

δ∈R
ν∈H(T,Θ)

nδ(J ; ν−, ν)nε−δ(J ; ν, ν+) = 0.

for all ν−, ν+ and ε. This is equivalent to ∂(T, Θ;J) ◦ ∂(T, Θ;J) = 0.
The mod 2 formula (8.3) for the index of a section implies that M1(R ×
T ; ν−, ν+) = ∅ unless deg(ν−) 6= deg(ν+). Hence ∂(T, Θ;J) interchanges
the two groups CFi(T, Θ). This shows that (CF∗(T, Θ), ∂(T, Θ;J)) is a
Z/2-graded chain complex of Λ-vector spaces. In general the differential
∂(T, Θ;J) will depend on the choice of J .

Definition 9.3. Let (T, Θ) be a nondegenerate symplectic fibre bundle over
S1 and J ∈ Jreg(T, Θ). The Floer homology groups HFi(T, Θ;J) (i = 0, 1)
are the homology groups of the chain complex (CF∗(T, Θ), ∂(T, Θ;J)).

We outline briefly the ‘duality’ property of these groups. Let (T, Θ) be a
nondegenerate symplectic fibre bundle over S1 and (T , Θ) its pullback by
ι. There is a canonical bijection between the sets of horizontal sections on
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these two bundles. Using this bijection and the natural bases, one can define
a nondegenerate pairing

〈·, ·〉CF∗(T,Θ) : CF∗(T , Θ)⊗ CF∗(T, Θ) −→ Λ.

The bijection H(T, Θ) −→ H(T , Θ) preserves the degree; this is an element-
ary fact which follows from the equality

sign det(id−A) = sign det(id−A−1)

for any symplectic matrix A which does not have 1 as an eigenvalue. As a
consequence, the pairing 〈·, ·〉CF∗(T,Θ) is Z/2-graded. Take an almost com-
plex structure J ∈ Jreg(T, Θ), and let J be its pullback to R×T by the holo-
morphic involution (s, t) 7−→ (−s,−t) of C. Pulling back sections defines a
canonical bijection between the spacesM(R×T, J) andM(R×T , J). A look
at the definition of Jreg(T, Θ) given in section 13 reveals that J ∈ Jreg(T , Θ).
Using these facts, it is not difficult to prove that 〈·, ·〉CF∗(T,Θ) is a pairing of
chain complexes. Since the coefficient ring Λ is a field, the pairing induced
by 〈·, ·〉CF∗(T,Θ) on the Floer homology groups is nondegenerate.

Let (E,Ω, J ′) be an ordinary almost holomorphic fibration over C whose
tubular ends are modelled on nondegenerate fibre bundles (T−,Θ−) and
(T+,Θ+).

Theorem 9.4. For all J− ∈ Jreg(T−, Θ−) and J+ ∈ Jreg(T+,Θ+), there
is a dense subset Jreg(E, Ω, J ′; J−, J+) ⊂ J (E,Ω, J ′;J−, J+) such that any
J ∈ Jreg(E,Ω, J ′;J−, J+) has the following properties:

(1) For all ε ∈ R, ν− ∈ H(T−,Θ−) and ν+ ∈ H(T+,Θ+),
M0,ε(E, J ; ν−, ν+) is a finite set;

(2) For any ν−, ν+ and C ∈ R there are only finitely many ε ≤ C such
that M0,ε(E, J ; ν−, ν+) 6= ∅.

(3) Each of the sets M1,ε(E, J ; ν−, ν+) can be given the structure of a
smooth one-dimensional manifold. It has a compactification which is
a compact one-dimensional manifold with boundary, and the boundary
of this compactification is the disjoint union of

M0,δ(E, J ; ν−, ν)× (M1,ε−δ(R× T+, J+; ν, ν+)/R
)

(for ν ∈ H(T+, Θ+), δ ∈ R)

and
(M1,δ′(R× T−, J−; ν−, ν ′)/R

)×M0,ε−δ′(E, J ; ν ′, ν+)
(for ν ′ ∈ H(T−, Θ−), δ′ ∈ R).
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The almost complex structures J ∈ Jreg(E, Ω, J ′; J−, J+) will be called reg-
ular. As in the case of Jreg(T, Θ), Jreg(E, Ω, J ′; J−, J+) is not the set of all
J which have the properties listed above.

For J ∈ Jreg(E, Ω, J ′; J−, J+) and ν± ∈ H(T±, Θ±), let mε(J ; ν−, ν+) ∈
Z/2 be the number of points mod 2 in M0,ε(E, J ; ν−, ν+). Property (2)
implies that m(J ; ν−, ν+) =

∑
ε mε(J ; ν−, ν+)tε is an element of Λ. Let

CΦ(E,Ω, J ′; J) : CF∗(T−,Θ−) −→ CF∗(T+, Θ+) be the homomorphism
defined by

CΦ(E, Ω, J ′; J)(<ν−>) =
∑

ν+

m(J ; ν−, ν+) <ν+> .

The mod 2 formula for the index shows that M0(E, J ; ν−, ν+) = ∅ unless
deg(ν−) = deg(ν+); therefore CΦ(E,Ω, J ′; J) preserves the Z/2-grading. By
a straightforward computation, property (3) implies that CΦ(E, Ω, J ′; J) is
a homomorphism of chain complexes. This homomorphism depends on the
choice of J .

Definition 9.5. The homomorphism induced by CΦ(E, Ω, J ; J ′) will be de-
noted by

Φ(E,Ω, J ′; J) : HF∗(T−, Θ−; J−) −→ HF∗(T+,Θ+; J+).

Theorem 9.6. Φ(E, Ω, J ′; J) is independent of the choice of J .

The proof of this theorem could be formulated like the definition of the Floer
homology groups and of the homomorphism Φ; properties of the moduli
spaces M(E, Jt) for a suitably chosen one-parameter family (Jt)0≤t≤1 in
J (E, Ω, J ′; J−, J+) with endpoints J0, J1 ∈ Jreg(E, Ω, J ′; J−, J+) show that
CΦ(E,Ω, J ′; J0 and CΦ(E,Ω, J ′; J1) are chain homotopic. We omit the
precise statement.

From now on we will write Φ(E, Ω, J ′; J−, J+) instead of Φ(E, Ω, J ′; J); this
change of notation is justified by Theorem 9.6. Let (E,Ω) be a product
bundle R × (T, Θ), and choose a J0 ∈ Jreg(T, Θ). We will now sketch the
proof of

Φ(E, Ω;J0, J0) = idHF∗(T,Θ;J0). (9.2)

The key idea is to use the same almost complex structure J0 to define
the Floer chain complex and the induced map. It is obvious that J0 ∈
J (E, Ω;J0, J0). Moreover, J0 is regular, so that we can use it to define
it the chain homomorphism CF∗(T, Θ) −→ CF∗(T, Θ). We cannot prove
this here, but it follows easily by comparing Definition 11.10 and 11.11.
By Lemma 11.6, the J0-holomorphic sections of R× T with index zero are
precisely the horizontal ones, and all these sections have zero energy. For
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every ν ∈ H(T, Θ), there is exactly one horizontal section of E = R×T with
positive limit ν, and the negative limit of that section is also ν. It follows
that the chain homomorphism CΦ(E, Ω;J0, J0) is the identity.

The next result corresponds to the ‘gluing’ property of Floer homology
stated in section 7. We need to introduce some notation: let (E−,Ω−, J ′−)
and (E+, Ω+, J ′+) be two ordinary almost holomorphic fibrations over C.
Assume that the positive end of the first fibration is modelled on the same
symplectic fibre bundle as the negative end of the second fibration. After
choosing appropriate almost complex structures, we obtain induced maps

Φ(E−, Ω−, J ′−;J−, J0) : HF∗(T−,Θ−; J−) −→ HF∗(T 0, Θ0; J0) and

Φ(E+, Ω+, J ′+; J0, J+) : HF∗(T 0, Θ0; J0) −→ HF∗(T+, Θ+;J+).

After changing the coordinates on C by a translation, we can assume that
(E−, Ω−)|[−1;∞)× S1 = [−1;∞)× (T 0, Θ0) and (E+, Ω+)|(−∞; 1]× S1 =
(−∞; 1]×(T 0, Θ0). We use these identifications to glue together E−|R−×S1

and E+|R+ × S1; the result is a new ordinary almost holomorphic fibration
over C which we denote by

(E, Ω, J ′) = (E−, Ω−, J ′−)#(E+, Ω+, J ′+).

This fibration defines a homomorphism

Φ(E, Ω, J ′; J−, J+) : HF∗(T−, Θ−;J−) −→ HF∗(T+, Θ+; J+),

and the ‘gluing theorem’ for the induced maps is
Theorem 9.7.

Φ(E, Ω, J ′; J−, J+) = Φ(E+, Ω+, J ′+; J0, J+) ◦ Φ(E−,Ω−, J ′−; J−, J0).

The definitions of Floer homology groups and induced maps which we have
given seem to differ considerably from the presentation in section 7:

(a) The Floer homology groups have been defined only for nondegenerate
fibre bundles over S1.

(b) The definition involves an auxiliary choice of almost complex structure.

(c) Remarks similar to (a) and (b) apply to the induced maps Φ.

(d) We have not stated a result of the type of the ‘deformation invariance’
property in section 7.

All of these apparent differences can be overcome using Theorem 9.6 and
Theorem 9.7. We begin with (b). Let (T, Θ) be a nondegenerate symplectic
fibre bundle over S1 and J−, J+ two almost complex structures in Jreg(T, Θ).
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We denote the product bundle R × (T, Θ) by (E, Ω). An almost complex
structure J ∈ Jreg(E, Ω;J−, J+) determines a homomorphism

HF∗(T, Θ;J−) −→ HF∗(T, Θ;J+).

Let us denote this homomorphism (which is independent of the choice of J
by Theorem 9.6) by Φ(J−, J+). Equation (9.2) says that Φ(J0, J0) = id for
all J0 ∈ Jreg(T, Θ), and Theorem 9.7 says that

Φ(J0, J+) ◦ Φ(J−, J0) = Φ(J−, J+).

This shows that for different choices of J , the groups HF∗(T, Θ;J) are iso-
morphic, and in fact canonically isomorphic. This makes it possible to define
Floer homology groups HF∗(T, Θ) (for nondegenerate (T, Θ)) which do not
depend on a choice of almost complex structure.

The next issue which we will discuss is (d). Let (E, Ω, J ′) be an ordinary
almost holomorphic fibration with nondegenerate tubular ends modelled on
(T±,Θ±). Choose J± ∈ Jreg(T±,Θ±). Let Ω′ be another closed two-form
on E such that

(1) Ω(X, Y ) = Ω′(X, Y ) for all X, Y ∈ TEv,

(2) Ω = Ω′ outside some compact subset,

(3) [Ω− Ω′] ∈ H2
c (E;R) is trivial, and

(4) Ω′ is compatible with J ′ on some neighbourhood of the critical point
set of E −→ C.

Then (E, Ω′, J) is an ordinary almost holomorphic fibration. Moreover

J (E, Ω′, J ′;J−, J+) = J (E, Ω, J ′; J−, J+)

and the subsets of regular almost complex structures are also the same for
Ω and Ω′ (this follows from Definition 11.11). Moreover, and for this the
assumption (3) is crucial, any section σ of E with horizontal limits has the
same energy and index with respect to Ω and with respect to Ω′. It follows
that

CΦ(E, Ω′, J ′; J) = CΦ(E, Ω, J ′;J)

for any regular J , and this is the result corresponding to the ‘deformation
invariance’ property of section 7.

Now consider problem (a). We have explained how to define Floer homology
groups HF∗(T, Θ) which are independent of the choice of an almost complex
structure for all nondegenerate (T, Θ). As in section 7, the deformation
invariance provides canonical isomorphisms between different perturbations
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(T, Θ − d(Hdt)) and (T, Θ − d(H ′dt)) (H, H ′ ∈ C∞(T,R) of a symplectic
fibre bundle (T, Θ). Such a canonical isomorphism exists whenever both
perturbed bundles are nondegenerate, regardless of whether (T, Θ) itself is
nondegenerate or not. Hence, for an arbitrary (T, Θ), we can define

HF∗(T, Θ) def= HF∗(T, Θ− d(Hdt))

where the r.h.s. is nondegenerate. The existence of an H such that (T, Θ−
d(Hdt)) is a nondegenerate symplectic fibre bundle can be proved using some
elementary symplectic geometry: in fact, viewing (T, Θ) as a mapping torus
reduces the problem to the assertion that any symplectic automorphism has
a Hamiltonian perturbation whose fixed points are all transverse.

The remaining problem (c) is similar to (a) and we will not discuss it.

10 The quantum module structure

This section describes, in the informal style of section 7, the quantum mod-
ule structure on Floer homology and its relationship to the induced maps
Φ(E, Ω, J ′). The basic objects which we will consider are ordinary almost
holomorphic fibrations (E, Ω, J ′) over a cylinder Z = [s0; s1]× S1, together
with a finite family (z1, . . . zr) of points of Z which are regular values of the
map E −→ Z. The quantum module product on Floer homology is a spe-
cial case of a more general multiplicative structure: any (E,Ω, J ′, z1, . . . , zr)
defines a homomorphism

Φr(E,Ω, J ′; z1, . . . , zr) :

(
r⊗

i=1

QH∗(Ezi ,Ω|Ezi)

)
⊗

⊗HF∗(Es0×S1 ,Ωs0×S1) −→ HF∗(Es1×S1 , Ωs1×S1) (10.1)

of Z/2-graded Λ-modules. Here QH∗(Ezi , Ω|Ezi) stands just for the homo-
logy of Ezi with coefficients in Λ; we have made no assertion about the
relationship of these maps with the ring structure of QH∗(Ezi ,Ω|Ezi). We
call the maps Φk relative Gromov-Witten invariants. The simplest ones
(r = 0) are equal to the induced maps Φ(E, Ω, J ′) which we have introduced
before.

Notation. In the special case of a symplectic fibre bundle, there is no
almost complex structure J ′ and we will denote the homomorphisms by
Φr(E,Ω; z1, . . . , zr). A similar convention (of simply omitting J ′ from the
notation if there are no critical points) will also be followed in other occa-
sions.

The relative Gromov-Witten invariants satisfy properties analogous to those
of Φ:

52



(Duality) Let (E,Ω, J
′) be the pullback of (E, Ω, J ′) by the involution

(s, t) 7−→ (s1+s0−s, t) and z̄i the preimage of zi under this involution.
Then

〈a,Φr(E,Ω; z1, . . . , zr)(c1, . . . , cr, b)〉(Es1×S1 ,Ωs1×S1 ) =

〈Φr(E, Ω; z̄1, . . . , zr)(c1, . . . , cr, a), b〉(Es0×S1 ,Ωs0×S1 )

for all a ∈ HF∗(Es1×S1 , Ωs1×S1), b ∈ HF∗(Es0×S1 , Ωs0×S1) and ci ∈
QH∗(Ezi , Ω|Ezi) = QH∗(E z̄i ,Ω|E z̄i).

(Gluing) Divide Z = [s0; s1] × S1 into two parts Z− = [s0; s] × S1 and
Z+ = [s; s1] × S1 for some s ∈ (s0; s1). Let (E,Ω, J ′) be an ordinary
almost holomorphic fibration over Z such that every point in {s}×S1 is
a regular value of this fibration. We denote the restrictions of (E, Ω, J ′)
to Z± by (E−, Ω−, J ′−) and (E+, Ω+, J ′+). Choose points z1, . . . , zs ∈
Z+ and zs+1, . . . , zr ∈ Z−. Then

Φr(E, Ω, J ′; z1, . . . , zr)(c1, . . . cr, a) =
Φs(E+,Ω+, J ′+; z1, . . . , zs)(c1, . . . , cs,

Φr−s(E−, Ω−, J ′−; zs+1, . . . , zr)(cs+1, . . . cr, a)).

(Deformation invariance) This property has the same form as the cor-
responding one for Φ; we omit the exact statement.

In addition, the invariants Φr have two new properties which describe the
effect of changing the marked points.

(Inserting a marked point)

Φr(E,Ω, J ′; z1, . . . , zr) = Φr+1(E, Ω, J ′; z0, . . . zr)(u, . . . ),

where u = [Ez0 ]t
0 ∈ QH∗(Ez0 , Ω|Ez0) is the ‘fundamental class’ of Ez0 .

(Moving the marked points) Let (E, Ω, J ′) be an ordinary almost holo-
morphic fibration over Z and Zreg ⊂ Z the set of its regular values.
Take two sets z1, . . . , zr ∈ Zreg and z′1, . . . z

′
r ∈ Zreg of marked points,

and choose paths γ1, . . . , γr : [0; 1] −→ Zreg which connect zi with z′i
(this is always possible since the complement of Zreg is finite). Let
Pi : Ezi −→ Ez′i be the symplectic parallel transport along γi. This
induces maps on the homology of the fibres with Λ-coefficients, which
we denote by (Pi)∗ : QH∗(Ezi ,Ω|Ezi) −→ QH∗(Ez′i ,Ω|Ez′i). Then

Φr(E, Ω, J ′; z1, . . . , zr)(c1, . . . , cr, a) =
Φr(E,Ω, J ′; z′1, . . . , z

′
r)((P1)∗(c1), . . . , (Pr)∗(cr), a).
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The map (Pi)∗ depends on the path γi; paths which are not isotopic in
Zreg may lead to different induced maps. The ‘moving the marked points’
property is valid for any choice of paths and hence imposes a non-trivial
restriction on the homomorphisms Φr. We will return to this later on in a
special case.

We will now define the quantum module structure on HF∗(φ) in terms of
the relative invariants. Let φ be an automorphism of (M, ω), (Tφ, Θφ) its
mapping torus and (Eφ,Ωφ) = [0; 1]× (Tφ,Θφ). Recall that Tφ is a quotient
of R × M . The inclusion M = {0} × M ⊂ R × M and the projection
R × M −→ Tφ determine a symplectic isomorphism Fφ : M −→ (Tφ)0,
where (Tφ)0 denotes the fibre over 0 ∈ S1. Let z0 = (0, 0) ∈ [0; 1] × S1.
Clearly (Eφ)z0 = (Tφ)0. The quantum module product is defined by

x ∗̂ y = Φ1(Eφ,Ωφ; z0)((Fφ)∗(x), y)

for x ∈ QH∗(M, ω) and y ∈ HF∗(φ). It is not at all obvious that this makes
HF∗(φ) into a module over (QH∗(M,ω), ∗); the fact that this is true, or
more concretely, the equality

x1 ∗̂(x2 ∗̂ y) = (x1 ∗ x2) ∗̂ y

is a theorem of Piunikhin, Salamon, and Schwarz. We will not attempt to
explain the proof of this theorem since our present framework is not suitable
for that. The fact that HF∗(φ) is a unital QH∗(M,ω)-module, that is,
[M ]t0 ∗̂x = x for all x, is much simpler to prove; it follows from the formula
for inserting a new marked point and the fact that the Φ-homomorphism of
a product bundle is the identity map.

