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1. Introduction

We will define a certain numerical array, which we call the Fibonacci
array F, and will state some properties of this array related to Fibonacci
numbers and the golden mean. Proofs are omitted; for further details
see the reference at the end of this article.
Define a diagram as follows. At the top there is a single vertex (or

point or node), denoted T (for “top”). Now continue recursively using
the following rules:

(P1) Each vertex is connected to exactly two vertices in the row
below.

(P2) The diagram is planar, i.e., edges cannot cross.
(P3) Given a vertex t and the two adjacent vertices u, v to t in the

row below, complete this figure to a hexagon by adding a vertex
u′ below and adjacent to u, a vertex v′ below and adjacent to
v, and a vertex w below and adjacent to both u′ and v′.

Thus the first step is to add two vertices below T : . We cannot
add a vertex below both of the two bottom vertices, because we must
complete to a hexagon, not a quadrilateral. Since the two bottom
vertices must each be adjacent to two vertices below, at the next step
we get

Now we add a vertex adjacent to the two middle vertices on the
bottom row in order to complete to a hexagon:
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Add remaining vertices on bottom row so that rule (P1) is satisfied:

Complete the two hexagons:

Add remaining vertices on bottom row:

Continuing in this manner produces a diagram consisting of infinitely
many levels. We denote this diagram by D. The top element T is
defined to be at level 0. The two vertices immediately below T are
at level one, etc. The number of vertices at the levels 0, 1, 2, . . . is
1, 2, 4, 7, 12, 20, 33, 54, . . . . In fact, the number of vertices at level n is
Fn+3−1, where Fi denotes a Fibonacci number (defined by F1 = F2 = 1
and Fi+1 = Fi + Fi−1 for i ≥ 2). This gives the first glimpse of the
connection of our diagram with Fibonacci numbers.
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Figure 1. The Fibonacci array F

The next step is to attach a positive integer (a label) to each vertex of
D by the following recursive procedure. The top element T is labelled
1. Once we have labelled all the vertices at level n, label a vertex v
at level n + 1 by the sum of the labels of the elements on level n that
are adjacent to v. This procedure is analogous to the usual recursive
definition of Pascal’s triangle1. A nonrecursive description of the label
of a vertex v is that the label is equal to the number of paths from T to
v (along the edges of the diagram D). We denote the resulting labelled
diagram by F, called the Fibonacci array. Figure 1 shows the levels 0
to 5 of F.

2. The numbers
〈
n

k

〉

What are the numbers appearing in F? Let
〈
n

k

〉
denote the kth

number on level n of F, beginning with k = 0. Thus for instance from
Figure 1 we see that

〈
5

0

〉

=

〈
5

1

〉

=

〈
5

2

〉

= 1,

〈
5

3

〉

= 2,

〈
5

4

〉

= 1, . . . .

The numbers
〈
n

k

〉
may be regarded as “Fibonacci analogues” of the

binomial coefficients
(
n

k

)
. The binomial coefficients satisfy the binomial

theorem

(2.1)

(
n

0

)

+

(
n

1

)

x+

(
n

2

)

x2 + · · ·+
(
n

n

)

xn = (1 + x)n.

1In fact, if we modify the rule (P3) by saying that we complete a vertex and
the two adjacent vertices u, v to a quadrilateral rather than a hexagon and use the
same labeling rule, then we obtain Pascal’s triangle.
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The numbers
〈
n

k

〉
satisfy

〈
n

0

〉

+

〈
n

1

〉

x+

〈
n

2

〉

x2 + · · ·+
〈

n

Fn+3 − 2

〉

xFn+3−2

(2.2) = (1 + xF2)(1 + xF3) · · · (1 + xFn+1),

a “Fibonacci analogue” of the binomial theorem. For instance,

(1 + x)(1 + x2)(1 + x3)(1 + x5)

= 1 + x+ x2 + 2x3 + x4 + 2x5 + 2x6 + x7 + 2x8 + x9 + x10 + x11,

so the labels on the fourth level of F are (1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1).

