A FIBONACCI ARRAY

RICHARD P. STANLEY

1. INTRODUCTION

We will define a certain numerical array, which we call the Fibonacci
array §, and will state some properties of this array related to Fibonacci
numbers and the golden mean. Proofs are omitted; for further details
see the reference at the end of this article.

Define a diagram as follows. At the top there is a single vertex (or
point or node), denoted T' (for “top”). Now continue recursively using
the following rules:

(P1) Each vertex is connected to exactly two vertices in the row
below.

(P2) The diagram is planar, i.e., edges cannot cross.

(P3) Given a vertex ¢ and the two adjacent vertices u,v to ¢ in the
row below, complete this figure to a hexagon by adding a vertex
u' below and adjacent to u, a vertex v' below and adjacent to
v, and a vertex w below and adjacent to both «" and v'.

Thus the first step is to add two vertices below T /\ We cannot
add a vertex below both of the two bottom vertices, because we must
complete to a hexagon, not a quadrilateral. Since the two bottom
vertices must each be adjacent to two vertices below, at the next step
we get

Now we add a vertex adjacent to the two middle vertices on the
bottom row in order to complete to a hexagon:
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I

Add remaining vertices on bottom row so that rule (P1) is satisfied:

A

Complete the two hexagons:

A

Add remaining vertices on bottom row:

Abh

Continuing in this manner produces a diagram consisting of infinitely
many levels. We denote this diagram by D. The top element 7' is
defined to be at level 0. The two vertices immediately below T are
at level one, etc. The number of vertices at the levels 0,1,2,... is
1,2,4,7,12,20,33,54,.... In fact, the number of vertices at level n is
F,13—1, where F; denotes a Fibonacci number (defined by F} = F, =1
and F;.1 = F;+ F;_; for i > 2). This gives the first glimpse of the
connection of our diagram with Fibonacci numbers.
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F1GURE 1. The Fibonacci array §

The next step is to attach a positive integer (a label) to each vertex of
D by the following recursive procedure. The top element T is labelled
1. Once we have labelled all the vertices at level n, label a vertex v
at level n + 1 by the sum of the labels of the elements on level n that
are adjacent to v. This procedure is analogous to the usual recursive
definition of Pascal’s triangle'. A nonrecursive description of the label
of a vertex v is that the label is equal to the number of paths from 7" to
v (along the edges of the diagram D). We denote the resulting labelled
diagram by §, called the Fibonacci array. Figure 1 shows the levels 0
to b of §.

2. THE NUMBERS (})

What are the numbers appearing in §7 Let <Z> denote the kth
number on level n of §, beginning with £ = 0. Thus for instance from
Figure 1 we see that

-0 Q)21

The numbers <Z> may be regarded as “Fibonacci analogues” of the
binomial coefficients (Z) The binomial coefficients satisfy the binomial
theorem

(2.1) (g) + (?)x + (Z)xQ +ooet (Z):)s" = (1+2)"

'In fact, if we modify the rule (P3) by saying that we complete a vertex and
the two adjacent vertices u, v to a quadrilateral rather than a hexagon and use the
same labeling rule, then we obtain Pascal’s triangle.
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The numbers <Z> satisfy

n n n\ o n Fois—2
(o (e () ()

(2'2) = (1—|—I’F2)(1—I—I‘F3)--.(1_‘_an+1)’
a “Fibonacci analogue” of the binomial theorem. For instance,

(14 2)(1 +2*)(1 4+ 2%)(1 + 2°)

=14 o422 +22° + 2+ 22° +22% + 27 4+ 22% + 2% + 210 + 21,
so the labels on the fourth level of § are (1,1,1,2,1,2,2,1,2,1,1,1).

3. SUMS OF POWERS OF (})

In Pascal’s triangle the sum of the numbers on level n is 2". In

symbols,
V(") e () =
0 1 n)

This formula follows from the fact that every number in Pascal’s tri-
angle is used twice in forming the next row. Alternatively, we can set
x = 1 in the binomial theorem (2.1). Exactly the same reasoning ap-
plies to the Fibonacci array. Each number on some row is used twice
in forming the next row, essentially a restatement of property (P1).
Alternatively, we can set x = 1 in equation (2.2), so we get

(3.1) <g> + <711> +oet <Fn+7;_ 2> — o,

The situation becomes more interesting when we consider powers
<Z>T of the entries. The main result is the following. Let r be a positive

integer, and set
( ) n s + n T _l— + n T
vp(n) = e .
0 1 n

Thus vy(n) = 2", a restatement of equation (3.1). In general, v,(n)
satisfies a linear recurrence with constant coefficients, i.e., there are
integers ¢y, ..., ¢, (which depend on r, as does k) such that

v.(n) = co(n—1) + cu.(n —2) + -+ + v (n — k)
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for all n > k. For instance,

va(n) = 2v9(n—1) 4 2ve(n — 2) — 2v9(n — 3)
(n) = 2v3(n—1)4+4vs(n —2) — 2v3(n — 3)
1(n) = 2v4(n—1)+ Tvg(n — 2) + 2u4(n — 4) — 2u4(n — 5)
(n) = 2v5(n—1)+ 1lvs(n — 2) + 8vs(n — 3)
+20v5(n — 4) — 10vs(n — 5).