Using the properties stated above, it can be proved (roughly speaking) that
all the maps Φ(E,Ω, J ′) are homomorphisms of modules over QH∗(M, ω).
A precise statement is

Proposition 10.1. Let (E,Ω, J ′) be an ordinary almost holomorphic fibra-
tion over Z = [s0; s1] × S1 whose regular fibres are isomorphic to (M,ω).
Let φ0, φ1 be automorphisms of (M, ω), and assume that we have fixed iso-
morphisms of their mapping tori with the boundary components of E:

(Tφi , Θφi) = (Esi×S1 ,Ωsi×S1). (10.2)

Let P : E(s0,0) −→ E(s1,0) be the symplectic parallel transport along any path
in Z from (s0, 0) to (s1, 0) which lies outside the set of critical values of
E −→ Z. We denote the symplectic automorphism

M
Fφ0−→ (Tφ0)0 = E(s0,0)

P−→ E(s1,0) = (Tφ1)0
F−1

φ1−→ M

by P ′. Then

Φ(E, Ω, J ′)(x ∗̂ y) = P ′
∗(x) ∗̂Φ(E, Ω, J ′)(y)

for all x ∈ QH∗(M, ω) and y ∈ HF∗(φ0).
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Sketch of the proof. Using the deformation equivalence of Φ(E,Ω, J ′) one
can reduce the statement to the case where (E, Ω, J ′) has the following
property: there is an ε > 0 such that the restriction of (E, Ω) to [s0; s0 +
ε] × S1 is isomorphic to [s0; s0 + ε] × Tφ0 , and such that its restriction to
[s1− ε; s1]×S1 is isomorphic to [s1− ε; s1]×Tφ1 ; both isomorphisms will be
extensions of those in (10.2). We divide (E,Ω, J ′) into the part (E−, Ω−)
lying over [s0; s0 + ε], the part (E+,Ω+) lying over [s1 − ε; s1], and the part
(E0, Ω0, J

′
0) over [s0 + ε; s1 − ε] which contains all the critical points of the

fibration. (E±, Ω±) are product fibre bundles, and therefore Φ(E±, Ω±) =
id. Because of the gluing property of Φ, this implies that

Φ(E, Ω, J ′) = Φ(E+,Ω+) ◦ Φ(E0, Ω0, J
′
0) ◦ Φ(E−,Ω−)

= Φ(E0, Ω0, J
′
0).

Let z0 = (s0, 0) ∈ Z. Using the gluing property of Φ1, one sees that

Φ(E, Ω, J ′)Φ1(E−, Ω−; z0)(x, y) =

= Φ(E0, Ω0, J
′
0)Φ1(E−, Ω−; z0)(x, y)

= Φ(E+, Ω+)Φ(E0,Ω0, J
′
0)Φ1(E−, Ω−; z0)(x, y)

= Φ1(E,Ω, J ′; z0)(x, y).
(10.3)

By moving the marked point to z1 = (s1, 0) one obtains

Φ1(E,Ω, J ′; z0)(x, y) = Φ1(E, Ω, J ′; z1)(P∗(x), y).

Reversing the reasoning of (10.3) with z1 instead of z0 leads to the equation

Φ1(E,Ω, J ′; z1)(P∗(x), y) = Φ1(E+, Ω+; z1)(P∗(x), Φ(E, Ω, J ′)(y));

therefore

Φ(E,Ω, J ′)Φ1(E−, Ω−; z0)(x, y) = Φ1(E+, Ω+; z1)(P∗(x), Φ(E,Ω, J ′)(y)).

Because (E−, Ω−) and (E+, Ω+) are product bundles, Φ1(E−,Ω−; z0)(x, ·) is
the quantum module product with (F−1

φ0
)∗(x), and Φ1(E+,Ω+; z1)(P∗(x), ·)

is the quantum module product with (F−1
φ1

)∗(P∗(x)). This completes the
proof.

One application of Proposition 10.1 is to the fibre bundles (Eφ, Ωφ,K) which
were defined in section 7. Because the action of the parallel transport P on
homology does not depend on Ω at all, it is easy to see that the isomorphisms

C(φ,K0,K1) : HF∗(φ ◦ φK0
1 ) −→ HF∗(φ ◦ φK1

1 )

defined by these fibre bundles are isomorphisms of QH∗(M, ω)-modules.
This has the important consequence (stated as one of the basic properties
of Floer homology in Part I) that the Floer homology groups of two sym-
plectically isotopic automorphisms of (M, ω) are isomorphic as QH∗(M, ω)-
modules.
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Proposition 10.2. The quantum product on HF∗(φ) satisfies

x ∗̂ y = φ∗(x) ∗̂ y

for all x ∈ QH∗(M, ω) and y ∈ HF∗(φ).

Sketch of the proof. Let (Eφ, Ωφ) be the product bundle [0; 1]×(Tφ,Θφ) and
Fφ : M −→ (Eφ)(0,0) the isomorphism defined above. Let

P : (Eφ)(0,0) −→ (Eφ)(0,0)

be the symplectic monodromy around the loop {0} × S1. By moving the
marked point z0 = (0, 0) around this loop one obtains

x ∗̂ y = Φ1(Eφ,Ωφ; z0)((Fφ)∗(x), y) =

Φ1(Eφ,Ωφ; z0)((P ◦ Fφ)∗(x), y) = (F−1
φ ◦ P ◦ Fφ)∗(x) ∗̂ y.

It is clear from the definition of Tφ that F−1
φ ◦ P ◦ Fφ = φ.

We will now briefly outline the definition of the invariants Φr in the frame-
work of section 9. For simplicity, we consider only the case r = 1. Let
(E,Ω, J ′) be an ordinary almost holomorphic fibration over C = R×S1 with
tubular ends modelled on nondegenerate symplectic fibre bundles (T±, Θ±).
Choose J± ∈ Jreg(T±, Θ±) and a J ∈ J (E, Ω, J ′; J−, J+). Let z ∈ C be
a regular value of E −→ C and X ⊂ Ez a ‘cycle’ representing some d-
dimensional mod 2 homology class in Ez. There are several possibilities for
the kinds of ‘cycles’ one can use; the simplest method (due to Schwarz) seems
to be to use the unstable manifolds of a Morse function as cycles. Here, to
simplify matters, we will assume that X is an embedded submanifold. For
ν± ∈ H(T±,Θ±), ε ∈ R and k ∈ Z, let

Mk,ε(E, J ; ν−, ν+, X) ⊂Mk,ε(E, J ; ν−, ν+)

be the subset of sections σ such that σ(z) ∈ X. This subset is the preimage
of X under the evaluation map

evz : Mk,ε(E, J ; ν−, ν+) −→ Ez.

Therefore it is plausible that (at least in a generic situation) it should be a
submanifold of Mk,ε(E, J ; ν−, ν+) of codimension 4 − d. In turns out that
this is true: moreover, for generic J , the spaces M4−d,ε(E, J ; ν−, ν+, X) are
finite and the formal sum

p(ν−, ν+) =
∑

ε

#M4−d,ε(E, J ; ν−, ν+, X)tε
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(# denotes the number of points mod 2) is an element of Λ. Let m :
CF∗(T−,Θ−) −→ CF∗(T+, Θ+) be the homomorphism given by

m(<ν−>) =
∑

ν+

p(ν−, ν+) <ν+> .

For generic J , m is a chain homomorphism. The induced homomorphism
of Floer homology groups defines Φ1(E,Ω, J ′; z)([X]t0, ·). Of course it is
necessary to show that this is independent of J and of the cycle representing
[X].

Bibliographical note. The ‘quantum module structure’ appears already
in Floer’s work [9]. It has been used by LeHong-Ono [15] and by Schwarz
[26] in connection with the Arnol’d conjecture. The paper of Schwarz is the
first one in which the product is defined for a broad class of symplectic man-
ifolds. The fact that this product makes Floer homology into a module over
the quantum homology ring was proved by Piunikhin, Salamon and Schwarz
[22]. We have borrowed their idea that the quantum module product is a
special case of a more general ‘relative invariant’. [22] also describes the rela-
tionship between the quantum module product and various other definitions
of products on Floer homology.

We have now completed our survey of Floer homology and of its functorial
and product structures. To carry out the details of this construction and
prove the properties we have stated is a major tour de force in nonlinear
analysis. The principal steps of this programme are:

(1) Theorem 9.1, which summarizes the analytic results underlying the
definition of the Floer chain complex.

(2) The analogous result (Theorem 9.4) used to define the induced maps.

(3) The gluing theorem and the invariance under a change of the almost
complex structure (Theorems 9.6 and 9.7). These are not only basic
properties of Floer homology, but (as explained in section 9) they are
necessary even to make the Floer homology groups independent of the
choice of almost complex structures.

(4) The construction of the relative Gromov-Witten invariants Φr and the
proof of their basic properties stated above.

As has been mentioned before, some of these topics are alrady covered in
the literature. Usually, the framework is that of Floer homology for sym-
plectic automorphisms which are Hamiltonian perturbations of the identity,
but the proofs remain essentially the same in the general framework. In
particular, (1) is an adaptation of the work of Hofer and Salamon [14]. The
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other items are known in the case of symplectic fibre bundles; what is new is
the generalization to almost holomorphic fibrations. However, a large part
of the construction is not affected by this generalization. To be precise, a
new problem appears only at one point, namely, when studying the compac-
tification of the moduli spaces Mk,ε(E, J ; ν−, ν+). This new problem is the
deformation theory for pseudo-holomorphic spheres which lie in a singular
fibre of E: since this fibre is not a symplectic manifold, the usual trans-
versality theory does not apply. This problem occurs at each of the steps
(2)–(4) and it can be solved in the same way each time. For this reason
we will not even attempt to discuss all of the four steps listed above. We
will concentrate instead on (2), that is, the proof of Theorem 9.4, which is
the most basic one. Even there, we will only outline the greatest part of
the argument, and only the part which contains the new problem described
above will be treated in detail.

To prove Theorem 9.4, we proceed as follows: first we define the subset
Jreg(E, Ω, J ′; J−, J+) ⊂ J (E,Ω, J ′; J−, J+); this is done in the next sec-
tion. Then we prove that any almost complex structure in this subset has the
properties described in that Theorem; the arguments which yield these prop-
erties are outlined in section 12. Finally we prove that Jreg(E,Ω, J ′;J−, J+)
is dense. This is the part which we will discuss in detail, and it occupies
sections 13–15.

11 Regular J-holomorphic sections

In this section we review the local properties of the spaces of J-holomorphic
sections with horizontal limits. The most important concept is that of a
regular J-holomorphic section. Having introduced that we define the sets
Jreg(T, Θ) and Jreg(E,Ω, J ′;J−, J+) which occur in Theorem 9.1 and The-
orem 9.4. Throughout this section, (E,Ω, J ′) denotes an almost holomorphic
fibration over C with tubular ends modelled on nondegenerate symplectic
fibre bundles (T±, Θ±), with projection π : E −→ C.

Let J be a partially Ω-tame almost complex structure on E. There is a
differential operator

D∂̄J(σ) : C∞(σ∗TEv) −→ C∞(σ∗TEv)

canonically associated to any J-holomorphic section σ. We will give three
equivalent definitions of this operator. The first one is based on the fact
that a smooth section τ of E is J-holomorphic iff the expression

∂̄J(τ) =
∂τ

∂s
+ J(τ)

∂τ

∂t

vanishes. Because π is (J, j)-linear, Dπ(J ∂τ
∂t ) = −Dπ(∂τ

∂s ); therefore ∂̄J(τ)
is a section of the pullback bundle τ∗TEv.
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Definition 11.1. Let σ be a J-holomorphic section of E and X a com-
pactly supported smooth section of the vector bundle σ∗TEv −→ C. Choose
a smooth family (σr)0≤r<ε of sections of E with σ0 = σ and such that
∂σr/∂r = X at r = 0. Then

D∂̄J(τ)X =
∂

∂r

[
∂̄J(σr)

]
,

where the derivative is taken at r = 0.

To be precise, this definition should be worded as follows: the family (σr)
defines a map Σ : [0; ε) × R × S1 −→ E. (∂̄J(σr))0≤r<ε is a section of
Σ∗TEv which vanishes at any point (r, s, t) with r = 0. Therefore we can
form the derivative of this section in r-direction at such points (without any
choice of connection). It is not obvious from Definition 11.1 that D∂̄J(τ)X is
independent of the choice of (σr). To prove this, choose a Riemannian metric
on E and let ∇ be its Levi-Civita connection. Because this connection is
torsion-free and [∂rσr, ∂sσr] = [∂rσr, ∂tσr] = 0, we have

D∂̄J(σ)X =
∂

∂r

(
∂σr

∂s
+ J(σr)

∂σr

∂t

)

= ∇X

(
∂σr

∂s

)
+ J(σr)∇X

(
∂σr

∂t

)
+ (∇XJ)

∂σ

∂t

= ∇ ∂σ
∂s

X + J(σ)∇ ∂σ
∂t

X + (∇XJ)
∂σ

∂t
. (11.1)

This proves that D∂̄J(σ)X is independent of the choice of σr and also that
D∂̄J(σ) is a differential operator. Alternatively, equation (11.1) can be used
as the definition of D∂̄J(σ), and then the argument above shows that it is
independent of the choice of ∇ and that the r.h.s. of (11.1) is a section of
σ∗TEv ⊂ σ∗TE (this is not obvious because ∇ may not preserve TEv).

The third definition of D∂̄J(σ) is this: choose S̃ ∈ C∞(TE) and X̃ ∈
C∞(TEv) which extend the vector fields ∂σ/∂s and X defined along σ.
Using the torsion-freeness of ∇ one sees that

∇ ∂σ
∂s

X = ∇
X̃

S̃ + [S̃, X̃]

and

J ∇ ∂σ
∂t

X + (∇XJ)
∂σ

∂t
= J∇

X̃
(JS̃) + J [JS̃, X̃] + (∇

X̃
J)(JS̃)

= J [JS̃, X̃]−∇
X̃

S̃.

Together with (11.1) this means that

D∂̄J(σ)X = [S̃, X̃] + J [JS̃, X̃]. (11.2)
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The equivalence of this expression with the other two shows that the r.h.s.
of (11.2) is independent of the choice of S̃ and X̃.

From now on we assume that J ∈ J (E, Ω, J ′; J−, J+) for some J± ∈
J (T±, Θ±). The next theorem summarizes the main properties of the op-
erator D∂̄J(σ) for a J-holomorphic section σ with horizontal limits. Proofs
can be found in [25] (with p = 2) and in [27] (general case).

Theorem 11.2. Let σ be a J-holomorphic section with horizontal limits.
For p ≥ 2, let Lp(σ∗TEv) and W 1,p(σ∗TEv) be the spaces of sections of
σ∗TEv of class Lp resp. W 1,p (these spaces should be defined using a
Riemannian metric on E which has product form on the tubular ends). Then
D∂̄J(σ) defines a bounded operator W 1,p(σ∗TEv) −→ Lp(σ∗TEv). This op-
erator is Fredholm, and its index equals ind(σ).

From now on, we will use some fixed p > 2.

Definition 11.3. Let σ be a J-holomorphic section with horizontal limits.
σ is called regular if the operator

D∂̄J(σ) : W 1,p(σ∗TEv) −→ Lp(σ∗TEv)

is onto.

We will now outline the framework which was introduced by Floer to study
J-holomorphic sections using the tools of nonlinear analysis. Let σ be
a section of E of class W 1,p

loc , ν+ a horizontal section of (T+, Θ+), and
σ+(s, t) = (s, ν+(t)) the corresponding partial section of E (defined for
s À 0). We say that σ is W 1,p-convergent to ν+ if there is a vector field
ξ+ ∈ W 1,p((σ+)∗TEv) such that

σ(s, t) = expσ+(s,t)(ξ(s, t))

for large s. As before, exp and W 1,p are defined using a Riemannian metric
which has product form on the tubular ends. W 1,p-convergence to a hori-
zontal section of (T−, Θ−) as s → −∞ is defined in the same way. The
space of W 1,p

loc -sections σ which converge to ν± ∈ H(T±, Θ±) in this sense
and such that im(σ) ∩ Crit(π) = ∅ will be denoted by S(E; ν−, ν+).

Remark. In contrast to the case of a smooth section, it is not clear whether
a W 1,p

loc -section σ automatically satisfies im(σ) ∩ Crit(π) = ∅. This is the
reason why we have included this condition in our definition of S(E; ν−, ν+).

S(E; ν−, ν+) carries a natural topology and the structure of a smooth Ba-
nach manifold compatible with this topology. The tangent space at a point
σ ∈ S(E; ν−, ν+) is canonically isomorphic to the space W 1,p(σ∗TEv) of
sections of σ∗TEv of class W 1,p.
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Remark. The space W 1,p(σ∗TEv) is well-defined for any σ ∈ S(E; ν−, ν+)
because the pullback σ∗TEv is a vector bundle over C of class W 1,p

loc . More
precisely, a family of smooth local trivializations of TEv induces a family of
trivializations of σ∗TEv whose transition functions lie in W 1,p

loc .

Like W 1,p(σ∗TEv), the space Lp(σ∗TEv) of Lp-sections is also well-defined
for any σ ∈ S(E; ν−, ν+). There is a Banach vector bundle

E −→ S(E; ν−, ν+)

with fibres Eσ = Lp(σ∗TEv). Every J ∈ J (E,Ω, J ′; J−, J+) determines a
smooth section ∂̄J of E given by

∂̄J(σ) =
∂σ

∂s
+ J(σ)

∂σ

∂t
.

Theorem 11.4. ∂̄−1
J (0) = M(E, J ; ν−, ν+).

This statement is actually a combination of two results: an elliptic regularity
result which shows that any σ ∈ S(E; ν−, ν+) with ∂̄J(σ) = 0 is smooth,
and a (more difficult) exponential convergence result which shows that any
such σ converges to its horizontal limits in the stricter sense of section 8.
This shows that ∂̄−1

J (0) ⊂M(E, J ; ν−, ν+); the converse is obvious.

The derivative of the section ∂̄J at a point σ ∈ ∂̄−1
J (0) is a homomorphism

TσS(E; ν+, ν−) −→ Eσ.

TσS(E; ν+, ν−) = W 1,p(σ∗TEv) and Eσ = Lp(σ∗TEv), and using our first
definition it is not difficult to see that this homomorphism is given by the op-
erator D∂̄J(σ). Using the implicit function theorem we obtain the following
consequence:

Corollary 11.5. A regular σ ∈ M(E, J ; ν−, ν+) has a neighbourhood in
M(E, J ; ν−, ν+) ⊂ S(E; ν−, ν+) which is a smooth submanifold of dimen-
sion ind(σ). In particular, if for some k, all σ ∈ Mk(E, J ; ν−, ν+) are
regular, then Mk(E, J ; ν−, ν+) is a smooth k-dimensional submanifold of
S(E; ν−, ν+).

For a product bundle (E, Ω) = R × (T, Θ), the spaces S(E; ν−, ν+) have a
natural smooth R-action by translation. This action preserves the subsets
Mk,ε(E, J ; ν−, ν+) for any J ∈ J (T, Θ).

Lemma 11.6. Let J ∈ J (T, Θ) and assume that all J-holomorphic sections
of R × T with horizontal limits are regular. Then the following conditions
for σ ∈M(R× T, J) are equivalent:

(i) ind(σ) = 0;
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(ii) e(σ) = 0;
(iii) σ is horizontal;
(iv) σ has a nontrivial stabilizer under the R-action.

Proof. The equivalence of the final three conditions is part of Lemma 8.8.
The description of a horizontal section given in Lemma 8.2:

σ(s, t) = (s, ν(t)),

implies that the index of such a section vanishes. Conversely, let σ be a
J-holomorphic section of index 0. It is an isolated point of M(R × T, J);
therefore it must be equal to its translate σr for sufficiently small r.

Corollary 11.7. If all σ ∈ M(R × T, J) are regular, Mk,ε(R × T, J) = ∅
for all ε > 0 and k ≤ 0.

It is not difficult to see that outside the subset of horizontal sections in
M(R×T, J) the R-action is not only free but also proper. As a consequence,
one has

Corollary 11.8. Assume that for some ν−, ν+ ∈ H(T, Θ) and ε, k with
ε 6= 0 or k 6= 0, any σ ∈ Mk,ε(R × T, J ; ν−, ν+) is regular. Then the
quotient

Mk,ε(R× T, J ; ν−, ν+)/R

is a smooth (k − 1)-dimensional manifold.

In order to define Jreg(E,Ω, J ′;J−, J+) we need to introduce a different
class of pseudo-holomorphic curves in E.