3. Sums of powers of
〈
n

k

〉

In Pascal’s triangle the sum of the numbers on level n is 2n. In
symbols,

(
n

0

)

+

(
n

1

)

+ · · ·+
(
n

n

)

= 2n.

This formula follows from the fact that every number in Pascal’s tri-
angle is used twice in forming the next row. Alternatively, we can set
x = 1 in the binomial theorem (2.1). Exactly the same reasoning ap-
plies to the Fibonacci array. Each number on some row is used twice
in forming the next row, essentially a restatement of property (P1).
Alternatively, we can set x = 1 in equation (2.2), so we get

(3.1)

〈
n

0

〉

+

〈
n

1

〉

+ · · ·+
〈

n

Fn+3 − 2

〉

= 2n.

The situation becomes more interesting when we consider powers
〈
n

k

〉r
of the entries. The main result is the following. Let r be a positive

integer, and set

vr(n) =

〈
n

0

〉r

+

〈
n

1

〉r

+ · · ·+
〈
n

n

〉r

.

Thus v1(n) = 2n, a restatement of equation (3.1). In general, vr(n)
satisfies a linear recurrence with constant coefficients, i.e., there are
integers c1, ..., ck (which depend on r, as does k) such that

vr(n) = c1vr(n− 1) + c2vr(n− 2) + · · ·+ ckvr(n− k)
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for all n ≥ k. For instance,

v2(n) = 2v2(n− 1) + 2v2(n− 2)− 2v2(n− 3)

v3(n) = 2v3(n− 1) + 4v3(n− 2)− 2v3(n− 3)

v4(n) = 2v4(n− 1) + 7v4(n− 2) + 2v4(n− 4)− 2v4(n− 5)

v5(n) = 2v5(n− 1) + 11v5(n− 2) + 8v5(n− 3)

+20v5(n− 4)− 10v5(n− 5).

Nothing like this is true for the ordinary binomial coefficients
(
n

k

)
.

Note (for readers with sufficient mathematical background). Define
the power series Vr(x) =

∑

n≥0
vr(n)x

n. Since vr(n) satisfies a linear
recurrence with constant coefficients, Vr(x) is a rational function. For
1 ≤ r ≤ 6 it is given by

V1(x) =
1

1− 2x

V2(x) =
1− 2x2

1− 2x− 2x2 + 2x3

V3(x) =
1− 4x2

1− 2x− 4x2 + 2x3

V4(x) =
1− 7x2 − 2x4

1− 2x− 7x2 − 2x4 + 2x5

V5(x) =
1− 11x2 − 20x4

1− 2x− 11x2 − 8x3 − 20x4 + 10x5

V6(x) =
1− 17x2 − 88x4 − 4x6

1− 2x− 17x2 − 28x3 − 88x4 + 26x5 − 4x6 + 4x7
.

Note that the numerator of Vr(x) is the “even part” of the denominator.
It was proved by Ilya Bogdanov that this fact continues to hold for any
r (MathOverflow 457900).

4. Two consecutive levels

We now turn to a completely different aspect of F: the structure of
two consecutive levels. Consider for instance levels four and five, shown
as blue vertices in Figure 2. We obtain a sequence of three-vertex

diagrams and five-vertex diagrams . Thus we can represent
the structure of two consecutive levels as a sequence of 3’s and 5’s. For
instance, rows 4 and 5 correspond to the sequence (3, 5, 3, 5, 5, 3, 5, 3).
In general, the number of terms in the sequence corresponding to rows
n and n+ 1 is Fn+2.
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3 5 3 5 5 3 5 3

Figure 2. Levels four and five of F

How can we describe the sequence corresponding to levels n and
n + 1? It is palindromic (reads the same backwards as forwards), so
we only have to describe the first half. The result is that the kth term
(beginning with k = 1) is given by

(4.1) 1 + 2⌊kφ⌋ − 2⌊(k − 1)φ⌋,

where φ = (1 +
√
5)/2, the golden mean. As usual, ⌊x⌋ denotes the

greatest integer m ≤ x.
The numbers in equation (4.1), beginning with k = 1, are

(4.2) γ = (3, 5, 3, 5, 5, 3, 5, 3, 5, 5, 3, 5, 5, 3, 5, 3, 5, 5, . . .).