v3(n

<

<

5\

Nothing like this is true for the ordinary binomial coefficients (Z)

NOTE (for readers with sufficient mathematical background). Define
the power series V,(z) = > . v.(n)a". Since v,(n) satisfies a linear
recurrence with constant coefficients, V,(z) is a rational function. For
1 <r <6 it is given by

1
M) = 75
1 — 22
Ve —
2(7) 1— 27 — 222 + 249
1 — 4g2
v —
3(7) 1= 27 — 422 + 249
1— Ta2 — 222
v -
i(7) 1— 20 — 722 — 221 + 20
Vi) 1— 1122 — 202*
€T =
0 1— 22 — 1122 — 823 — 2024 + 102°
1— 1722 — 88z* — 426
Ve(z) =

1 —2x — 1722 — 2823 — 88z + 2625 — 426 + 427

Note that the numerator of V,.(x) is the “even part” of the denominator.
It was proved by Ilya Bogdanov that this fact continues to hold for any
r (MathOverflow 457900).

4. TWO CONSECUTIVE LEVELS

We now turn to a completely different aspect of §: the structure of
two consecutive levels. Consider for instance levels four and five, shown
as blue vertices in Figure 2. We obtain a sequence of three-vertex

diagrams /\ and five-vertex diagrams . Thus we can represent
the structure of two consecutive levels as a sequence of 3’s and 5’s. For
instance, rows 4 and 5 correspond to the sequence (3,5,3,5,5,3,5,3).
In general, the number of terms in the sequence corresponding to rows
nand n+1is F, .
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FIGURE 2. Levels four and five of §

How can we describe the sequence corresponding to levels n and
n + 1?7 It is palindromic (reads the same backwards as forwards), so
we only have to describe the first half. The result is that the kth term
(beginning with k& = 1) is given by

(4.1) L+ 2[ko| —2[(k - D)ol

where ¢ = (1 +1/5)/2, the golden mean. As usual, |z| denotes the
greatest integer m < x.

The numbers in equation (4.1), beginning with k£ = 1, are
(4.2) v =(3,5,3,5,5,3,5,3,5,5,3,5,5,3,5,3,5,5,...).

The first four terms are 3,5, 3,5, agreeing with the description of the
first half of levels 4 and 5.

The sequence (4.2) has several other descriptions.

e If we remove the first term, then the remaining sequence (5,3,5,5,3,5,. .. )
is characterized by invariance under 3 — 5 and 5 — 53 (the Fi-
bonacci word in the letters 3,5).

e We have vy = 3212923 - - - (concatenation of words), where z; = 5,

29 = 35, and 2z = 2p_o2p_1 for k > 3:

(3)5-35- 535 - 35535 - 53535535 - - - .

e If we replace 3 by 1 and 5 by 2 in 7, then we obtain the sequence
that records the number of 5’s between consecutive 3’s in ~:
3 i) 35253 El') 352535253 El') 35253-~-.
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FIGURE 3. An edge labeling of ©

5. AN EDGE LABELLING

Label the edges of ® as follows. The edges between levels 2k and
2k 4 1 are labelled alternately 0, Forio,0, Fopio, ... from left to right.
The edges between levels 2k —1 and 2k are labelled alternately Fiq, 0,
Fy11,0, ... from left to right. Figure 3 shows the first four levels of
this labeling.

If ¢ is a vertex in ©, then the sum o(t) of the edge labels on any
path from ¢ to the top depends only on ¢, not on the choice of path.
Figure 4 shows these sums for the points at level four. At level n we
obtain the integers from 0 to Fj,.o — 2 once each. As we go down a
path from the top to level n, there are two choices for each step. These
choices correspond exactly to expanding the product (2.2). For each of
the n factors there are two choices: choose the constant term 1 or the
monomial zi+1.

Moreover, if 7 appears to the left of 7 at level n, then ¢ appears to the
left of j at all subsequent levels. Thus we can define a linear ordering,
denoted <, on the nonnegative integers by letting ¢ < j if ¢ appears to
the left of j at some level n (and thus at all subsequent levels). Figure 4
shows that

7<2<10<5<0=<8<3<11<6<1<9<4.

The order < on the nonnegative integers is dense, meaning that
whenever i < k, there is some (hence infinitely many) j satisfying i <
j < k. The description of this order is based on Zeckendorf’s theorem,
which says that every nonnegative integer has a unique representation
as a sum of nonconsecutive Fibonacci numbers, where a summand equal
to 1 is always taken to be F, . The description of the order < is a little
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FIGURE 4. An ordering of the integers from 0 to 11

too complicated to describe here, but to give the flavor we give the
condition for n > 0. Namely, let n = Fj, +---+ F}_ be the Zeckendorf
representation of n > 0, where j; < --- < js. Then n < 0 if j; is odd,
while n > 0 if j; is even. For instance, 45 = 3+ 8+ 34 = F, + Fg + Fy.
Since the first index (subscript) 4 is even, we have 45 > 0.
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