Definition 11.9. Let J be an Ω-tame almost complex structure on E. A
smooth nonconstant map w : CP1 −→ E is called a J-bubble if Dw ◦ i =
J ◦Dw (i denotes the complex structure on CP1) and im(w) lies in a single
fibre of π.

The numbers

Ω(w) =
∫

CP1

w∗Ω and c1(w) = 〈c1(TE, J), [w]〉

are called the energy and the Chern number of the bubble w. We denote
the set of points which lie on the image of a J-bubble with Chern number
≤ k by Vk(J) ⊂ E. The importance of J-bubbles for the compactification
of the space M(E, J) will be explained in the next section. We can now
supply the definitions of Jreg(T, Θ) and Jreg(E, Ω, J ′; J−, J+).

Definition 11.10. Let (T, Θ) be a nondegenerate symplectic fibre bundle
over S1. Jreg(T, Θ) ⊂ J (T, Θ) is the subset of almost complex structures J
such that
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(1) any σ ∈M(R× T, J) is regular.

(2) V0(J) = ∅ (this means that there are no J-bubbles with nonpositive
Chern number).

(3) Any horizontal section σ of R× T satisfies im(σ) ∩ V1(J) = ∅.
Definition 11.11. Let (E, Ω, J ′) be an ordinary almost holomorphic fibra-
tion over C, with tubular ends modelled on nondegenerate fibre bundles
(T±,Θ±). For J− ∈ Jreg(T−, Θ−) and J+ ∈ Jreg(T+, Θ+),

Jreg(E,Ω, J ′;J−, J+) ⊂ J (E, Ω, J ′; J−, J+)

is the subset of almost complex structures J such that

(1) any σ ∈M(E, J) is regular.

(2) V−1(J) = ∅ (this means that there are no J-bubbles with negative
Chern number).

(3) Any σ ∈M0(E, J) ∪M1(E, J) satisfies im(σ) ∩ V0(J) = ∅.

12 Compactness

In this section we state Gromov’s compactness theorem and Floer’s gluing
theorem for J-holomorphic sections. Both theorems are familiar in the case
of symplectic fibre bundles, and they carry over unchanged to almost ho-
lomorphic fibrations. Then we describe the application of these results to
Theorem 9.4.

The central notion in this section is the geometric convergence of a sequence
of J-holomorphic sections to a broken J-holomorphic section. We fix the
following notation: (E, Ω, J ′) is an almost holomorphic fibration over C
with projection π : E −→ C. It has tubular ends modelled on nondegener-
ate symplectic fibre bundles (T±, Θ±). The product bundles R× (T±,Θ±)
will be denoted by (E±, Ω±). J− and J+ are almost complex structures
in J (T−,Θ−) and J (T+, Θ+), respectively, and J is an almost complex
structure in J (E, Ω, J ′; J−, J+).

Definition 12.1. A broken J-holomorphic section

σ̂ = (σ−1 , . . . , σ−m, σ, σ+
1 , . . . , σ+

n )

consists of σ−1 , . . . , σ−m ∈ M(E−, J−), σ ∈ M(E, J) and σ+
1 , . . . , σ+

n ∈
M(E+, J+), which have the following property: there are ν−0 , . . . ν−m ∈
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H(T−, Θ−) and ν+
0 , . . . ν+

n ∈ H(T+, Θ+) such that

σ−j ∈M(E−, J−; ν−j−1, ν
−
j ) for j = 1, . . . , m,

σ ∈M(E, J ; ν−m, ν+
0 ), and

σ+
j ∈M(E+, J+; ν+

j−1, ν
+
j ) for j = 1, . . . , n.

Moreover, we assume that none of the σ±j is a horizontal section. Two
broken J-holomorphic sections will be regarded as identical if one arises
from the other by translating the components σ±j (by an amount which may
be different for each component).

The basic notions of the theory of J-holomorphic sections can be extended
to broken sections: ν−0 and ν+

n as above are called the horizontal limits of
σ̂, and its energy (or index) is defined by adding the energies (or indices)
of all components. We will denote the set of broken J-holomorphic sections
with m + n + 1 components as above by M̂m,n(E, J), and the subset of
broken J-holomorphic sections with given index k, energy ε and limits ν±

by M̂m,n
k,ε (E, J ; ν−, ν+). A broken J-holomorphic section σ̂ is called regular

if σ is a regular J-holomorphic section and the σ±j are regular J±-holomor-
phic sections.

Let σ1, σ2, . . . be a sequence of J-holomorphic sections of E and r1, r2, . . .
a sequence of real numbers with limj rj = −∞. By assumption there is an
R > 0 such that E|[R;∞)×S1 = E+|[R;∞)×S1. Therefore the restriction

σ
rj

j |[R + rj ;∞)× S1 (12.1)

of the translate σ
rj

j can be viewed as a section of E+|[R+rj ;∞)×S1. Since
rj → −∞, (12.1) is a sequence of partial sections of E+ defined over increas-
ingly larger subsets. Therefore it makes sense to say that σ

rj

j converges on
compact subsets to a section σ+ of E+ (the limit must be J+-holomorphic).
For a sequence (rj) with limit∞, the translates σ

rj

j can converge on compact
subsets, in the same sense, to a J−-holomorphic section of E−.

Definition 12.2. Let σ1, σ2, . . . be a sequence in M(E, J). We say that
this sequence converges geometrically to a broken J-holomorphic section

σ̂ = (σ−1 , . . . , σ−m, σ, σ+
1 , . . . , σ+

n )

if there are numbers r−j,k (j ∈ N, k = 1, . . . , m) and r+
j,l (j ∈ N, l = 1, . . . , n),

such that

(1) limj r−j,k = ∞ and limj r+
j,l = −∞ for all k, l. Moreover,

lim
j

(
r−j,k−1 − r−j,k

)
= ∞ and

lim
j

(
r+
j,l−1 − r+

j,l

)
= ∞.

(12.2)
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(2) σj converges to σ on compact subsets in the C∞-sense. For every
k = 1, . . . ,m the translates σ

rj,k

j converge to σ−k on compact subsets in
C∞ as j →∞. The translates σ

rj,l

j converge to σ+
l in the same sense.

(3) e(σj) = e(σ̂) for all sufficiently large j.

The equation (12.2) serves to exclude counting the same component of the
limit twice: it says that any two σ±k express the behaviour of (σj) when
translated at different rates. In contrast, condition (3) says that the broken
J-holomorphic sections obtained from a geometric limit of (σk) by removing
some components are no longer geometric limits of the same sequence (the
reason is that the σ±k may not be horizontal and any non-horizontal J±-
holomorphic section has positive energy, by Lemma 8.8). It is a non-obvious
fact that these two conditions are sufficient to ensure that the geometric
limit of a sequence (if it exists) is unique. Moreover, the geometric limit has
the following important properties:

Proposition 12.3. Assume that (σj) converges geometrically to a broken
J-holomorphic section σ̂. Then σ̂ has the same limits and index as σj for
all sufficiently large j.

Proposition 12.4. Let σ̂ be a broken J-holomorphic section which is not
‘really’ broken: that is, m = n = 0 and σ̂ is given by a single J-holomorphic
section σ, with limits ν−, ν+. Then a sequence (σj) converges geometrically
to σ̂ iff converges to σ in the Banach manifold topology of S(E; ν−, ν+).

We end our account of geometric convergence with a special case of Flo-
er’s ‘gluing theorem’ which describes how to attach broken J-holomorphic
sections to M(E, J) as points at infinity.

Theorem 12.5. Let

σ̂ = (σ−1 , . . . , σ−m, σ, σ+
1 , . . . , σ+

n )

be a regular broken J-holomorphic section with with limits ν±, ind(σ) = 0
and ind(σ±j ) = 1 for all j. There is a proper smooth embedding

# : (0; 1]m+n −→Mm+n(E, J ; ν−, ν+) ⊂ S(E; ν−, ν+)

with the following property: if p1, p2, . . . is a sequence in (0; 1]m+n which
converges to 0, #(pj) converges geometrically to σ̂. Conversely, if (σj) is
any sequence in M(E, J) which converges geometrically to σ̂, it is given by
σj = #(pj) for large j, with limj pj = 0.

Not every sequence in M(E, J) has a geometrically convergent subsequence.
For instance, take a sequence (σj) with e(σj) → ∞; then no subsequence
can be geometrically convergent. More significantly, even sequences with
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bounded energy may not have a geometrically convergent subsequence. The
behaviour of such sequences is described by the Gromov compactification
of M(E, J), which is essentially the space of J-holomorphic cusp sections.
These ‘cusp sections’ consist of a J-holomorphic section and a finite collec-
tion of J-bubbles, and their structure can be rather complicated. For our
purpose, however, a much simplified version of the compactness theorem is
sufficient.

Definition 12.6. J is called semi-positive if any σ ∈ M(E, J) has non-
negative index, any σ± ∈ M(R × T±, J±) has nonnegative index, and
V−1(J) = ∅ (that is, any J-bubble has nonnegative Chern number). Note
that this implies that V−1(J±) = ∅ as well.

Theorem 12.7. Let J ∈ J (E,Ω, J ′;J−, J+) be a semi-positive almost com-
plex structure. Let (σj) be a sequence inM(E, J) with bounded energy. Then

k = limj ind(σj)

is finite and one of the following (not mutually exclusive) possibilities holds:

(1) (σj) has a geometrically convergent subsequence.

(2) There is a J-holomorphic section σ and a J-bubble w with

ind(σ) + 2c1(w) ≤ k

and such that im(σ) ∩ im(w) 6= ∅.
(3) There is a J−-holomorphic section σ− of R × T− and a J−-bubble w

with the same properties as in (2).

(4) The same as in (3) holds with T− and J− replaced by T+ and J+.

A few words about this Theorem are in order. The original compactness
theorem of Gromov concerns compact pseudo-holomorphic curves in a sym-
plectic manifold. The literature on Floer homology contains several versions
of this theorem for maps from R×S1 to a symplectic manifold which satisfy
an ‘inhomogeneous’ version of the Cauchy-Riemann equation for pseudo-
holomorphic curves. From our point of view these results correspond more
or less to Theorem 12.7 in the case when (E,Ω) is a symplectic fibre bundle.
Contrary to what one might suspect, the presence of critical points does not
change the situation much. The essential idea is to work on the total space
E, and to turn it into a symplectic manifold using the following familiar
trick:

Lemma 12.8. Let J be an almost complex structure in J (E,Ω, J ′;J−, J+)
for some J−, J+, and β = ds∧ dt the standard volume form on C. There is
a c > 0 such that Ω′ = Ω + c(π∗β) is a symplectic form on E which tames
J .
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Proof. If the contrary were true there would be a sequence X1, X2, . . . of
nonzero tangent vectors on E and a sequence c1, c2, . . . of positive numbers,
with limi ci = ∞, such that

(Ω + ci(π∗β)) (Xi, JXi) = Ω(Xi, JXi) + ci|Dπ(Xi)|2 ≤ 0

for all i. On the two tubular ends of E, J = J+ or J = J−, and any
tangent vector Y in that region satisfies Ω(Y, JY ) ≥ 0, with equality iff Y
is horizontal (Lemma 8.7). Therefore none of the Xi can lie on one of the
ends. After rescaling and passing to a subsequence we may now assume that
the Xi converge to a nonzero X ∈ TE. In the limit, the inequality

|Dπ(Xi)|2 ≤ −c−1
i Ω(Xi, JXi)

yields |Dπ(X)|2 ≤ 0, that is, X ∈ TEv. On the other hand, Ω(Xi, JXi) ≤ 0
for all i and therefore Ω(X, JX) ≤ 0, which is impossible because J is
partially Ω-tame.

In this way many questions about J-holomorphic sections can be reduced
to the theory of pseudo-holomorphic curves in symplectic manifolds.

For the remainder of this section we assume that J± ∈ Jreg(T±,Θ±) and
J ∈ Jreg(E,Ω, J ′;J−, J+). Using the results above and in the previous
section, we will show that such a J has the properties stated in Theorem
9.4. The first step is

Lemma 12.9. Every sequence (σj) in M(E, J) with bounded energy and
such that ind(σj) ≤ 1 for all j has a geometrically convergent subsequence.

Proof. We must exclude the other possibilities which occur in Theorem 12.7.
The definitions of Jreg(T±, Θ±) and Jreg(E,Ω, J ′;J−, J+) imply that J is
semi-positive.

Assume first that case (2) in Theorem 12.7 holds, and let (σ,w) be a pair
as stated there. Because σ is regular and V−1(J) = ∅, ind(σ) ≥ 0 and
c1(w) ≥ 0. Therefore ind(σ)+2c1(w) ≤ 1 can only be satisfied if ind(σ) = 0
or 1 and c1(w) = 0. However, condition (3) in Definition 11.11 excludes
such pairs (σ,w).

If case (3) holds, the pair (σ−, w) would satisfy c1(w) > 0 (because V0(J−) =
∅) and therefore ind(σ−) < 0, which is impossible since σ− is regular. The
argument for case (4) is identical.

Lemma 12.10. Let σ1, σ2, . . . be a sequence in M(E, J ; ν−, ν+) such that
e(σj) is bounded and ind(σj) = 0 for all j. Then (σj) has a subsequence
which converges in the Banach manifold topology of S(E; ν−, ν+) to some
J-holomorphic section in M0(E, J ; ν−, ν+).
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Proof. By Lemma 12.9, there is a subsequence σj1 , σj2 , . . . which converges
geometrically to a broken J-holomorphic section

σ̂ = (σ−1 , . . . , σ−m, σ, σ+
1 , . . . , σ+

n ).

Since the σ±j are regular and not horizontal, ind(σ±j ) ≥ 1 by Corollary 11.7.
Moreover, ind(σ) ≥ 0. On the other hand, Proposition 12.3 implies that

m∑

j=1

ind(σ−j ) + ind(σ) +
n∑

j=1

ind(σ+
j ) = 0.

It follows that m = n = 0 and, by Proposition 12.4, that σ is the limit of
(σjν ) in the Banach manifold topology of S(E; ν−, ν+).

This result implies the compactness of the subspace
⋃

ε≤C

M0,ε(E, J ; ν−ν+) ⊂ S(E; ν−, ν+) (12.3)

for any C > 0 and ν± ∈ H(T±, Θ±). Since this space is also discrete, it
must be finite. Therefore J satisfies the first two parts of Theorem 9.4.

Lemma 12.11. Every sequence (σj) in M1,ε(E, J ; ν−, ν+) has a geomet-
rically convergent subsequence whose limit lies in

M′
ε(E, J ; ν−, ν+) def= M̂1,0

1,ε (E, J ; ν−, ν+) ∪ M̂0,1
1,ε (E, J ; ν−, ν+).

This is proved by the same kind of argument as Lemma 12.10. We omit the
details.

Lemma 12.12. For all ν± ∈ H(T±, Θ±) and ε ∈ R, M′(E, J ; ν−, ν+) is a
finite set.

Proof. By definition, M̂1,0
1,ε (E, J ; ν−, ν+) consists of all pairs

(σ−, σ) ∈
⊔
ν

M(E−, J−; ν−, ν)/R×M(E, J ; ν, ν+)

which satisfy ind(σ−) + ind(σ) = 1 and e(σ−) + e(σ) = ε, and such that σ−

is not horizontal. The regularity of J− and J implies that such a pair must
have ind(σ−) = 1 and ind(σ) = 0. By Theorem 9.1 the space

⋃

ε≤C

M1,ε(E−, J−)/R

is finite for any C > 0. Together with the finiteness of (12.3) this im-
plies that M̂1,0

1,ε (E, J ; ν−, ν+) is finite. The same argument can be used for
M̂0,1

1,ε (E, J ; ν−, ν+).
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By Corollary 11.5, M1,ε(E, J ; ν−, ν+) is a smooth one-dimensional manifold
for all ν−, ν+ and ε. Define

M1,ε(E, J ; ν−, ν+) = M1,ε(E, J ; ν−, ν+) tM′
ε(E, J ; ν−, ν+).

Lemma 12.11, Lemma 12.12 and the gluing Theorem 12.5 can be used to
endow M1,ε(E, J ; ν−, ν+) with the structure of a compact one-dimensional
manifold. This is precisely the compactification required in Theorem 9.4.

13 Transversality for sections

The discussion at the end of the previous section completes one half of the
proof of Theorem 9.4. We will now begin to explain the remaining half. We
retain the conventions for (E, Ω, J ′), π, and (T±,Θ±), and assume that J−

and J+ are almost complex structures in Jreg(T−, Θ+) and Jreg(T+, Θ+),
respectively. What we have to prove is

Theorem 13.1. If in addition to the assumptions above, E is an ordinary
almost holomorphic fibration, the subset

Jreg(E,Ω, J ′;J−, J+) ⊂ J (E, Ω, J ′; J−, J+)

is dense in the C∞-topology.

This section contains the first part of the proof, in which the assumption
that E is ordinary is not yet necessary:

Proposition 13.2. Let J (1)
reg ⊂ J (E,Ω, J ′;J−, J+) be the subset of almost

complex structures J such that all σ ∈ M(E, J) are regular. Then J (1)
reg is

dense (in the C∞-topology).

Following a standard pattern, the proof of this result has an abstract and
a more specific part. The first one consists in setting up a suitable analytic
framework and in applying the Sard-Smale and implicit function theorems.
The second one is the study of a certain operator D∂̄univ(σ, J) associated
to σ ∈ M(E, J). We begin by indicating the idea of the proof in the
C∞-topology; this is not actually the appropriate topology for carrying out
the argument, but it serves to motivate the introduction of the operators
D∂̄univ(σ, J). After that we introduce Floer’s C∞

ε -topology which replaces
the C∞-topology; and then we prove the required property of the operators
D∂̄univ(σ, J).

Fix some J0 ∈ J (E,Ω, J ′; J−, J+). By assumption, there is an R > 0 such
that J0 agrees with J− on π−1((−∞;−R]×S1) and with J+ on π−1([R;∞)×
S1). Moreover, there is a closed neighbourhood U of Crit(π) such that
J0 = J ′ on U . We assume that R has been chosen large and U small; more
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precisely, it is enough if π(U) ⊂ [−R + 1; R− 1]× S1. This can certainly be
arranged since Crit(π) is compact.

Let J ⊂ J (E,Ω, J ′;J−, J+) be the subset of almost complex structures J
which agree with J0 on

E0 = π−1((−∞;−R]× S1 ∪ [R;∞)× S1) ∪ U.

J is a Fréchet manifold; the tangent space TJJ is the space of J-antilinear
smooth homomorphisms Y : TE −→ TEv which vanish on E0. A explicit
collection of charts on J can be constructed in the following way:

Lemma 13.3. The map

qJ(Y ) = J(1− 1
2JY )(1 + 1

2JY )−1

is a homeomorphism from a neighbourhood N ⊂ TJJ of 0 to a neighbourhood
of J in J .

The proof is an adaptation of the standard proof of contractibility of the
space of tame almost complex structures on a symplectic manifold, see e.g.
Proposition 1.1.6 in Chapter II of [3]. We omit the details.

A rough (and not entirely correct) idea of the proof of Proposition 13.2 is
this: one considers the universal moduli spaces

Muniv(E; ν−, ν+) =
⋃

J∈J
M(E, J ; ν−, ν+)× {J} ⊂ S(E; ν−, ν+)× J

for ν± ∈ H(T±, Θ±) and proves that these are smooth. This is done in the
following way: let Euniv −→ S(E; ν−, ν+)×J be the pullback of the Banach
space bundle E −→ S(E; ν−, ν+). This bundle has a canonical section ∂̄univ,
given by

∂̄univ(σ, J) =
∂σ

∂s
+ J(σ)

∂σ

∂t
,

and Muniv(E; ν−, ν+) is the zero set of this section. The derivative of ∂̄univ

at a point (σ, J) ∈Muniv(E; ν−, ν+) is an operator

D∂̄univ(σ, J) : W 1,p(σ∗TEv)× TJJ −→ Lp(σ∗TEv)

(recall that TσS(E; ν−, ν+) = W 1,p(σ∗TEv) and Eσ = Lp(σ∗TEv)). It is
not difficult to determine this operator explicitly:

D∂̄univ(σ, J)(X, Y ) = D∂̄J(σ)X + Y
∂σ

∂t
. (13.1)

The smoothness of the universal moduli space follows (using the implicit
function theorem) from the following result:
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Lemma 13.4. The operator D∂̄univ(σ, J) is surjective for all J ∈ J and
σ ∈M(E, J).