The first four terms are 3, 5, 3, 5, agreeing with the description of the
first half of levels 4 and 5.
The sequence (4.2) has several other descriptions.

• If we remove the first term, then the remaining sequence (5,3,5,5,3,5,. . . )
is characterized by invariance under 3 → 5 and 5 → 53 (the Fi-
bonacci word in the letters 3,5).

• We have γ = 3z1z2z3 · · · (concatenation of words), where z1 = 5,
z2 = 35, and zk = zk−2zk−1 for k ≥ 3:

(3) 5 · 35 · 535 · 35535 · 53535535 · · · .

• If we replace 3 by 1 and 5 by 2 in γ, then we obtain the sequence
that records the number of 5’s between consecutive 3’s in γ:

3 5
︸︷︷︸

1

3 55
︸︷︷︸

2

3 5
︸︷︷︸

1

3 55
︸︷︷︸

2

3 55
︸︷︷︸

2

3 5
︸︷︷︸

1

3 55
︸︷︷︸

2

3 · · · .
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2 0 2 0

0 3 0 3 0 3 0

5 0 5 0 5 0 5 0 5 0 5 0 5 0

3

Figure 3. An edge labeling of D

5. An edge labelling

Label the edges of D as follows. The edges between levels 2k and
2k + 1 are labelled alternately 0, F2k+2, 0, F2k+2, . . . from left to right.
The edges between levels 2k−1 and 2k are labelled alternately F2k+1, 0,
F2k+1, 0, . . . from left to right. Figure 3 shows the first four levels of
this labeling.
If t is a vertex in D, then the sum σ(t) of the edge labels on any

path from t to the top depends only on t, not on the choice of path.
Figure 4 shows these sums for the points at level four. At level n we
obtain the integers from 0 to Fn+2 − 2 once each. As we go down a
path from the top to level n, there are two choices for each step. These
choices correspond exactly to expanding the product (2.2). For each of
the n factors there are two choices: choose the constant term 1 or the
monomial xFi+1 .
Moreover, if i appears to the left of j at level n, then i appears to the

left of j at all subsequent levels. Thus we can define a linear ordering,
denoted ≺, on the nonnegative integers by letting i ≺ j if i appears to
the left of j at some level n (and thus at all subsequent levels). Figure 4
shows that

7 ≺ 2 ≺ 10 ≺ 5 ≺ 0 ≺ 8 ≺ 3 ≺ 11 ≺ 6 ≺ 1 ≺ 9 ≺ 4.

The order ≺ on the nonnegative integers is dense, meaning that
whenever i ≺ k, there is some (hence infinitely many) j satisfying i ≺
j ≺ k. The description of this order is based on Zeckendorf’s theorem,
which says that every nonnegative integer has a unique representation
as a sum of nonconsecutive Fibonacci numbers, where a summand equal
to 1 is always taken to be F2 . The description of the order ≺ is a little
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0 1

2 0 2 0

0 3 0 3 0 3 0

5 0 5 0 5 0 5 0 5 0 5 0 5 0

3

7 2   10 5   0    8 3   11 6  1    9 4

Figure 4. An ordering of the integers from 0 to 11

too complicated to describe here, but to give the flavor we give the
condition for n ≻ 0. Namely, let n = Fj1 + · · ·+ Fjs be the Zeckendorf
representation of n > 0, where j1 < · · · < js. Then n ≺ 0 if j1 is odd,
while n ≻ 0 if j1 is even. For instance, 45 = 3+ 8+ 34 = F4 +F6 +F9.
Since the first index (subscript) 4 is even, we have 45 ≻ 0.

Reference. R. Stanley, Theorems and conjectures on some ratio-
nal generating functions, Europ. J. Math., to appear; arXiv:2101.02131.
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