Having proved this, one observes that the subset of J ∈ J such that all J-
holomorphic sections with limits ν± are regular is the set of regular values
of the projection

Muniv(E; ν−, ν+) −→ J .

This projection is a Fredholm map, and the Sard-Smale theorem shows that
the set of regular values is dense. Since this holds for any J0, it implies the
denseness of J (1)

reg in J (E,Ω, J ′;J−, J+).

The argument as we have just presented it contains a serious error: J is
only a Fréchet manifold and therefore neither the implicit function theorem
nor the Sard-Smale theorem can be applied to it. We will now modify the
framework to remove this technical obstacle.

Let ‖·‖Ck be the Ck-norm on TJ0J determined by some Riemannian metric
on E, and let ε = (εk)k∈N be a sequence of positive numbers. Floer’s C∞

ε -
seminorm on TJ0J is defined by

‖Y ‖ε =
∞∑

k=0

εk‖Y ‖Ck .

Lemma 13.5. There is an (εk) such that the subset of Y ∈ TJ0J with
‖Y ‖ε < ∞ is dense in the C∞-topology.

We refer to [27, pp. 101–104] for a detailed exposition of the C∞
ε -topology

and the proof of this Lemma. Let N ⊂ TJ0J be a neighbourhood of 0 as in
Lemma 13.3 above and Nε the subset of those Y ∈ N such that ‖Y ‖ε < ∞.
Evidently

Jε = qJ0(Nε) ⊂ J
carries a natural Banach manifold structure, induced by that of Nε. If (εk) is
as in Lemma 13.5, the tangent space TJJε at any point J ∈ Jε is C∞-dense
in TJJ . We will assume from now on that (εk) has been chosen in this way;
Jε is called a C∞

ε -neighbourhood of J0.

Now we carry out the argument outlined above in the C∞
ε -topology: the

pullback Euniv of E to S(E; ν−, ν+)×Jε has a smooth section ∂̄univ given by
the same formula (13.1) as above (the smoothness is easy to prove because
the C∞

ε -norm is a very strong one). (∂̄univ)−1(0) is the C∞
ε -version of the

universal moduli space,

Muniv(E; ν−, ν+) =
⋃

J∈Jε

M(E, J ; ν−, ν+)× {J}
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and the derivative of ∂̄univ at a point of this space is given by an operator

D∂̄univ(σ, J) : W 1,p(σ∗TEv)× TJJε −→ Lp(σ∗TEv) (13.2)

which is the restriction of the corresponding operator above to TJJε ⊂ TJJ .

Lemma 13.6. The operator (13.2) is onto for all (σ, J).

We postpone the proof of this and continue with our argument. Since
S(E; ν−, ν+)×Jε is a Banach manifold and Euniv a bundle of Banach spaces,
we can use the implicit function theorem; it shows that the universal moduli
space is a smooth Banach submanifold.

Lemma 13.7. Let J ∈ Jε be a regular value of the projection

Π : Muniv(E; ν−, ν+) −→ Jε.

Then every σ ∈M(E, J ; ν−, ν+) is regular.

This is straightforward given the definition of regularity and Lemma 13.6.

Lemma 13.8. The derivatives of Π are Fredholm operators.

This is a simple consequence of the Fredholm property of D∂̄J(σ) (Theorem
11.2). We can now apply the Sard-Smale theorem which says that the regular
values of Π form a subset of second category in Jε. This proves Proposition
13.2. In fact the argument yields the following stronger result:

Proposition 13.9. For every C∞
ε -neighbourhood Jε ⊂ J , the intersection

J (1)
reg ∩Jε is a subset of second category in Jε with respect to the C∞

ε -topology.

The importance of this stronger version is that the intersection of any (count-
able) number of subsets of J with this property remains dense. We will now
fill the remaining gap in the argument, that is, prove Lemma 13.6. We begin
with a proof of its C∞-analogue:

Proof of Lemma 13.4. Let Hom0,1
J (TE, TEv) be the vector bundle over E \

Crit(π) which consists of J-antilinear homomorphisms TE −→ TEv. The
map

σ∗(Hom0,1
J (TE, TEv)) −→ σ∗TEv, Y ′ 7−→ Y ′∂σ

∂t
(13.3)

is a homomorphism of vector bundles over C. Since σ is a section, ∂σ
∂t

is nowhere zero. Using some simple linear algebra, it follows that (13.3)
is surjective. Therefore, given a Z ∈ C∞(σ∗TEv) which is supported in
(R − 1;R) × S1, we can find a Y ′ ∈ C∞(σ∗(Hom0,1

J (TE, TEv)) which is
supported in the same subset and such that Y ′ ∂σ

∂t = Z. Because σ : C −→ E
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is an embedding, Y ′ can be extended to a J-antilinear homomorphism Y :
TE −→ TEv supported inside π−1((R−1;R)×S1). Such a homomorphism
is an element of TJJ since E0 ∩ π−1((R − 1;R) × S1) = ∅. In view of the
formula (13.1), this proves that every Z as above lies in the image of

D∂̄univ(σ, J) : W 1,p(σ∗TEv)× TJJ −→ Lp(σ∗TEv).

Because D∂̄J(σ) is Fredholm the image of this operator is closed. Let us
assume that D∂̄univ(σ, J) is not onto. Then there is a nontrivial Lq-section
(1/p + 1/q = 1) of the dual bundle σ∗(TEv)∗ which is orthogonal to the
image of D∂̄univ(σ, J). If we denote this section by W , this means that

∫

C
〈D∂̄J(σ)X, W 〉+ 〈Y ∂σ

∂t
,W 〉 = 0 (13.4)

for all (X, Y ). Restricting to X = 0 yields
∫

C
〈Y ∂σ

∂t
,W 〉 = 0.

Since Y ∂σ
∂t can take on any smooth value which is supported in (R−1;R)×S1

it follows that W |(R− 1;R)×S1 = 0. On the other hand, restricting (13.4)
to Y = 0 shows that

D∂̄J(σ)∗W = 0, (13.5)

where D∂̄J(σ)∗ is the differential operator dual to D∂̄J(σ). This operator
has the form

D∂̄J(σ)∗ = − ∂

∂s
+ J(σ)

∂

∂t
+ a term of order zero.

Solutions of (13.5) satisfy a unique continuation property (see [12]). There-
fore W |(R − 1;R) × S1 = 0 implies that W = 0, contradicting the original
assumption. This shows that D∂̄univ(σ, J) is onto.

When trying to adapt this proof to the C∞
ε -case one runs into a problem: it

is certainly not true that any Z ∈ C∞(σ∗TEv) supported in (R; R+1)×S1

is of the form Z = Y ∂σ
∂t with Y ∈ TJJε. This problem can be overcome

by modifying the argument slightly. Alternatively, the C∞
ε -version of the

surjectivity result can be reduced to its C∞-version, and this is what we
will do.

Proof of Lemma 13.6. We have to show that

D∂̄univ(σ, J)(W 1,p(σ∗TEv)× TJJε) = Lp(σ∗TEv).

By Lemma 13.4,

D∂̄univ(σ, J)(W 1,p(σ∗TEv)× TJJ ) = Lp(σ∗TEv).
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Since D∂̄univ(σ, J) is continuous and TJJε ⊂ TJJ is dense, it follows that
D∂̄univ(σ, J)(W 1,p(σ∗TEv) × TJJε) is dense in Lp(σ∗TEv). On the other
hand, this subset is closed because it contais the image if D∂̄J(σ), which is
closed and of finite codimension.

14 Transversality for bubbles

We retain the same notation as in the previous section, assuming, however,
that E is ordinary. This section contains the proofs of the following two
results:

Proposition 14.1. Let J (2)
reg ⊂ J (E,Ω, J ′;J−, J+) be the subset of almost

complex structures J such that any J-bubble which does not lie in a singular
fibre of π has nonnegative Chern number. For every C∞

ε -neighbourhood
Jε ⊂ J , the intersection J (2)

reg ∩ Jε is a subset of second category in Jε with
respect to the C∞

ε -topology.

Proposition 14.2. Let J (3)
reg ⊂ J (E,Ω, J ′;J−, J+) be the subset of almost

complex structures J such that any pair (σ,w), consisting of a σ ∈M(E, J)
with index ≤ 1 and a J-bubble w with Chern number 0 which does not lie in
a singular fibre, satisfies im(σ) ∩ im(w) = ∅. J (3)

reg has the same property as
the subset J (2)

reg above.

The subset J (1)
reg is defined by a certain transversality condition (that ∂̄J

should be transverse to the zero section) and that was the starting point
for the proof of Proposition 13.9. The first step in the proof of the two
Propositions above is to write the conditions defining J (k)

reg , k = 2, 3 (or
some smaller subset) in a similar way. In order to do this we need the
transversality theory for J-bubbles (which do not lie in a singular fibre of π).
This theory is well-known: it is the parametrized version of the transversality
theory of J-holomorphic curves in a symplectic manifold, and appears e.g.
in [20, Theorem 3.1.3]. We will only give a quick overview. Note that this
theory does not apply to J-bubbles in a singular fibre of π; such bubbles
will be dealt with in a slightly different way in the next section.

Let J be an Ω-tame almost complex structure on E and w a J-bubble. A
point z ∈ CP1 is an injective point of w if Dw(z) 6= 0 and w−1(w(z)) = {z}.
We call a J-bubble simple if it has an injective point. In that case, the set
of injective points is open and dense in CP1 (this is part of Proposition 2.3.1
in [20]).

Lemma 14.3. Any J-bubble w which is not simple is multiply-covered: that
is, it can be represented as

w = w̄ ◦ c,
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where w̄ is a simple J-bubble and c : CP1 −→ CP1 is a holomorphic map of
degree ≥ 2.

We refer to [20, Chapter 2] for the proof. w̄ is unique up to complex auto-
morphisms of CP1. By a slight abuse of notation, we will call it the simple
J-bubble underlying w. Clearly Ω(w) = dΩ(w̄) and c1(w) = d c1(w̄) with
d = deg(c) ≥ 2. The set of simple J-bubbles with Chern number k which
do not lie in a singular fibre of π will be denoted by Bk(E, J). The group
PSL(2,C) of automorphisms of CP1 acts (by composition) freely and prop-
erly on Bk(E, J) for any k.

Let P(E) be the space of non-constant W 1,p-maps w : CP1 −→ E such
that π ◦ w is constant and not a singular value of π. P(E) is a smooth
Banach manifold. Its tangent space at a point w consists of all sections X
of the vector bundle w∗TE −→ CP1 of class W 1,p which have the following
property: Dπ(X(z1)) = Dπ(X(z2)) for any z1, z2 ∈ CP1. This tangent
space TwP(E) contains W 1,p(w∗TEv), which has codimension two in it.

Let J be an Ω-tame almost complex structure on E. For w ∈ P(E),
let Λ0,1

J (w∗TEv) be the vector bundle over CP1 which consists of the J-
antilinear homomorphisms TCP1 −→ w∗TEv. The spaces Lp(Λ0,1

J (σ∗TEv))
of Lp-sections of this vector bundle are fibres of a Banach space bundle over
P(E) which we denote by ΛJ . ΛJ has a canonical smooth section, given by

∂̄′J(w) = Dw + J ◦Dw ◦ i

(i denotes the complex structure on CP1). The standard regularity result
for J-holomorphic curves ([20, Theorem B.4.1]) shows that (∂̄′J)−1(0) is the
set of (smooth) J-bubbles which do not lie in a singular fibre of π. The
derivative of ∂̄′J at a point w ∈ (∂̄′J)−1(0) is an operator

D∂̄′J(w) : TwP(E) −→ Lp(Λ0,1
J (w∗TEv)).

Let Dw be the restriction of D∂̄′J(w) to the codimension two subspace
W 1,p(w∗TEv). Dw is a differential operator of the form

Dw = ∂̄∇ + a term of order zero, (14.1)

where ∂̄∇ is the ∂̄-operator on w∗TEv defined using some connection ∇; of
course, the choice of ∇ is irrelevant for (14.1). Using the Riemann-Roch
theorem, one obtains

Proposition 14.4. D∂̄′J(w) is a Fredholm operator of index 6 + 2c1(w).

We call w ∈ (∂̄′J)−1(0) regular if D∂̄′J(w) is onto.

Lemma 14.5. Let J ∈ J (E, Ω, J ′; J−, J+) be an almost complex structure
such that any w ∈ Bk(E, J) with k < 0 is regular. Then J ∈ J (2)

reg .
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Proof. From the implicit function theorem it follows that for all k < 0,
Bk(E, J) is a smooth manifold of dimension 6 + 2k. Since PSL(2,C) acts
freely and properly on this manifold, the quotient Bk(E, J)/PSL(2,C) is
smooth of dimension 2k, hence empty for negative k. By reduction to the
underlying simple J-bubble it follows that any J-bubble which does not lie
in a singular fibre of π has nonnegative Chern number.

The rest of the proof of Proposition 14.1 follows the same strategy as in
the previous section. We start with a fixed J0 ∈ J (E,Ω, J ′;J−, J+) and
consider a subspace J ⊂ J (E,Ω, J ′;J−, J+) as we did then. However, we
will make an additional assumption on the neighbourhood U of Crit(π).
Namely, we assume that [Ω|U ] ∈ H2(U ;R) is zero. This is certainly possible
because the critical points of π are isolated (this follows from the assumption
that E is an ordinary holomorphic fibration). We will not explain how
the universal moduli problem is set up since this parallels closely the case
of J-holomorphic sections. Eventually, Proposition 14.1 is reduced to the
following technical statement:

Lemma 14.6. Let w be a simple J-bubble with negative Chern number for
some J ∈ J . Then the operator

(D∂̄′)univ(w, J) : TwP(E)× TJJ −→ Lp(Λ0,1
J (w∗TEv)),

(D∂̄′)univ(w, J)(X,Y ) = D∂̄′J(w)X + Y ◦Dw ◦ i

is onto.

Note that the transversality argument uses C∞
ε -norms and therefore leads

to a C∞
ε -version of Lemma 14.6. However, this version can be reduced to

the one which we have just stated in the same way as Lemma 13.6 has been
reduced to Lemma 13.4.

Proof of Lemma 14.6. The first step is to show that im(w) is not contained
in

E0 = π−1((−∞;−R]× S1 ∪ [R;∞)× S1) ∪ U ⊂ E.

im(w) cannot be lie in one of the fibres over (−∞;−R] × S1 ⊂ C, for the
following reason: on these fibres J agrees with J−, but since (by assumption)
J− ∈ Jreg(T−, Θ−), there are no J−-holomorphic bubbles with negative
Chern number (compare Definition 11.10). The same holds for π−1([R;∞)×
S1). Finally, w can not lie completely within U since [Ω|U ] = 0, whereas
Ω(w) > 0 because w is not constant. Since E0 is closed and the set of
injective points is dense in CP1, w has an injective point z0 such that w(z0) /∈
E0. Because the of injective points of w is open, it follows that there is an
open subset Q ⊂ CP1 such that any z ∈ Q is an injective point and satisfies
w(z) /∈ E0.
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Consider the map of vector bundles over CP1

w∗(Hom0,1
J (TE, TEv)) −→ Λ0,1

J (w∗TEv),
Y 7−→ Y ◦Dw ◦ i.

(14.2)

Since Dw does not vanish anywhere in Q, a simple argument from linear
algebra shows that for any smooth section Z of Λ0,1

J (w∗TEv) which is sup-
ported in Q there is a section Y ′ of w∗(Hom0,1

J (TE, TEv)), equally supported
in Q, which is mapped to Z under (14.2). Since w|Q is an embedding, Y ′

can be extended to a section Y of Hom0,1
J (TE, TEv) which is supported

outside E0, that is, Y ∈ TJJ . This shows that any such Z lies in the image
of (D∂̄′)univ(w, J).

Assume that (D∂̄′)univ(w, J) is not onto. By the same argument as in the
proof of Lemma 13.4, one obtains a nonzero Lq-section Z of the bundle dual
to Λ0,1

J (w∗TEv) which vanishes on Q and satisfies
∫

CP1

〈D∂̄′J(σ)X, Z〉 = 0

for all X ∈ TwP(E). By restricting to W 1,p(σ∗TEv) ⊂ TwP(E) one sees
that

D∗
wZ = 0.

Again, a unique continuation principle holds for the solutions of this equa-
tion: therefore Z = 0, which completes the proof of Lemma 14.6.

Lemma 14.6 is familiar (compare [20, p. 35]); we have repeated the usual
proof to show that the condition that J should be equal to J ′ near Crit(π)
does not prevent transversality.

It remains to prove Proposition 14.2. We will be even more brief in this
case, and write down only the proof of the basic technical result:

Lemma 14.7. Choose a J ∈ J (E,Ω, J ′; J−, J+). Let w be a simple J-
bubble of Chern number 0 which lies in a regular fibre of π, σ ∈M(E, J) a J-
holomorphic section, and z1 ∈ C, z2 ∈ CP1 points such that σ(z1) = w(z2).
Then the operator

D : W 1,p(σ∗TEv)× TwP(E)× TJJ × Tz1C × Tz2CP1 −→
−→ Lp(σ∗TEv)× Lp(Λ0,1

J (w∗TEv))× TEσ(z1)

given by

D(X1, X2, Y, V1, V2) =
(
D∂̄J(σ)X1 + Y

∂σ

∂t
,

D∂̄′J(w)X2 + Y ◦Dw ◦ i,X1(z1) + Dσ(V1)−X2(z2)−Dw(V2)
)

is surjective.
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Proof. As usual, we assume that D is not onto and consider a nonzero
W = (W1, W2,W3) which is orthogonal to its image. This means that

(∫

C
〈D∂̄J(σ)X1 + Y

∂σ

∂t
,W1〉

)
+

(∫

CP1

〈D∂̄′J(w)X2 + Y ◦Dw ◦ i,W2〉
)

+

+ 〈X1(z1) + Dσ(V1)−X2(z2)−Dw(V2),W3〉 = 0 (14.3)

for all X1, X2, Y, V1, V2. By using only the component X1, one obtains
(∫

C
〈D∂̄J(σ)X1,W2〉

)
+ 〈X1(z1),W3〉 = 0.

Therefore

D∂̄J(σ)∗W1 = −δz1W
v
3 (14.4)

where δz1 is the δ-function at z1 ∈ C and W v
3 is image of W3 under the

projection (TEσ(z1))∗ −→ (TEv
σ(z1))

∗. In particular D∂̄J(σ)∗W1 = 0 away
from the point z1.

Because σ is a section and w lies in one fibre of π they can intersect at most
in one point. It follows that there are r, r′ ∈ R with R − 1 ≤ r < r′ ≤ R
and z1 /∈ (r; r′) × S1, such that σ([r; r′] × S1) ∩ im(w) = ∅. From (14.3) it
follows that ∫

C
〈Y ∂σ

∂t
,W1〉 = 0

for every Y ∈ TJJ supported in π−1((r; r′) × S1). The same argument as
in the proof of Lemma 13.4 shows that W1|(r; r′) × S1 = 0. By unique
continuation, W1 vanishes everywhere except possibly at z1; and since it is
an Lq-function, this means that W1 = 0, and, by (14.4), W v

3 = 0.

Using only the component V1, one obtains from (14.3) that

〈Dσ(V1),W3〉 = 0.

We have already seen that 〈Z, W3〉 = 0 for all Z ∈ TEv
σ(z1). Since im(Dσz1)⊕

TEv
σ(z1) = TEσ(z1), it follows that W3 = 0.

The remaining component W2 satisfies
∫

CP1

〈D∂̄′J(w)X2 + Y ◦Dw ◦ i,W2〉 = 0

for all (X2, Y ). This is the situation of Lemma 14.6, and we have proved
that in that case, W2 = 0.

Problems similar to Lemma 14.7 appear at several points in the theory of
pseudo-holomorphic curves. The use of δ-functions, which seems to be new,
simplifies the usual argument (compare [20, Lemma 6.1.2]).
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15 Resolution of the singular fibres

We retain the same notation as in the previous section. The aim of this
section is to prove

Proposition 15.1. Let J (4)
reg ⊂ J (E,Ω, J ′;J−, J+) be the subset of almost

complex structures J such that any J-bubble which lies in a singular fibre
of π has positive Chern number. For every C∞

ε -neighbourhood Jε ⊂ J , the
intersection J (4)

reg ∩Jε is a subset of second category in Jε with respect to the
C∞

ε -topology.

Note that together with Propositions 13.9, 14.1 and 14.2 this completes the
proof of Theorem 13.1. This is because these four results imply that the
intersection J (1)

reg ∩ J (2)
reg ∩ J (3)

reg ∩ J (4)
reg is dense in any C∞

ε -neigbourhood,
and hence dense in J (E, Ω, J ′; J−, J+). By definition, this intersection is a
subset of Jreg(E,Ω, J ′;J−, J+), and therefore Jreg(E,Ω, J ′;J−, J+) is also
dense.

The difference between Proposition 15.1 and the previous results of a similar
nature is that the familiar setup for transversality theory does not work for
J-bubbles in a singular fibre; for instance, if Ez is such a fibre, the space
of W 1,p-maps CP1 −→ Ez is not a Banach manifold. We will avoid this
problem by resolving the singular fibre and lifting the J-bubbles to the
resolution. This uses the fact that (E,Ω, J ′) is ordinary in an essential
way (in the previous section we have only used that the critical points are
isolated). For simplicity, we assume that π : E −→ C has only one critical
point x0 ∈ Ez0 (if there are no critical points, Proposition 15.1 is vacuous).
We begin by considering the local model for the resolution.

Lemma 15.2. Let Q ⊂ C3 be the singular quadric defined by

x2
1 + x2

2 + x2
3 = 0,

Q̂ its proper transform with respect to the blowup of 0 ∈ C3, and r : Q̂ −→ Q
the canonical projection. Then

(1) Q̂ is smooth, and D = r−1(0) is a rational curve with self-intersection
(−2).

(2) r|Q̂ \D : Q̂ \D −→ Q \ {0} is an isomorphism.

(3) Let w : C −→ Q be a non-constant holomorphic map with w(0) = 0.
There is a unique holomorphic map ŵ : C −→ Q̂ such that w = r ◦ ŵ.

Q̂ is the subvariety of C3 × CP2 defined by the equations

ξ2
1 + ξ2

2 + ξ2
3 = 0 and ξixj = ξjxi
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for (x, ξ) ∈ C3 × CP2. Starting from this description, all properties stated
above can be proved in an elementary way. We omit the details. Note that
(3) is a local property, that is, it holds for germs of holomorphic maps w.

Because we have assumed that the second derivative D2πx0 is nondegenerate,
the complex Morse Lemma [2, Lemma 2] says that the singularity of the fibre
Ez0 is locally isomorphic to the singularity of Q at 0. A precise statement
is this:

Lemma 15.3. There is a neighbourhood U ⊂ E of x0 and a holomorphic
embedding

f : (U, J ′) −→ C3

with f(x0) = 0 and f(U ∩ Ez0) ⊂ Q.

Note that the fact that J ′ is integrable is essential here. We can use this
local description of Ez0 to glue in the resolution Q̂. More precisely, let
U ′ = f(U ∩ Ez0) ⊂ Q; we glue together Ez0 \ {x0} and r−1(U ′) ⊂ Q̂ using
the diffeomorphism

r−1(U ′) \D
r−→ U ′ \ {0} f−1

−→ (U ∩ Ez0) \ {x0}.

This yields a smooth compact four-manifold Êz0 with a map rx0 : Êz0 −→
Ez0 . We call Êz0 the resolution of Ez0 .

Let J be an almost complex structure in J (E, Ω, J ′; J−, J+). By definition,
J must agree with J ′ on a neighbourhood of x0. Using the complex structure
on Q̂ we can lift J to an almost complex structure Ĵ on Êz0 such that
the derivatives of rx0 are (Ĵ , J)-linear. The lift Ĵ is unique and depends
smoothly on J . By Lemma 15.2(3) any J-bubble w : CP1 −→ Ez0 has a
unique Ĵ-holomorphic lift ŵ : CP1 −→ Êz0 . We will not try to equip Êz0

with a symplectic structure, since that is not necessary for our argument.

Now we can return to the usual strategy: let P(Êz0) be the space non-
constant W 1,p-maps from CP1 to Êz0 . For ŵ ∈ P(Êz0) and a Ĵ as above, let
Λ0,1

Ĵ
(ŵ∗TÊz0) ⊂ Hom(TCP1, ŵ∗TÊz0) be the vector bundle of Ĵ-antilinear

homomorphisms TCP1 −→ ŵ∗TÊz0 . The spaces of Lp-sections of these
vector bundles form a bundle of Banach spaces

Λ
Ĵ
−→ P(Êz0)

which has a canonical section ∂̄
Ĵ
, given by ∂̄

Ĵ
(ŵ) = Dŵ+Ĵ◦Dŵ◦i. ∂̄−1

Ĵ
(0) is

the space of non-constant Ĵ-holomorphic maps. We call such a map regular
if it is a regular zero of ∂̄

Ĵ
, that is, if the differential

D∂̄
Ĵ
(ŵ) : TwP(Êz0) −→ Lp(Λ0,1

Ĵ
(ŵ∗TÊz0))
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is surjective. This differential is a Fredholm operator of index

indD∂̄
Ĵ
(ŵ) = 4 + 2〈c1(TÊ, Ĵ), [ŵ]〉. (15.1)

This is just the ordinary transversality theory of pseudo-holomorphic curves
on an almost complex four-manifold. The only difference is that we con-
sider only almost complex structures which come from an almost complex
structure J on E. These almost complex structures are not generic: since
they agree with the lift of J ′ on a neighbourhood of Dx0 = r−1

x0
(x0), Dx0 is a

Ĵ-holomorphic sphere with self-intersection (−2). Such a sphere is not a reg-
ular Ĵ-holomorphic map. However, the space of almost complex structures
Ĵ is sufficiently large to prove the following result:

Lemma 15.4. Let Jε ⊂ J (E, Ω, J ′; J−, J+) be a C∞
ε -neighbourhood. There

is a subset Jε,reg ⊂ Jε of second category such that for J ∈ Jε,reg, any simple
Ĵ-holomorphic map ŵ : CP1 −→ Êz0 which does not lie in the exceptional
curve Dx0 is regular.

Because of the usual PSL(2,C)-action, there can be no simple regular Ĵ-
holomorphic spheres of index < 6. (15.1) implies that if J ∈ Jε,reg, any
simple Ĵ-holomorphic sphere has positive Chern number, with the exception
of those spheres which lie in Dx0 . By passing to the underlying simple ho-
lomorphic map, the same can be proved for all non-constant J-holomorphic
maps ŵ : CP1 −→ Êz0 , again with the same exception. In particular, if w is
a J-bubble in Ez0 , its lift ŵ to Êz0 has positive Chern number (im(ŵ) 6= Dx0

because rx0 contracts Dx0 to the point x0). To prove Proposition 15.1, it
remains to show that the Chern numbers of w and ŵ coincide, and that is
a consequence of the following computation:

Lemma 15.5. c1(TÊz0 , Ĵ) = r∗x0
c1(TE, J).

Proof. Let N ⊂ Êz0 be a tubular neighbourhood of Dx0 . Consider the
Mayer-Vietoris sequence

H1(N \Dx0) −→ H2(Êz0) −→ H2(Êz0 \Dx0)⊕H2(N).

Because Dx0 has self-intersection (−2), N \Dx0 is homotopy equivalent to
RP 3; in particular H1(N \Dx0) = 0. Let δ = c1(TÊz0 , Ĵ)− r∗x0

c1(TE, J) ∈
H2(Êz0). The image of r∗x0

c1(TE, J) in H2(N) vanishes because rx0 col-
lapses Dx0 to a point. On the other hand, c1(TÊ, Ĵ)|N vanishes because
Dx0 is a rational curve of self-intersection (−2) and therefore has Chern
number zero. It follows that δ maps to zero in H2(N).

rz0 : Êz0 \ Dx0 −→ Ez0 \ {x0} is a diffeomorphism and carries Ĵ to J .
Therefore

TÊ|(Êz0 \Dx0) ∼= r∗z0
T (Ez0 \ {x0}). (15.2)
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T (Ez0 \ {x0}) is the restriction of TEv to Ez0 \ {x0} and hence

TE|Ez0 \ {x0} = (TEh ⊕ TEv)|Ez0 \ {x0}
∼= C⊕ T (Ez0 \ {x0}).

Together with (15.2) this shows that δ maps to zero in H2(Êz0 \Dx0).
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Part III
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16 An outline of the argument

This final part contains the computation of the Floer homology of a gener-
alized Dehn twist. The result was stated in Theorem 3.5 and its proof uses
the tools introduced in Part II. The proof is based on three results. Two of
these are general properties of Floer homology:

(Floer homology of the identity) HF∗(idM ) as a QH∗(M, ω)-module is
canonically isomorphic to QH∗(M,ω) as a module over itself.

(Mapping invariance) The quantum module product satisfies

c ∗̂x = φ∗(c) ∗̂x

for all c ∈ QH∗(M, ω) and x ∈ HF∗(φ). Here φ∗ is the action of φ on
QH∗(M, ω) = H∗(M ; Λ).

The isomorphism of HF∗(M) and H∗(M ; Λ) as graded groups is fundamental
for the original application of Floer homology to the Arnol’d conjecture;
it was proved in successively more general versions by Floer [10], Hofer-
Salamon [14] and Piunikhin-Salamon-Schwarz [22]. The last-mentioned pa-
per contains the proof of the statement about the product structures. The
‘mapping invariance’ property is Proposition 10.2.

The third result which enters into the proof of Theorem 3.5 is the following
exact sequence:

Theorem 16.1. Let τV be the generalized Dehn twist along V ⊂ M . There
is a homomorphism of Z/2-graded QH∗(M,ω)-modules Φ : HF∗(idM ) −→
HF∗(τV ) which fits into a long exact sequence

0 −→ HF1(idM ) Φ−→ HF1(τV ) −→
−→ Λ⊕ Λ −→ HF0(idM ) Φ−→ HF0(τV ) −→ 0.

The homomorphism Φ is induced by a suitable almost holomorphic fibration.
The construction of this fibration is based on the special role of generalized
Dehn twists as ‘symplectic monodromy maps’, and the exact sequence is a
consequence of a partial determination of Φ at chain level. Theorem 16.1
is, at least in principle, a special case of a more general long exact sequence
for Floer homology groups; this will be the topic of a future publication.

Proof of Theorem 3.5. The exact sequence of Theorem 16.1 has the follow-
ing consequence:

the kernel of Φ satisfies dimΛ ker(Φ) ≤ 2. Moreover, if equality holds,
HF∗(τV ) ∼= HF∗(idM )/ ker(Φ) as modules over QH∗(M, ω).
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Let Ψ : QH∗(M, ω) −→ HF∗(idM ) be the canonical isomorphism, and v =
[V ]t0 ∈ QH∗(M,ω). The next step is to prove

Ψ(v) ∈ ker(Φ). (16.1)

To see this, take the unit element u = [M ]t0 ∈ QH∗(M,ω) and another
element w = W t0, where W ∈ H2(M ;Z/2) satisfies [V ] ·W = 1. Because Φ
is a homomorphism of QH∗(M, ω)-modules,

Φ(Ψ(w)) = Φ(Ψ(w ∗ u)) = Φ(w ∗̂Ψ(u)) = w ∗̂Φ(Ψ(u)).

Similarly Φ(Ψ(v+w)) = (v+w) ∗̂Φ(Ψ(u)). By the Picard-Lefschetz formula,
(τV )∗(w) = w + (w ·Λ v)v = w + v. From the ‘mapping invariance’ property
of the quantum module structure it follows that

w ∗̂Φ(Ψ(u)) = (v + w) ∗̂Φ(Ψ(u));

hence Φ(Ψ(v)) = Φ(Ψ(v +w))−Φ(Ψ(w)) = 0. Having proved (16.1) we can
immediately strengthen it:

Ψ(Iv) ⊂ ker(Φ),

because Φ(Ψ(c ∗ v)) = c ∗̂Φ(Ψ(v)) = c ∗̂ 0 = 0 for any c ∈ QH∗(M, ω). Now
dimΛ Iv = 2 by Lemma 3.2. Since Ψ is an isomorphism, this means that
equality holds in the condition dimΛ ker(Φ) ≤ 2 derived above and hence
that ker(Φ) = Ψ(Iv). In this case, the exact sequence yields an isomorphism

HF∗(τV ) ∼= HF∗(idM )/Ψ(Iv).

Clearly this implies that HF∗(τV ) ∼= QH∗(M, ω)/Iv as QH∗(M, ω)-modules,
with the quantum module structure on HF∗(τV ) and the one induced by the
quantum product on QH∗(M, ω)/Iv.

It remains to prove the exact sequence in Theorem 16.1. The proof takes up
the rest of this part. It is based on a simple observation about the energy of
J-holomorphic sections of bundles which satisfy a certain ‘curvature prop-
erty’; this idea is presented in the next section. The two following sections
describe the almost holomorphic fibration which induces Φ; its construction
is elementary but lengthy. The final section contains a technical transvers-
ality result for J-holomorphic sections in the spirit of section 13.

17 Nonnegative fibrations

Let (E,Ω, J ′) be an almost holomorphic fibration over a Riemann surface
Σ, with projection π : E −→ Σ.
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Definition 17.1. Let J be a partially Ω-tame almost complex structure on
E. J is called horizontal if J(TEh

x) = TEh
x for all x ∈ E (note that for

x ∈ Crit(π) this condition is vacuous because TEh
x = 0).

Let us assume for a moment that π has no critical points, that is, that
(E,Ω) is a symplectic fibre bundle. We know that (Ez, Ω|Ez) is a loc-
ally trivial family of symplectic manifolds. Taken together with Darboux’s
theorem, this says that the vertical component Ω|TEv does not have any
local differential-geometric invariants. In contrast, the local geometry of the
whole form Ω is nontrivial. The importance of the class of horizontal almost
complex structures is that it is linked with TEh and hence with the differ-
ential geometry of Ω, whereas the class of partially Ω-tame almost complex
structures depends only on Ω|TEv.

Definition 17.2. (E,Ω, J ′) is nonnegative if it satisfies one of the following
two equivalent conditions:

(i) Let β ∈ Ω2(Σ) be a positively oriented volume form. For every x ∈
E \ Crit(π) there is a ρ(x) ≥ 0 such that

Ω|TEh
x = ρ(x)(π∗β|TEh

x)

(this is obviously independent of the choice of β).

(ii) Any horizontal almost complex structure J on E satisfies

Ω(X, JX) ≥ 0 for all X ∈ TE.

Moreover, Ω(X,JX) = 0 implies that X ∈ TEh.

The equivalence of the two conditions is proved as follows:

(i) ⇒ (ii) Let J be a horizontal almost complex structure. For x ∈ Crit(π)
we have Ω(X, JX) > 0 for all nonzero X ∈ TEx because J is partially
Ω-tame and TEx = TEv

x.

Take a point x /∈ Crit(π) and an X ∈ TEx, and let X = Xv + Xh be its
vertical and horizontal parts.

Ω(X, JX) = Ω(Xv + Xh, J(Xv + Xh)) = Ω(Xv, JXv) + Ω(Xh, JXh)

= Ω(Xv, JXv) + ρ(x)β(Dπ(Xh), j Dπ(Xh)).

The second term is nonnegative because β is a positive volume form and
ρ(x) ≥ 0. The first term is nonnegative (because J is partially Ω-tame) and
vanishes iff Xv = 0.

(ii) ⇒ (i) Fix a point x /∈ Crit(π). TEh
x is two-dimensional and Dπx|TEh

x :
TEh

x −→ TΣπ(x) is an isomorphism. Hence there is always a ρ(x) ∈ R such
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that Ω|TEh
x = ρ(x)(π∗β|TEh

x). Choose a nonzero X ∈ TEh
x and a horizontal

almost complex structure J . By assumption

0 ≤ Ω(X, JX) = ρ(x)β(Dπ(X), j Dπ(X)).

Because β is a positive volume form and Dπ(X) 6= 0, β(Dπ(X), j Dπ(X))
is positive. Therefore ρ(x) ≥ 0.

Let us return briefly to the situation where Crit(π) = ∅. We have pointed
out that the local geometry of Ω is nontrivial. The principal local invariant
of Ω is its Hamiltonian curvature r. This is a family of homomorphisms

rz : Λ2(TΣz) −→ C∞(Ez,R)

parametrized by z ∈ Σ, which is defined simply by rz(Z1, Z2) = −Ω(Z\
1, Z

\
2).

The name ‘Hamiltonian curvature’ can be explained as follows: the curvature
of the symplectic connection TEh on the fibre bundle E is a two-form on Σ
with values in the symplectic vector fields on the fibres Ez; that is, for
Z1, Z2 ∈ (TΣ)z the curvature R(Z1, Z2) is a symplectic vector field on
(Ez, Ω|Ez). With our sign conventions, R(Z1, Z2) turns out to be the Ha-
miltonian vector field associated to r(Z1, Z2) ∈ C∞(Ez,R).

The nonnegativity condition says that r(Z1, Z2) is a nonpositive function on
Ez for a positively oriented basis Z1, Z2 of TΣz. More succinctly, one could
say that (E, Ω) is nonnegative iff it has nonpositive Hamiltonian curvature.
This clash of signs is unfortunate; we have chosen to retain the name ‘non-
negative fibration’ because it is more intuitive.

Lemma 17.3. Let J be a horizontal almost complex structure on E.

(a) A horizontal section σ : Σ −→ E is J-holomorphic for any horizontal
almost complex structure J .

(b) If (E, Ω, J ′) is nonnegative, any J-holomorphic section has nonnegative
energy, and any J-holomorphic section with zero energy is horizontal.

Proof. (a) Dπ : σ∗(TEh, J |TEh) −→ (TΣ, j) is an isomorphism and Dσ is
its inverse. Since Dπ is (J, j)-linear, Dσ is (j, J)-linear.

(b) Let σ be a J-holomorphic section. The definition of nonnegativity in
terms of J shows that σ∗Ω(Z, jZ) = Ω(Dσ(Z), J Dσ(Z)) ≥ 0 for any Z ∈
TΣ, and that equality can hold only if Dσ(Z) ∈ TEh. Hence σ∗Ω is a
nonnegative two-form, and it vanishes only if Dσ(Z) ∈ TEh for all Z.

Example 17.4. It is instructive to review some of the results of section
8 from the present point of view. Let (E,Ω) be a product fibre bundle
R × (T, Θ). The almost complex structures in J (T, Θ) are all horizontal,
and Lemma 8.7 proves that (E, Ω) is nonnegative. In fact, it is flat, that is,
Ω|TEh ≡ 0.
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Example 17.5. Now consider the same smooth fibre bundle E, but with a
perturbed two-form Ω′ = Ω − d(H dt) as in section 7. Let K be the vector
field which generates the group of translations of E. Take the standard basis
Z1 = (1, 0), Z2 = (0, 1) of vector fields on C and let Z\

1, Z
\
2 be their horizontal

lifts with respect to Ω′. Ω′ is nonnegative iff Ω′(Z\
1, Z

\
2) ≥ 0. Because Z2 is

horizontal and Z\
1 −K is vertical,

Ω′(Z\
1, Z

\
2) = Ω′(K,Z\

2) = Ω(K,Z\
2)− (dH ∧ dt)(K, Z\

2).

Since iKΩ = 0, dt(K) = 0, and dt(Z\
2) = 1, it follows that

Ω′(Z\
1, Z

\
2) = −(dH ∧ dt)(K, Z\

2) = −dH(K).

If we see H as a family (Hs)s∈R of functions on T , dH(K) = ∂sHs. Hence
(E,Ω′) is nonnegative iff ∂sHs ≤ 0.

For example, let H be the pullback of function H on C which is constant
outside a compact subset. (E, Ω′) is nonnegative if ∂H/∂s ≤ 0. It is not
difficult to see that Ω and Ω′ induce the same symplectic connection on E.
However, the horizontal sections of E, which have zero energy with respect
to Ω, have energy − ∫

C ∂H/∂s with respect to Ω′. This example illustrates
the fact that the last sentence of Lemma 17.3 does not have a converse:
horizontal sections of a nonnegative fibration may have positive energy.

From now on we assume that Σ = C and that (E, Ω, J ′) has tubular ends
modelled on (T±,Θ±). We will use the following simple properties of hori-
zontal sections of E:

Lemma 17.6. (a) Any horizontal section of E is a section with horizontal
limits.

(b) Two horizontal sections of E with the same positive (or negative) limit
coincide.

(c) Let σ be a horizontal section of E such that Ω|TEh vanishes in a neigh-
bourhood of im(σ). Then the canonical connection ∇σ on σ∗TEv is flat.

(d) Let σ be as in (c) and assume that (T±, Θ±) are nondegenerate. Then
ind(σ) = 0.

Proof. (a) Because (E,Ω) has tubular ends, there is an R > 0 such that the
restriction of a horizontal section of E to [R;∞)×S1 is a horizontal section
of [R;∞)× (T+, Θ+). As shown in Lemma 8.2, any such section is given by

σ(s, t) = (s, ν+(t)), (17.1)

where ν+ is a horizontal section of (T+,Θ+). The same holds on the other
end.
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(b) Equation (17.1) shows that the behaviour of a horizontal section for large
s is determined by its positive limit. In particular, two horizontal sections
with the same positive limit coincide on an open subset of C. Horizontal
sections satisfy a strong unique continuation condition (two horizontal sec-
tions which have equal values at a single point coincide everywhere). Hence
two distinct horizontal sections with the same positive (or negative) limit
cannot exist.

(c) We have defined ∇σ by

∇σ
XW = [X\, W̃ ] (17.2)

where W̃ is some extension of W from σ∗TEv to all of TEv. By using the
Jacobi identity it follows that

∇σ
X∇σ

Y W −∇σ
Y∇σ

XW = [[X\, Y \], W̃ ].

Therefore ∇σ is flat if
[X\, Y \] = [X,Y ]\

in some neighbourhood of im(σ). By a general fact about the Lie bracket
on smooth fibre bundles, [X\, Y \] is a lift of [X,Y ]; it remain to show that
[X\, Y \] is horizontal in a neigbourhood of im(σ). Because Ω is closed,

0 = dΩ(X\, Y \, Z) = Z.Ω(X\, Y \)− Ω([X\, Y \], Z)

for any Z ∈ C∞(TEv) (all other terms in the standard formula for dΩ
vanish because X\ and Y \ are horizontal and Z is vertical). By assumption,
Z.Ω(X\, Y \) = 0 in a neighbourhood of im(σ); therefore Ω([X\, Y \], Z) = 0
in that neighbourhood, that is, [X\, Y \] is horizontal there.

(d) Recall that the definition of the index goes as follows: one has to replace
σ by a section σ′ which is horizontal outside a compact subset. (σ′)∗TEv has
a canonical symplectic connection ∇σ′ defined again outside some compact
subset in C. Extend this connection on all of C and consider its monodromy
around the circles {s}×S1. This yields a path in the symplectic group whose
Maslov index is the index of σ.

This procedure can be simplified considerably if σ is horizontal: one can
take σ′ = σ, and the canonical connection ∇σ is defined on all of C. In our
case ∇σ is flat and hence its monodromy around {s}×S1 is independent of
s in a suitable trivialization of σ∗TEv. A constant path in Sp(4,R) has zero
Maslov index; therefore ind(σ) = 0.

Theorem 17.7. Let (E, Ω, J ′) be an ordinary almost holomorphic fibration
over C, with tubular ends modelled on nondegenerate fibre bundles (T±, Θ±).
Choose J− ∈ Jreg(T−, Θ−) and J+ ∈ Jreg(T+, Θ+). We assume that
(E,Ω, J ′) is nonnegative and that any ν+ ∈ H(T+, Θ+) has the following
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property: there is a horizontal section σ which has ν+ as its positive limit
and such that Ω|TEh

x vanishes for all x in a neighbourhood of im(σ). Then
the homomorphism

CΦ(E, Ω, J ′; J) : CF∗(T−, Θ−) −→ CF∗(T+, Θ+)

is surjective for any J ∈ Jreg(E,Ω, J ′; J−, J+) which is horizontal.

The principle underlying this Theorem was first used by Floer [11] to prove
his exact sequence for instanton Floer homology; in the expository paper
[4] (where it is called the ‘monotonicity property’) it is formulated as an
observation about filtered chain complexes. In our case, thanks to the use
of the Novikov field Λ, this observation takes on a simpler form.

Let A : Λm −→ Λn be a Λ-linear map. The most obvious description of such
a map is as an (n ×m)-matrix with entries in Λ, but we prefer to write it
as a formal power series

A =
∑

ε∈R
Aε tε

whose coefficients Aε are homomorphisms (Z/2)m −→ (Z/2)n and satisfy
the usual finiteness condition

#{ε ∈ R | ε ≤ C and Aε 6= 0} < ∞ for all C ∈ R. (17.3)

A is called nonnegative if Aε = 0 for all ε < 0. It is called positive if Aε = 0
for all ε ≤ 0. Note that these are properties of homomorphisms of based
Λ-vector spaces; they are not invariant under base change.

Lemma 17.8. If P : Λn −→ Λn is positive, (id− P ) is invertible.

Proof. Since the formal series

P =
∑

ε>0

Pε tε

satisfies (17.3) there is a δ > 0 such that Pε = 0 for ε < δ. It is easy to see
that the formal series

id + P + P 2 + · · · =
∞∑

k=0

(∑

ε≥δ

Pε tε
)k

also satisfies (17.3). The endomorphism of Λn defined by this series is the
inverse of (id− P ).

Lemma 17.9. Let A : Λm −→ Λn be a nonnegative homomorphism. If its
leading coefficient A0 is surjective (or injective), so is A itself.
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Proof. If A0 is onto, there is a D0 : (Z/2)n −→ (Z/2)m with A0 ◦D0 = id.
Let D = D0 t0 : Λn −→ Λm.

A ◦D = id(Z/2)n t0 +
∑

ε>0

(Aε ◦D0) tε;

Lemma 17.8 shows that A ◦D is invertible, and this implies that A is onto.
The parallel statement about injectivity follows by taking the duals.

Proof of Theorem 17.7. Let V − and V + be the Z/2-vector spaces whose
bases are the sets H(T−,Θ−) resp. H(T+, Θ+). CΦ(E, Ω, J ′; J) can be
written as a power series

CΦ(E,Ω, J ′;J) =
∑

ε

CΦε tε

with coefficients CΦε ∈ Hom(V −, V +). By definition, CΦε is given by the
matrix

(mε(J ; ν−, ν+))ν+,ν−

which encodes the asymptotic behaviour of J-holomorphic sections with
index 0 and energy ε. By Lemma 17.3 and Lemma 17.6(d),

(a) CΦε = 0 for ε < 0 and

(b) CΦ0 counts precisely the horizontal sections with zero energy.

Part (a) says that CΦ(E,Ω, J ′;J) is nonnegative with respect to the stand-
ard bases of CF∗(T−,Θ−) and CF∗(T+, Θ+). We will use (b) and the as-
sumption about horizontal sections of E to prove that CΦ0 is onto. In view
of Lemma 17.9 this completes the proof of Theorem 17.7.

Let ν+ be a horizontal section of (T+, Θ+). By assumption there is a hori-
zontal section σ(ν+) of E which has ν+ as its positive limit. Lemma 17.6
shows that σ(ν+) is unique and that any horizontal section equals σ(ν+) for
some ν+. Let i(ν+) ∈ H(T−, Θ−) be the negative limit of σ(ν−). Applying
Lemma 17.6 again shows that i : H(T+, Θ+) −→ H(T−, Θ−) is injective.

The assumption that Ω|TEh vanishes in a neighbourhood of σ(ν+) implies
that σ(ν+)∗Ω = 0. It follows that

m0(J ; ν−, ν+) =

{
1 ν− = i(ν+),
0 otherwise.

In other words, CΦ0 maps the element of the natural basis of V − corres-
ponding to i(ν+) to the basis element of V + corresponding to ν+, for all
ν+ ∈ H(T+,Θ+). Clearly, this means that CΦ0 is onto.

Theorem 17.7 is complemented by a technical result whose proof we post-
pone to section 21:
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Theorem 17.10. Let (E, Ω, J ′) be as in Theorem 17.7. For all J± ∈
Jreg(T±, Θ±) there is a J ∈ Jreg(E, Ω, J ′; J−, J+) which is horizontal.

Corollary 17.11. Let (E,Ω, J ′), J± and J be as in Theorem 17.7 and
assume that dimΛ CF1(T−, Θ−) = dimΛ CF1(T+, Θ+). Then Φ(E, Ω, J ′)
fits into a long exact sequence

0 −→ HF1(T−,Θ−; J−)
CΦ1(E,Ω,J ′;J)−−−−−−−−−→ HF1(T+, Θ+;J+) −→

−→ Λd −→ HF0(T−, Θ−; J−)
CΦ0(E,Ω,J ′;J)−−−−−−−−−→ HF0(T+, Θ+; J+) −→ 0,

where d = dimΛ CF0(T−, Θ−)− dimΛ CF0(T+, Θ+).

Proof. Because dimΛ CF1(T−,Θ−) = dimΛ CF1(T+, Θ+), the subcomplex
ker(CΦ(E, Ω, J ′; J)) ⊂ CF∗(T−, Θ−) is zero in degree 1. The long exact
sequence is induced by the sequence of chain complexes

0 −→ ker(CΦ(E, Ω, J ; J ′)) ↪→ CF∗(T−, Θ−) −→
CΦ(E,Ω,J ;J ′)−−−−−−−−→ CF∗(T+,Θ+) −→ 0.

This is the mechanism which we will use to produce the exact sequence of
Theorem 16.1.

18 The quadratic fibration

Let (E,Ω, J ′) be an almost holomorphic fibration over the closed disc Dδ ⊂ C
of radius δ > 0, such that 0 ∈ Dδ is the only critical value of E −→ Dδ. The
symplectic parallel transport P∂Dδ

∈ Aut(Eδ,Ω|Eδ) along ∂Dδ is called the
symplectic monodromy of (E,Ω, J ′).

In this section we will study the monodromy of a particularly simple fibra-
tion. This fibration will not be used later. However, a modified version of
it, which will be introduced in the next section, is essential for the proof
of Theorem 16.1. Many arguments can be carried out in parallel for both
versions, and we prefer to present them in the simpler case.

Our example is E = π−1(Dδ) ⊂ C3, where π : C3 −→ C is the holomorphic
function π(x) = x2

1+x2
2+x3

2 and δ is some positive number. Ω and J ′ are the
standard symplectic and complex structures on E. π : E −→ Dδ has a single
critical point 0 ∈ C3. Strictly speaking, (E,Ω, J ′) is not an almost holomor-
phic fibration over Dδ because its fibres are noncompact. In general, such
a lack of compactness causes a problem because the symplectic monodromy
may not exist. We will ignore this problem, that is, we will proceed as if we
knew that (E, Ω, J ′) has a symplectic monodromy and then compute this
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monodromy explicitly. To put the argument on a strictly sound basis one
would have to reverse it by starting with the explicit formula and working
backwards to show that this formula describes the monodromy of (E, Ω, J ′).
This is perfectly possible; however, it would obscure the argument.

We begin by identifying the regular fibres of E.

Lemma 18.1. The restriction of (E, Ω) to (0; δ] ⊂ Dδ is isomorphic to the
trivial symplectic fibre bundle (0; δ] × (T ∗S2, η). An explicit isomorphism
f : E|(0; δ] −→ (0; δ]× T ∗S2 is given by

f(x) =
(

π(x),
re(x)
|re(x)| ,−im(x)|re(x)|

)
. (18.1)

In (18.1) we view (0; δ]×T ∗S2 as a subset of R×R3×R3 by using the same
coordinates on T ∗S2 as in section 2.

Proof. It is convenient to separate the real and imaginary parts x = p + iq
of x ∈ C3. The equation π(x) = s ∈ (0; δ] translates into

|p|2 − |q|2 = s, 〈p, q〉 = 0. (18.2)

The first equation implies that p 6= 0 and this shows that (18.1) defines
a smooth map E|(0; δ] −→ (0; δ] × R3 × R3. The second equation implies
that im(f) lies in (0; δ] × T ∗S2 ⊂ (0; δ] × R3 × R3. We will write η for the
standard symplectic structure on T ∗S2 and for its pullback to (0; δ]× T ∗S2;
this should not cause any confusion.

f∗η = d
(
f∗

(
−

3∑

j=1

ujdvj

))
= d

( 3∑

j=1

pj

|p|d(qj |p|)
)

=
3∑

j=1

dpj ∧ dqj + d
(d|p|
|p| 〈p, q〉

)
;

the second term vanishes by (18.2). Therefore f∗η equals the restriction of
Ω to E|(0; δ]. This is nearly sufficient to prove that f is an isomorphism of
symplectic fibre bundles; an additional consideration is necessary because of
the non-compactness of the fibres.

Let fs : Es −→ T ∗S2 be the restriction of f to the fibre over s ∈ (0; δ]. We
have proved that f∗s η = Ω|Es; therefore fs is a local diffeomorphism. For all
R > 0 we have

f−1
s (T ∗RS2) = {p + iq ∈ Es | |p| |q| ≤ R}.

Using the first part of (18.2) it is easy to see that a bound on |p| |q| implies
a bound on |p|2 + |q|2; therefore f−1(T ∗RS2) is compact. This proves that fs
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is proper. A proper local diffeomorphism is a covering map; since any point
in S2 ⊂ T ∗S2 has a unique preimage (this can be easily proved by looking
at the formula for fs) this covering map is a diffeomorphism.

We have proved that f is a fibrewise diffeomorphism and that f∗η = Ω;
therefore f is an isomorphism of symplectic fibre bundles over (0; δ].

Lemma 18.2. Let H ∈ C∞(E,R) be the function given by H(x) = 1
4 |x|2.

h = H ◦ f−1 ∈ C∞((0; δ]× T ∗S2,R) is given by

h(s, u, v) = 1
4

√
s2 + 4 |v|2.

Proof. Using equation (18.2) one checks that

h(f(p + iq)) = 1
4

√
s2 + 4|p|2|q|2 =

= 1
4

√
(|p|2 − |q|2)2 + 4|p|2|q|2 = 1

4(|p|2 + |q|2) = H(p + iq).

Lemma 18.3. (E, Ω, J ′) is a nonnegative almost holomorphic fibration.

The simplest proof of this is based on the fact that (E, Ω, J ′) is a Kähler
manifold. We choose a different proof which avoids using J ′.

Proof. We must prove that for any x ∈ E \ {0}, Ω|TEh
x is a nonnegative

multiple of the pullback of the standard volume form on Dδ to TEh
x . Since

the set of points with this property is closed, it is sufficient to prove this for
x ∈ π−1(Dδ \ 0).

Let X\, Y \ be the horizontal lifts of the vector fields X(z) = z and Y (z) = iz
on Dδ. They are defined on E \ {0}. Since X and Y form an oriented basis
of the tangent space at any point in Dδ \ 0, what we have to prove is that

Ω(X\, Y \) ≥ 0 (18.3)

at any point in π−1(Dδ \ {0}) ⊂ E.

Let σE be the standard circle action on C3 and KE the vector field which
generates it. Ω is invariant under σE and π(σ(eit)x) = e2itπ(x). Because
of this symmetry, it is sufficient to show that (18.3) holds on π−1((0; δ]) ⊂
π−1(Dδ \ {0}).
Since X\ is horizontal, Ω(X\, Y \) = Ω(X\, Y ′) for any vector field Y ′ which
is a lift of Y . In particular, one can take Y ′ = 1

2KE . Since Ω(·, 1
2KE) = dH

with H as in Lemma 18.2, we have

Ω(X\, Y \) = X\.H.

Now we transfer the whole situation to (0; δ] × T ∗S2 using f . f∗X\ is a
horizontal vector field on the trivial symplectic fibre bundle (0; δ]×(T ∗S2, η)
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and has the form (f∗X\)(s,u,v) = (s, · · · ); hence (f∗X\)(s,u,v) = (s, 0, 0). It
follows that

(f∗X\).(H ◦ f−1) = s
∂

∂s
(H ◦ f−1).

In Lemma 18.2 we gave an explicit formula for h = H ◦ f−1; this formula
shows that ∂h/∂s > 0 everywhere.

Lemma 18.4. The symplectic monodromy of (E,Ω) is equal to

a ◦ φ
H|Eδ
−2π ∈ Aut(Eδ, Ω|Eδ),

where a is the involution of Eδ given by a(x) = −x and (φH|Eδ
t )t∈R is the

Hamiltonian flow on (Eδ, Ω|Eδ) induced by H|Eδ.

Proof. Let Y \ be the horizontal lift of the same vector field Y (z) = iz as in
the proof of the previous Lemma. The map which we seek to determine is
the time-(2π) map of the flow (ψt)t∈R induced by Y \.

Since Y is invariant under rotations of Dδ, Y \ is invariant under σE ; hence

ψ̂t = σE(e−
it
2 ) ◦ ψt

is a flow on E \E0. This flow is generated by the vector field V = Y \− 1
2KE

and since Dπ(V ) = 0, it maps each fibre to itself. Ω(·, Y \)|Eδ = 0 because
Y \ is horizontal, and Ω(·, 1

2KE) = dH. Therefore

iV Ω|Eδ = d(H|Eδ).

This means that ψ̂2π|Eδ is the time-(−2π) map of the Hamiltonian flow
generated by H|Eδ. By definition we have ψ2π = σE(−1)ψ̂2π, and σE(−1)
is precisely the map a.

Now we transport the monodromy map from Eδ to T ∗S2: define

τ = fδ ◦ (a ◦ φ
H|Eδ
−2π ) ◦ f−1

δ .

Since fδ ◦ a ◦ f−1
δ is the antipodal involution A on T ∗S2,

τ = A ◦ φ
h|{δ}×T ∗S2

−2π .

Recall from section 2 that µ(u, v) = |v| generates a Hamiltonian circle action
σ on T ∗S2 \ S2 with σ(−1) = A|T ∗S2 \ S2. h is invariant under this circle
action; therefore

τ |T ∗S2 \ S2 = φµ
π ◦ φ

h|{δ}×T ∗S2

−2π = φk
2π,

where k = 1
2µ− (h|{δ}×T ∗S2). Since every point in S2 is a critical point of

h|{δ} × T ∗S2, τ |S2 = A|S2. Using Lemma 18.2 we can write k = r(µ) with

r(t) = 1
2 t− 1

4

√
δ2 + 4t2.
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We have now shown that

τ(x) =

{
φ

r(µ)
2π (x) x /∈ S2,

A(x) x ∈ S2.

This expression is the same as that which defines the local model of a gen-
eralized Dehn twist (see Lemma 2.1). The function r which occurs in our
situation satisfies r(−t) = r(t)− t and limt→∞ r(t) = limt→∞ r′(t) = 0, but
it does not vanish for t À 0. Therefore τ is not compactly supported but
only asymptotic to the identity at infinity. For this reason it narrowly misses
being a generalized Dehn twist.

We end our discussion of (E,Ω, J ′) with the following observation:

Lemma 18.5. τ is fixed point free.

Proof. Using the formula (2.1) one sees that

τ(x) =

{
σ(e2πi r′(µ(x)))(x) x /∈ S2,

A(x) x ∈ S2.

A is clearly fixed point free. σ is a free circle action, and

r′(t) =
1
2
− t√

δ2 + 4t2
∈ (0; 1

2)

for all t > 0.

19 Generalized Dehn twists as monodromy maps

Proposition 19.1. Let (M, ω) be a compact symplectic four-manifold and
V ⊂ M a Lagrangian two-sphere. There is an ordinary almost holomorphic
fibration (EV , ΩV , J ′V ) over some disc Dδ whose only critical value is 0 ∈
Dδ, whose fibre over δ ∈ Dδ is isomorphic to (M,ω) and whose symplectic
monodromy is (for a suitable choice of isomorphism) a generalized Dehn
twist along V .

This is an analogue of the well-known fact that Dehn twists on surfaces
occur as monodromy maps. The proof takes up the whole of this section.
A more detailed statement of the result can be found in Proposition 19.10
below.

Like the definition of generalized Dehn twists, our proof of Proposition 19.1
is based on a local model. The quadratic fibration considered in the previous
section already comes very near to being this local model; however, as we
have seen, its monodromy is not quite a generalized Dehn twist. We will now
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introduce a modified version of it. The modification achieves several goals:
first, the monodromy becomes a genuine generalized Dehn twist; secondly,
the fibration becomes ‘trivial at infinity’; and finally, the regular fibre shrinks
to a small tubular neighbourhood of S2 in T ∗S2. The same remark about
the non-compactness of the fibres as in the previous section applies.

Fix an ε > 0 and a function ξ ∈ C∞(R,R) such that ξ|[0; ε/2] = 1, ξ|[ε;∞) =
0, and ξ′(t) < 0 for t ∈ (ε/2; ε). For δ > 0, we define

Ẽ = {(x, z) ∈ C3 ×Dδ | |x|2 < 2ε and x2
1 + x2

2 + x2
3 = ξ(|x|2)z}.

Let π̃ : Ẽ −→ Dδ be the projection, Ω̃ ∈ Ω2(Ẽ) the pullback of the standard
symplectic form on C3, and J̃ ′ the standard complex structure on the subset

U = {(x, z) ∈ Ẽ | |x|2 < ε/2}
= {(x, z) ∈ C3 ×Dδ | x2

1 + x2
2 + x2

3 = z and |x|2 < ε/2}.

Lemma 19.2. If δ is sufficiently small, (Ẽ, Ω̃, J̃ ′) is an ordinary almost
holomorphic fibration, and (0, 0) ∈ Ẽ is the only critical point of π̃.

Proof. The ‘Zariski tangent space’ TẼ(x,z) of Ẽ at a point (x, z) consists of
all (X,Z) ∈ C3 × C such that

2(x1X1 + x2X2 + x3X3) = ξ(|x|2)Z + 2z ξ′(|x|2) re(〈x,X〉).
(19.1)

Ẽ is smooth at (x, z) if TẼ(x,z) has (real) dimension 6. A smooth point (x, z)
is a regular point of π̃ if TẼv

(x,z) = TẼ(x,z) ∩ (C3 × 0) is four-dimensional.

Let R ⊂ Ẽ be the set of points (x, z) such that z = 0 or |x|2 ≥ ε. At any
point of R the equation (19.1) is C-linear and (because x 6= 0 or ξ(|x|)2 6= 0
holds) nontrivial. Hence all points in R are smooth points of Ẽ. Since the
smoothness condition is open, the set of smooth points is a neighbourhood
of R. It is not difficult to see that any neighbourhood of R contains π̃−1(Dδ′)
for sufficiently small δ′ > 0. Therefore we can ensure that Ẽ is smooth by
making δ smaller.

The proof that (0, 0) is the only critical point of π̃ is along the same lines:
any point in R \ (0, 0) is a regular of point of π̃. The regularity condition
is open, and a neighbourhood of R \ (0, 0) contains π̃−1(Dδ′) \ (0, 0) for
sufficiently small δ′.

Ω̃|TẼv
x is nondegenerate for any x ∈ R because TẼv

x is complex-linear.
The nondegeneracy condition is open; by shrinking δ again we can achieve
that Ω̃|TẼv

x is nondegenerate everywhere. The remaining condition (3) in
Definition 7.5 is satisfied because (U, Ω̃|U, J̃ ′) is a Kähler manifold. The fact
that (0, 0) is an ordinary critical point is obvious.
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From now on we assume that δ has been chosen such that the conclusions
of Lemma 19.2 apply. (Ẽ, Ω̃, J̃ ′) has many points in common with the sim-
pler quadratic fibration (E,Ω, J ′). For instance, σ

Ẽ
(eit)(x, z) = (eitx, e2itz)

defines a circle action on Ẽ which preserves Ω̃. This action covers the double
of the standard circle action on the base Dδ, and the vector field K

Ẽ
which

generates σ
Ẽ

satisfies
Ω̃(·, 1

2K
Ẽ
) = dH̃

where H̃(x, z) = 1
4 |x|2. Some of the arguments in the previous section use

only these properties and carry over to (Ẽ, Ω̃, J̃ ′) unchanged. In this way
one obtains

Lemma 19.3. (a) Let X\ be the horizontal lift of X(z) = z. (Ẽ, Ω̃, H̃) is
nonnegative iff X\.H̃ ≥ 0 at any point in π̃−1(0; δ].

(b) The monodromy of (Ẽ, Ω̃, H̃) is

(σ
Ẽ
(−1)|Ẽδ) ◦ φ

H̃|Ẽδ
−2π .

The analogue of Lemma 18.1 for Ẽ is

Lemma 19.4. The restriction of (Ẽ, Ω̃) to (0; δ] ⊂ Dδ is isomorphic to the
trivial symplectic fibre bundle (0; δ] × (T ∗εS2, η). An explicit isomorphism
f̃ : Ẽ|(0; δ] −→ (0; δ]× T ∗εS2 is given by

f̃(x, z) =
(

z,
re(x)
|re(x)| ,−im(x)|re(x)|

)
. (19.2)

Proof. We write again x = p + iq. The real and imaginary parts of the
equation

x2
1 + x2

2 + x2
3 = s ξ(|x|2)

with s ∈ (0; δ] are

|p|2 − |q|2 = s ξ(|p|2 + |q|2), 〈p, q〉 = 0. (19.3)

The first equation implies that p 6= 0 because p = 0 ⇒ (since s ξ(|p|2 + |q|2)
is nonnegative) q = 0 ⇒ ξ(|p|2 + |q|2) = 1, which leads to a contradiction.
Together with the second equation, this shows that f̃ is a well-defined map
from Ẽ|(0; δ] to (0; δ]× T ∗S2.

If f̃(p + iq) = (s, u, v),

|v|2 = |p|2|q|2 = 1
4

(
(|p|2 + |q|2)2 − (|p|2 − |q|2)2)

= 1
4

(|p + iq|2 − s2ξ(|p + iq|2)2) ≤ 1
4 |p + iq|2. (19.4)

Since |p + iq|2 ≤ 4ε2, |v| ≤ ε. This shows that the image of f̃ lies in
(0; δ]× T ∗εS2.
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Since f̃ is given by the same formula as the map f in the previous section,
we have again

f̃∗η =
3∑

j=1

dpj ∧ dqj + d
(d|p|
|p| 〈p, q〉

)
.

The second term vanishes by (19.3) and therefore f̃∗η = Ω̃|π̃−1(0; δ].

Let f̃s : Ẽs −→ T ∗εS2 be the restriction of f̃ to the fibre over s ∈ (0; δ]. The
computation (19.4) shows that the equality |v|2 = 1

4 |p+ iq|2 holds whenever
|p|2 + |q|2 ≥ ε. Therefore

f̃−1
s (T ∗ε′S

2) ⊂ {(x, s) ∈ Ẽs | |x| ≤ 2ε′}

for all ε′ ∈ [ε/2; ε). Since the r.h.s. is a compact subset of Ẽs, it follows that
f̃s is proper. The rest of the argument is as in Lemma 18.1.

Let

Ẽtriv = {(x, z) ∈ Ẽ | |x| ≥ ε}
= {x ∈ C3 | ε ≤ |x|2 < 2ε and x2

1 + x2
2 + x2

3 = 0} ×Dδ.

(Ẽtriv, Ω̃|Ẽtriv) is clearly a trivial symplectic fibre bundle over Dδ, and the
complement of Ẽtriv in Ẽ is relatively compact. This means that (Ẽ, Ω̃, J̃ ′)
is ‘trivial at infinity’. More precisely, we have

Lemma 19.5. The same expression as in (19.2) defines a diffeomorphism

F : Ẽtriv −→ Dδ × (T ∗εS
2 \ T ∗ε/2S

2)

such that F ∗η = Ω̃|Ẽtriv.

This follows from the same arguments as the preceding Lemma; we omit
the proof. The result can be phrased as follows: (Ẽ, Ω̃, J̃ ′) is an almost
holomorphic fibration whose regular fibre is T ∗εS2 and which contains a trivial
subbundle Dδ × (T ∗εS2 \ T ∗ε/2S

2). This will become important later when

we glue together Ẽ and another symplectic fibre bundle along this trivial
subbundle.

We can use f̃ to transfer questions about Ẽ to (0; δ] × T ∗εS2. For example,
from Lemma 19.3(a) one obtains that (Ẽ, Ω̃, J̃ ′) is nonnegative iff

f̃−1(X\.H̃) = ∂/∂s(H̃ ◦ f̃−1) ≥ 0

for all (s, u, v) ∈ (0; δ]×T ∗εS2. This shows that the function h̃ = H̃ ◦ f̃−1 has
the same important role as its counterpart h from the last section. There is
no simple explicit formula for h̃, but we can approach it in following way:
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Lemma 19.6. h̃ satisfies

β(s, h̃(s, u, v)) = |v|2,

where β(s, t) = 1
4

(
16t2 − s2ξ(4t)2

)
.

Proof. If (s, u, v) = f(p + iq, s) then |v|2 = |p|2|q|2. Therefore it is sufficient
to prove that

β(s, 1
4(|p|2 + |q|2)) = |p|2|q|2

for any (p + iq, s) ∈ Ẽ|(0; δ]. By (19.3),

β(s, 1
4(|p|2 + |q|2) = 1

4

(
(|p|2 + |q|2)2 − s2ξ(|p|2 + |q|2)2)

= 1
4

(
(|p|2 + |q|2)2 − (|p|2 − |q|2)2) = |p|2|q|2.

Lemma 19.7. (Ẽ, Ω̃, J̃ ′) is a nonnegative almost holomorphic fibration.

Proof. As we have seen, this reduces to proving that ∂sh̃ ≥ 0. By Lemma
19.6

∂β

∂s
(s, h̃(s, u, v)) +

∂β

∂t
(s, h̃(s, u, v))

∂h̃

∂s
(s, u, v) = 0. (19.5)

Because ξ ≥ 0 and ξ′ ≤ 0, we have ∂β
∂s (s, t) = −1

2s ξ(4t)2 ≤ 0 and ∂β
∂t (s, t) =

8t−2s2ξ′(4t)ξ(4t) > 0 for all s, t > 0. In view of (19.5) these two inequalities
complete the proof (only positive t = h̃(u, v) occur since H̃ is a positive
function on Ẽ|(0; δ]).

We now concentrate on h̃δ = h̃|{δ} × T ∗εS2.

Lemma 19.8. h̃δ(u, v) = γ(|v|) for a function γ ∈ C∞([0; ε],R) which sat-
isfies

(1) γ(t) = 1
4

√
δ2 + 4t2 for small t,

(2) γ(t) = 1
2 t for t ≥ ε/2, and

(3) 0 ≤ γ′(t) < 1
2 for t < ε/2.

Proof. The function
β(δ, ·) : (0;∞) −→ R

satisfies β(δ, 0) = −1
4δ2, ∂β/∂t > 0 (see the proof of Lemma 19.7) and is

unbounded. Therefore it has a smooth monotone inverse

β̄ : (−1
4δ2;∞) −→ (0;∞).
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We emphasize that this is the inverse map and not the function 1/β. By
Lemma 19.6,

h̃δ(u, v) = β̄(β(δ, h̃δ(u, v))) = β̄(|v|2).
Therefore γ(t) = β̄(t2) satisfies γ(|v|) = h̃δ(u, v). β(δ, ·) has the following
properties:

(1’) β(δ, t) = 1
4(16t2 − δ2) for t ≤ ε/8,

(2’) β(δ, t) = 4t2 for t ≥ ε/4, and

(3’) ∂β
∂t (δ, t) > 8t for t ∈ (ε/8; ε/4).

Property (3’) holds because ∂β
∂t (δ, t) = 8t − 2δ2ξ′(4t)ξ(4t) and ξ′(t) < 0,

ξ(t) > 0 for t ∈ (ε/2; ε). From the properties of β one obtains corresponding
properties for its inverse:

(1”) β̄(t) = 1
4

√
δ2 + 4t for 0 ≤ t ≤ ε2/16− δ2/4 = β(δ, ε/8),

(2”) β̄(t) = 1
2

√
t for t ≥ ε2/4 = β(ε/4), and

(3”) 0 < β̄′(t) < (4
√

t)−1 for all t ∈ [0; ε2/4].

Again the last item requires some explanation: β̄′ is positive because β̄ is
the inverse of the monotone function β(δ, ·). The second inequality follows
from property (1”) as long as t ≤ ε2/16 − δ2/4. In the other region (t ∈
(ε2/16− δ2/4; ε2/4)) we have

β̄′(t) =
(

∂β

∂t
(δ, β̄(t))

)−1

<
1

8β̄(t)
(19.6)

by (3’). Now β(δ, t) ≤ 4t2 and therefore β̄(t) ≥ 1
2

√
t. Together with (19.6)

this yields the desired inequality β̄′(t) < (4
√

t)−1.

The properties of γ stated in the Lemma are immediate consequences of
(1”)–(3”).

Proposition 19.9. Let P ∈ Aut(Ẽδ, Ω̃|Ẽδ) be the symplectic monodromy
of Ẽ. The map τ̃ = f̃δ ◦ P ◦ f̃−1

δ ∈ Aut(T ∗εS2, η) is given by

τ̃(x) =

{
φ

r(µ)
2π (x) x /∈ S2,

A(x) x ∈ S2
(19.7)

with a function r ∈ C∞(R,R) such that r(−t) = r(t) − t for all t, r(t) = 0
for t ≥ ε/2 and 0 < r′(t) ≤ 1

2 for t ∈ [0; ε/2). Therefore τ̃ is a local model
for generalized Dehn twists; moreover, Fix(τ̃) = T ∗εS2 \ T ∗ε/2S

2.
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Proof. From Lemma 19.3(b) we obtain

τ̃ = (f̃δ ◦ σ
Ẽ
(−1) ◦ f̃−1

δ ) ◦ φh̃δ
−2π.

f̃δ ◦ σ
Ẽ
(−1) ◦ f̃−1

δ is the restriction of the antipodal involution A to T ∗εS2.
From (1) in Lemma 19.8 it follows that any point in S2 ⊂ T ∗εS2 is a critical
point of h̃δ, and therefore τ̃ |S2 = A|S2.

Recall that A|T ∗S2 \ S2 = σ(−1), where σ is the circle action with moment
map µ(u, v) = |v|. Therefore

τ̃ |T ∗εS2 \ S2 = φµ
π ◦ φh̃δ

−2π

Lemma 19.8 implies that h̃δ is invariant under σ; therefore

τ̃ |T ∗εS2 \ S2 = φ
1
2µ−h̃δ

2π .

By Lemma 19.8, 1
2µ− h̃δ = r(µ) where r ∈ C∞([0; ε),R) is given by r(t) =

1
2 t − γ(t). Because γ is even for small t and γ(t) = 1

2 t for t ≥ ε/2, r can
be extended (in a unique way) to a smooth function on all of R such that
r(−t) = r(t)−t for all t and r(t) = 0 for t ≥ ε/2. Moreover, as a consequence
of the corresponding property of γ, we have 0 < r′(t) ≤ 1

2 for t < ε/2. The
fact that τ ′ is a model generalized Dehn twist follows from the definition of
these models (Lemma 2.1). To see that Fix(τ ′) = T ∗εS2 \T ∗ε/2S

2, write (19.7)
as

τ̃(x) =

{
σ(e2πi r′(µ(x)))(x) x /∈ S2,

A(x) x ∈ S2,

and use the fact that 0 < r′(t) < 1
2 for t ∈ [0; ε/2).

Using (Ω̃, Ẽ, J̃ ′) as a local model we can now define (EV ,ΩV , J ′V ).

Proposition 19.10. Let (M,ω) be a compact symplectic four-manifold, V
a Lagrangian two-sphere in M , and i : T ∗εS2 −→ M a symplectic embedding
(for some ε > 0) with i(S2) = V . There is an ordinary almost holomorphic
fibration (EV , ΩV , J ′V ) over some disc Dδ whose only critical value is 0 ∈ Dδ

and an isomorphism fV : ((EV )δ,Ω|(EV )δ) −→ (M, ω), with the following
properties:

(1) Let P ∈ Aut((EV )δ, (ΩV )δ) be the monodromy of EV . Then τ = fV ◦
P ◦f−1

V ∈ Aut(M, ω) is the generalized Dehn twist along V constructed
using the embedding i and a function r which satisfies the same con-
ditions as in Proposition 19.9. In particular Fix(τ) = M \ i(T ∗ε/2S

2).

(2) (EV , ΩV , J ′V ) is nonnegative.
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(3) For every point x ∈ M \ i(T ∗ε/2S
2) there is a horizontal section σx of

(EV , ΩV , J ′V ) such that σx(δ) = f−1
V (x). If x ∈ M \ i(T ∗ε/2S

2), im(σx)
has a neighbourhood in EV on which ΩV |TEh

V vanishes.

Proof. Recall that (Ω̃, Ẽ, J̃ ′) contains a trivial subbundle T ∗εS2\T ∗ε/2S
2×Dδ.

EV is defined by gluing together Ẽ and (M \i(T ∗ε/2S
2))×Dδ along this trivial

subbundle. It comes with a natural map EV −→ Dδ whose only critical
point is (0, 0) ∈ Ẽ. It inherits from J̃ ′ a complex structure J ′V defined in a
neighbourhood of this critical point. Ω̃ and the pullback of ω to M × Dδ

induce a closed two-form ΩV on EV .

It is not difficult to see that (EV , ΩV , J ′V ) is an ordinary almost holomorphic
fibration, and because both (Ẽ, Ω̃, J̃ ′) and (M,ω)×Dδ are nonnegative, so
is (EV , ΩV , J ′V ). The isomorphism fV is defined by joining together i ◦ f̃δ :
Ẽδ −→ i(T ∗εS2) ⊂ M and the identity map M \T ∗ε/2S

2 → M . The statement
about the symplectic monodromy follows from Proposition 19.9, the fact
that the symplectic monodromy of (M, ω)×D2 is trivial, and the definition
of generalized Dehn twists along V . The horizontal sections σx lie completely
in the trivial part (M \ T ∗ε/2S

2)×Dδ; they are given by σx(z) = (x, z).

20 Proof of Theorem 16.1

Throughout this section V is a Lagrangian two-sphere in (M, ω), i : T ∗εS2 −→
M is a symplectic embedding (for some ε > 0) with i(S2) = V , and τV ∈
Aut(M,ω) is a generalized Dehn twist along V formed using the embedding
i and a function r as in Lemma 19.9.

Our first step is to modify the fibration (EV ,ΩV , J ′V ) constructed in the
previous section slightly. Let c : [0; 2δ] −→ [0; δ] be a smooth function such
that c(t) = t for t < δ/2, c(t) = δ for t ≥ δ and c′(t) ≥ 0 everywhere.
Consider the map κ : D2δ −→ Dδ given by

κ(z) =

{
z c(|z|)
|z| z 6= 0,

0 z = 0.

Because κ is the identity near 0 ∈ Dδ, we can use it to pull back (EV , ΩV , J ′V )
to a new ordinary almost holomorphic fibration over D2δ (the point is that
J ′V can be pulled back), which we call (E1,Ω1, J

′
1). The pullback is again

nonnegative; this follows from the fact that det(Dκz) ≥ 0 for any z ∈ D2δ

together with Definition 17.2(i).

If we identify ∂Dδ with S1 in the obvious way, (EV ,ΩV )|∂Dδ is isomorphic
to the mapping torus (TτV ,ΘτV ); this is equivalent to the statement that
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τV is the symplectic monodromy of (EV , ΩV ). Since κ collapses D2δ \ Dδ

radially to ∂Dδ, it follows that

(E1, Ω1)|D2δ \Dδ
∼= (δ; 2δ]× (TτV , ΘτV ).

Proposition 19.10(3) implies that any horizontal section ν of (TτV , ΘτV ) can
be extended to a horizontal section σ1 of (E1, Ω1). Moreover, if ν corresponds
to a point in M \ i(T ∗ε/2S

2) ⊂ Fix(τV ), there is a neighbourhood of im(σ1)
on which Ω1|TEh

1 vanishes.

Lemma 20.1. There is a φ ∈ Aut(M, ω) which is symplectically isotopic to
the identity and has the following properties:

(1) φ and τV ◦ φ have nondegenerate fixed points;

(2) Fix(φ) ∩ i(T ∗3
4
ε
S2) consists of two points. Both of them lie in V and

their local fixed point index is +1;

(3) Fix(τV ◦ φ) = Fix(φ) ∩ (M \ V ).

Proof. It is not difficult to see that there is a Morse function h ∈ C∞(M,R)
with h(i(u, v)) = |v| for 1

4ε ≤ |v| ≤ 3
4ε and such that h|i(T ∗3

4
ε
S2) has two

critical points, both of which have even Morse index and lie on V . We will
prove that φ = φH

t , for sufficiently small t > 0, has the desired properties.
It is clear that φH

t has only nondegenerate fixed points and that Fix(φH
t ) ∩

i(T ∗3
4
ε
S2) is as required.

Fix(τV ◦ φH
t ) ∩ (M \ i(T ∗ε/2S

2)) = Fix(φH
t ) ∩ (M \ i(T ∗ε/2S

2)

= Fix(φH
t ) ∩ (M \ V )

because φH
t preserves (M \ i(T ∗ε/2S

2)) and τV |(M \ i(T ∗ε/2S
2)) = id. For

the same reasons any fixed point of τV ◦ φH
t which lies outside i(T ∗ε/2S

2) is
nondegenerate. It remains to show that τV ◦ φH

t does not have any fixed
points in i(T ∗ε/2S

2). Since µ(u, v) = |v| is the moment map of the familiar
S1-action σ on T ∗S2 \ S2, we have

(i−1 ◦ φH
t ◦ i)(u, v) = σ(eit)(u, v)

for 1
4ε ≤ |v| ≤ 3

4ε. Therefore

(i−1 ◦ τV ◦ φH
t ◦ i)(u, v) = σ(ei(t+2π r′(|v|)))(u, v).

by Proposition 19.10. Since 0 ≤ r′(|v|) ≤ 1
2 and σ is a free circle action, it

follows that τV ◦φH
t does not have any fixed points in i(T ∗1

2
ε
S2\T ∗1

4
ε
S2) as long
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as t < π. The remaining region is simpler to deal with: since τV |i(T ∗1
3
ε
S2)

is fixed point free, the same holds for τV ◦ φH
t |i(T ∗1

4
ε
S2) as long as t is small

enough.

From now on we assume that δ < 1
4 (this is possible since the fibration

(E1, Ω1, J
′
1) can be transferred from a larger disc to a smaller one by a radial

expansion). Let Σ be the surface obtained from C = R × S1 by removing
the closed δ-disc around the point (0, 0). We will think of Σ as the surface
obtained from an infinite strip [0; 1] × S1 by removing two half-discs and
gluing part of the boundary together; that is,

Σ = Σ̂/ ∼

where Σ̂ = R× [0; 1] \ (Bδ(0, 0) ∪Bδ(0, 1)) and (s, 1) ∼ (s, 0) for all |s| > δ.
We define a symplectic fibre bundle (E2, Ω2) over Σ in the following way:
E2 is obtained from the product bundle Σ̂×M by identifying (s, 1, x) with
(s, 0, φ(x)) for s < −δ and with (s, 0, τV (φ(x))) for s > δ. Ω2 is induced from
the pullback of ω to Σ̂×M . If we identify the annulus A = D2δ(0, 0)\Dδ(0, 0)

with (δ; 2δ]×S1 in the obvious way, the restriction of (E2,Ω2) to A becomes
isomorphic to (δ; 2δ]×(TτV ,ΘτV ). Therefore we can construct an ordinary al-
most holomorphic fibration (E, Ω, J ′) over C by gluing together (E1, Ω1, J

′
1)

and (E2,Ω2) over A. By definition of (E2, Ω2), (E, Ω, J ′) has tubular ends
modelled on (Tφ, Θφ) and (TτV ◦φ, ΘτV ◦φ). Moreover, since (E1, Ω1, J

′
1) is

nonnegative and (E2, Ω2) is flat (that is, Ω2|TEh
2 ≡ 0), (E,Ω, J ′) is a non-

negative almost holomorphic fibration.

Let ν be the horizontal section of (TτV ◦φ,ΘτV ◦φ) corresponding to a point
x ∈ Fix(τV ◦ φ). Consider the constant section σ̂2 : Σ̂ −→ Σ̂ ×M given by
σ̂2(s, t) = (s, t, x). Lemma 20.1 says that Fix(τV ◦ φ) ⊂ Fix(φ). Therefore

105



σ̂2 descends to a horizontal section σ2 of (E2,Ω2). Because any horizontal
section of (TτV , ΘτV ) can be extended to a horizontal section of (E1, Ω1, J

′
1),

there is a horizontal section σ1 of (E1, Ω1, J
′
1) which agrees with σ2 on the

subset along which E1 and E2 are glued together. By piecing together σ1 and
σ2 we obtain a horizontal section σ of (E,Ω, J ′) which has ν as its positive
limit. Because Fix(τV ◦ φ) ⊂ M \ i(T ∗3

4
ε
S2) by Lemma 20.1, im(σ1) ⊂ E1

has a neighbourhood on which Ω1|TEh
1 vanishes. The corresponding fact

for im(σ2) ⊂ E2 is trivial because (E2, Ω2) is flat. It follows that σ has the
same property.

Proof of Theorem 16.1. We have just shown that (E, Ω, J ′) satisfies the con-
ditions of Theorem 17.7. Moreover, Lemma 20.1 implies that

dimΛ CF1(Tφ,Θφ) = dimΛ CF1(TτV ◦φ,ΘτV ◦φ) and
dimΛ CF0(Tφ,Θφ) = dimΛ CF0(TτV ◦φ,ΘτV ◦φ) + 2.

Therefore we can apply Corollary 17.11, which shows that Φ(E, Ω, J ′) fits
into an exact sequence

0 −→ HF1(φ) −→ HF1(τV ◦ φ) −→
−→ Λ2 −→ HF0(φ) −→ HF0(τV ◦ φ) −→ 0.

Because φ is symplectically isotopic to the identity, HF∗(φ) ∼= HF∗(id)
and HF∗(τV ◦ φ) ∼= HF∗(τV ). It remains to prove that Φ(E, Ω, J ′) is a
homomorphism of QH∗(M, ω)-modules. Choose some t ∈ S1 \ 0 and let
P : E(−1,t) −→ E(1,t) be the symplectic monodromy along the curve [−1; 1]×
{t} ⊂ C. Proposition 10.1 says that Φ(E, Ω, J ′) is a homomorphism of
QH∗(M,ω)-modules if the composition

M ∼= (Tφ)t
∼= E(−1,t)

P−→ E(1,t)
∼= (TτV ◦φ)t

∼= M

induces the identity on homology. If we choose t such that [−1; 1]×{t} ⊂ Σ,
this is obvious because then E|[−1; 1]×{t} = E2|[−1; 1]×{t} has a canonical
trivialization which is compatible with the identifications of E(±1,t) with
M .

21 Transversality for horizontal J

This section contains the proof of the technical Theorem 17.10. (E, Ω, J ′)
denotes an almost holomorphic fibration which satisfies the assumptions
of that Theorem, and we assume that almost complex structures J± ∈
Jreg(T±, Θ±) have been chosen. As usual, π denotes the map E −→ C.
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Theorem 17.10 amounts to the fact that the transversality arguments which
lead to each of the four parts of Theorem 13.1 (namely, Propositions 13.9,
14.1, 14.2 and 15.1) can be carried out in the subspace

J h(E,Ω, J ′;J−, J+) ⊂ J (E, Ω, J ′; J−, J+)

of almost complex structures which are horizontal. The restriction to the
subspace J h(E, Ω, J ′; J−, J+) does not change the kind of general frame-
work used in the proof. One chooses a J0 ∈ J h(E,Ω, J ′;J−, J+), a large
R > 0 such that J0 agrees with J− on π−1((−∞;−R] × S1) and with J+

on π−1([R;∞)× S1), and a small closed neighbourhood U of Crit(π). The
subspace of almost complex structures in J h(E,Ω, J ′;J−, J+) which agree
with J0 on

E0 = π−1((−∞;−R]× S1 ∪ [R;∞)× S1) ∪ U

will be denoted by J h.

J h is a Fréchet manifold; to see this, consider the splitting TEx = TEv
x ⊕

TEh
x at a point x /∈ Crit(π). As an easy consequence of the definition, a

horizontal almost complex structure has the form

Jx =
(

Jvv
x 0
0 Jhh

x

)
(21.1)

with respect to this splitting. Here Jhh
x is the unique horizontal lift of the

complex structure on the base C; Jvv
x is an almost complex structure on TEv

x

which tames Ω|TEv
x. Conversely, every almost complex structure of the form

(21.1) is horizontal at the point x. It follows that J h is a Fréchet manifold
and that its tangent space at any point J is the space of endomorphisms of
TEv which are (J |TEv)-antilinear and vanish on E0.

Recall that each part of the transversality Theorem 13.1 was eventually
reduced to proving that a certain linear operator is onto. The tangent space
TJJ was one factor in the domain of these operators. To prove Theorem
17.10 it is sufficient to check that these operators remain surjective if TJJ
is replaced by the subspace TJJ h. We will carry out this check for the
transversality theory of J-holomorphic sections (Proposition 13.9) which is
by far the most important case. Indeed, in the other cases no problems arise
(or, in the case of Proposition 14.2, they can be solved by a minor change in
the argument) because the transversality theory for J-bubbles uses only the
vertical component of J . Now, this component can be varied in the same
way within J h as within J .

Let σ be a section inM(E, J ; ν−, ν+) for some J ∈ J h and ν± ∈ H(T±, Θ±).
What we need to prove is that the operator

D∂̄univ,h(σ, J) : W 1,p(σ∗TEv)× TJJ h −→ Lp(σ∗TEv),

D∂̄univ,h(σ, J)(X, Y ) = D∂̄J(σ)X + Y (∂σ/∂t)v
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is onto. Here (∂σ/∂t)v denotes the vertical component of ∂σ/∂t. We need
to distinguish between horizontal and non-horizontal sections: indeed, if
σ is horizontal, the second term in D∂̄univ,h(σ, J) vanishes and hence the
argument which was used to prove Lemma 13.4 breaks down. We postpone
discussing the horizontal sections and deal with the non-horizontal ones first.

Proposition 21.1. If σ is not horizontal, the operator D∂̄univ,h(σ, J) is
onto.

Proof. The precise assumptions on R and U which are needed for this ar-
gument are: R should be so large that E|[R − 1;∞) × S1 ∼= [R − 1;∞) ×
(T+,Θ+), and π(U) ⊂ [−R + 1;R− 1]× S1.

As a first step, we prove that there is a point in (R − 1;R) × S1 such that
∂σ/∂t is not horizontal at this point. Assume that the contrary is true: then

σ(s, t) = (s, ν+(t)) for (s, t) ∈ (R− 1; R)× S1,

where ν+ is a horizontal section of (T+, Θ+). One of the assumptions on
(E,Ω, J ′) in Theorem 17.10 is that there is a horizontal section σ+ with
positive limit ν+. This section necessarily satisfies

σ+(s, t) = (s, ν+(t)) for s ≥ R− 1.

Hence σ = σ+ on (R − 1;R) × S1. The unique continuation theorem for
J-holomorphic curves [20, Lemma 2.1.1] implies that σ = σ+, contradicting
our assumption that σ is not horizontal.

Let (s0, t0) ∈ (R−1;R)×S1 be a point such that (∂σ/∂t)(s0, t0) is not hori-
zontal. It is clear that the same holds for all (s, t) in some neighbourhood D
of (s0, t0). This implies that for every W ∈ C∞(σ∗TEv) which is supported
in D there is a Y ∈ TJJ h such that

D∂̄univ,j(σ, J)(0, Y ) = Y (∂σ/∂t)v = W.

The rest of the proof is as in Lemma 13.4.

It remains to deal with the horizontal sections. From what we have said
above, it is clear that D∂̄univ,h(σ, J) is surjective at a horizontal σ iff D∂̄J(σ)
is onto, that is, iff σ is regular. This is ensured by the following result:

Proposition 21.2. A horizontal section of (E, Ω, J ′) is regular with respect
to any J ∈ J h(E,Ω, J ′; J−, J+).

To prove this we translate an idea of Braam and Donaldson [4] from the
theory of instantons to that of holomorphic curves. Let σ be a horizontal
section of E. As we saw in the proof of Theorem 17.7, σ must necessarily be
one of the sections whose existence is part of our assumptions on (E, Ω, J ′).

108



In particular, Ω|TEh vanishes in a neighbourhood on im(σ). Hence ind(σ) =
0 by Lemma 17.6(d). Because of the vanishing of the index, it is sufficient
to show that the kernel of

D∂̄J(σ) : W 1,p(σ∗TEv) −→ Lp(σ∗TEv) (21.2)

is trivial. The operator D∂̄J(σ) can be written in a particularly simple form
using the canonical connection ∇σ on σ∗TEv:

Lemma 21.3. Let σ be a horizontal section of (E, Ω, J ′). Then

D∂̄J(σ) =
∇σ

∂s
+ J(σ)

∇σ

∂t

for all J ∈ J h(E, Ω, J ′; J−, J+),

Proof. In section 11 we have obtained the formula

D∂̄J(σ)X = [S̃, X̃] + J [JS̃, X̃],

where S̃ ∈ C∞(TE) and X̃ ∈ C∞(TEv) are extensions of ∂σ/∂s and X. In
the present case, since σ is horizontal, we can take S̃ to be the horizontal
lift of the unit vector field in s-direction on C. Then by definition

[S̃, X̃] =
∇σ

∂s
X.

Since J is horizontal, JS̃ is also horizontal. In fact it is the horizontal lift
of the unit vector field in t-direction on C and therefore

[JS̃, X̃] =
∇σ

∂t
X.

Lemma 17.6(c) shows that the connection ∇σ is flat. For such connections
we have the following result:

Lemma 21.4. Let (F, ωF ) be a symplectic vector bundle over C with a flat
symplectic connection ∇F . Let JF be a complex structure on F (that is,
(F, JF ) is a complex vector bundle) which tames ωF , and

∂̄F =
∇F

∂s
+ JF

∇F

∂t

the Dolbeault operator on (F, J) determined by ∇F . Then every section
S ∈ C∞(F ) such that

∂̄F (S) = 0,
∫

C
|∇F S|2 < ∞ and

∫

C
|S| |∇F S| < ∞

(| · |2 is the metric on F obtained from JF and ωF ) is parallel: it satisfies
∇F S = 0.
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Proof. There is a unique two-form ΩF on the total space of F (considered
as a manifold) with the following property: if i : U × R2n −→ F |U is a
symplectic trivialization of (F, ω) over some U ⊂ Σ such that i∗(∇F ) is
trivial, then i∗ΩF is the pullback of the standard symplectic structure on
R2n to U ×R2n. This characterization shows that ΩF is unique, and it also
allows to construct it by patching together local charts.

Let S be a smooth section of F with ∂̄F S = 0. S is a smooth map from
Σ to F , and we can use it to pull back ΩF to a two-form S∗ΩF on Σ. By
looking at a local chart, one sees that

S∗ΩF = 1
2 |∇F S|2ds ∧ dt; (21.3)

our assumption implies that
∫
C S∗ΩF converges.

Let us consider the multiples Sr = r S. Clearly S∗rΩF = r2(S∗ΩF ). On the
other hand (again by considering local coordinates) we find that

∂

∂r
S∗rΩF = dθr

with θr = 2r S∗r (i∂Sr/∂rΩF ). θr satisfies |θr| ≤ r|S| |∇F S|. Therefore it is
integrable, and by Stokes’ theorem, (∂/∂r)S∗rΩF = 0. Of course, one must
be careful when applying Stokes’ theorem because of the non-compactness
of C, but a little reflection shows that our decay conditions are sufficient
to take care of that. S∗rΩF = r2S∗ΩF and (∂/∂r)S∗rΩF = 0 imply that
S∗ΩF = 0, and because of (21.3) it follows that ∇F S = 0.

Any S ∈ W 1,p(σ∗TEv) with D∂̄J(σ)S = 0 satisfies the conditions of Lemma
21.4; therefore it must be ∇σ-parallel. On the other hand, a nontrivial
parallel section can never lie in W 1,p (it is constant in R-direction outside
a compact subset and therefore does not decay); this proves that (21.2) is
injective and completes the proof of Proposition 21.2.

Remark 21.5. Lemma 21.4 and its proof generalize to Riemann surfaces
with tubular ends; the statement is

Let (Σ, j) be a Riemann surface with tubular ends and (F, ωF ) a
symplectic vector bundle over it with a flat symplectic connection
∇F . Let JF be a complex structure on F which tames ωF , and

∂̄F = 1
2(∇+ JF ◦ ∇ ◦ j)

the Dolbeault operator on (F, JF ) determined by ∇F . Then every
section S ∈ C∞(F ) with

∂̄F (S) = 0,
∫

Σ
|∇F S|2 < ∞ and

∫

Σ
|S| |∇F S| < ∞

is parallel.
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It seems unlikely that this is new (but I have not found a reference). The
result has interesting implications even in the closed case: assume that Σ
is a closed surface of genus g > 0. The space of ∇-parallel sections has
dimension ≤ 2n, where n = rankC(F ). Therefore we obtain the inequality

indR∂̄F ≤ 2n (21.4)

for the (real) index of ∂̄F . Using the Riemann-Roch theorem we conclude
that c1(F, ωF ) ≤ ng. If equality holds in (21.4), the symplectic vector bundle
(F, ωF ) must be trivial and hence c1(F, ωF ) = 0. Using this we can improve
the estimate to

c1(F, ωF ) < ng.

The case n = 1 is an old result of Milnor [21] (Milnor’s proof is completely
different).
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