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A SURVEY OF EULERIAN POSETS
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Abstract. An Eulerien posef is a finite graded poset with § and I such that every interval of
length at least one has the same number of elements of odd rank as of even rank, For instance,
the face lattice of a convex polytope is Eulerian. We survey some numerical and polynomial
invariants associated with an Eulerian poset P. The flag f-vecior counts the number of chains
of P whose elemenis have specified ranks. A convenient way to represent the flag f-vector is by
a noncommutative polynomial @ p(c,d) called the cd-index of P, The problem of characterizing -
the flag f-vector of certain classes of Eulerian posets, notably those which are Cohen-Macaulay, is
best approached in the context of the cd-index. For the special class of simplicial Eulerian poseis
{which include face lattices of simplicial polytopes and triangulations of spheres), much more can
be said about the flag f-vector. A high point of this subject is the g-theorem, which characterizes
the f-vectors of simplicial convex polytopes. In Section 4 we discuss the concept of the A-vector
of a lower Eulerian poset and its connection with intersection homology theory. The notion of
h-vector leads naturally to the theory of acceptable functions on a lower Eulerian poset and their
connection with subdivisions and the Ehrhart polynomial.

Key words: Eulerian poset, f-vector, h-vector; flag f-vector, flag h-vector, cd-index, sirmplicial
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1. Preliminaries.

In this paper we will survey some of the fascinating properties of a class of posets
(partially ordered sets) called Fulerizn posets. We will be concerned almost exclu-
sively with certain numerical and polynomial invariants associated with Eulerian
posets. For results of a more structural nature, see e.g. {b4]. Basic poset notation
and terminclogy may be found in [65]. All posets, CW complexes, simplicial com-
plexes, etc., considered in this paper are always assumed to be finite. Let P be a
finite graded poset of rank n -+ 1 with § and 1. (Often the letter d is used in place of
our n. We use n to avoid confusion with the variable d of the ed-index, discussed in
the next section.) Let p denote the rank function and g the Mébius function of P.
Thus p(0) = 0 and p(i) = n+1. If s < ¢ in P then we write p(s,t) = p(t) — p(s), the
rank (length) of the interval [s,#]. We say that P is Eulerian if u(s,1) = (—1)#(%)
for all s < ¢ in . Equivalently [65, Exer. 3.6%(a)], P is Eulerian if and only if every
interval of rank at least one contains as many elements of even rank as of odd rank,
ie.,

Yo (-1y® =g, ifs<tin P
u€fs,t] ' '
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The prototypical example of an Eulerian poset is the face lattice Pp of a convex
polytope P. If dim(P) = n, then Pp has rank n + 1. For instance, if P is an
n-simplex, then Pp is isomorphic to the boolean algebra Bni;. A more general
example of an Eulerian poset is the following. Recall that a {finite) regular CW

complez I' consists of a finite collection of disjoint open cells oy in a Fuclidean space -

such that each ¢; is homeomorphic to an open ball B of some dimension n;, and

" such that the boundary do; is homeomorphic to a sphere §%~1 of dimension n; ~ 1. -

From this one can show that each cell boundary do; is a union of cells of I'. By
convention the empty set @ is also a cell of T', unless I' = . We will henceforth
identify ' with its face poset, whose elements are the cells of ', partially ordered by
inclusion of their ¢losures. The dimension dim [ of T is the maximum dimension of
any cell. The body |T| is defined by ‘

K=o

ger

An equivalent definition of a regular CW complex is due to Bjdrner [14]. An {ab-
stract) simplicial complez A is a collection of sets F* (called faces) such that if F € A
and G C F, then G € A. We sometimes identify A with its face poset, i.e., the set
of faces of A partially ordered by inclusion. A nonempty poset is then a simplicial
complex if and only if it is a meet-semilattice (and hence has a § since all posets
considered here are finite), and every interval [0,2] is a baolean algebra. We assume
familiarity with the notion of the geomeiric realization |A| of an abstract simplicial

complex A. For us, |A] is only considered to be a topological space. Thus, for

instance, if |Af is a sphere then we say that A is a irianguletion of @ sphere. Given
any poset P, define the order complez A(P) of P to be the set of all chains of P,
regarded as an abstract simplicial complex. We can now state Bjdrner’s result: A
(finite) poset T with 0 is a regular CW-complex if and only if for all ¢ > 0 the geo-
metric realization |A(D,1)| of the order complex A(D,1) of the open. interval (0, 1) is
a sphere. Note that a simplicial complex is a special case of a regular CW complex,
since if [0, 2] is a boolean algebra then |A(f,?)| is a sphere.

It is now an elementary topological result that a regular CW sphere (ie., a regular
CW complex whose body is a sphere), with a 1 adjoined, is Eulerian. By slight abuse
of notation, we will call such posets (after the 1 has been adjoined) also regular CW
spheres. Such posets need not even be lattices, as shown by Figure 1. An Eulerian
poset need not be a regular CW complex. For example, let P be the poset of Figure
2. Note that P is a regular CW complex but not a sphere. Let C; be a two-element
chain. Then P x C is Eulerian but not a regular CW complex.

A fundamental combinatorial invariant of a graded poset P of rank n + 1 is
the number p; of elements of rank i. We also write f; = p;_; and call the vector
J(P) = {fo, f1,--., fa-1) the f-vector of P. Note that f_; = 1 unless P is empty.
Though as we shall see the f-vector of an Eulerian poset {or indeed of any graded
poset) has many interesting properties, often it is too crude an invariant to be useful.
We need to count not jusi elements of a given rank, but rather chains (or flags) of
element of specified ranks. To this end, if n € N (the set of nonnegative integers),
write [n] = {1,2,...,n}, so in particular [0] = 0. Also write § = {ay,az,..., ar}e
to denote that S = {a1,02,...,¢:} CR and gy < a3 < +-- < a5, Ifnow S =

let
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Fig. 1. An Eulerian nonlattice

Fig. 2. A nonspherical Eulerian poset

{ay, ...,8x}< C [n], then define the rank-selecled subposet Fs of P by
Ps={0,i}u{t e P:p(t) € 5}.

Now define ap(S) to be the number of maximal chains of Py. Equivalentiy, ap(S)
is the number of S-flags of P, i.e., flags (= chains) 0 < t1 < --- < e < 1 such th.at
S = {p(t1), ..., p(t)}. Thus for instance ap(#) = 1, ap({i}) (abbreviated ap(i))
is the number p; = fi_; of elements of P of rank i, and ap([n]) is the number of
maximal chains of P. The function ap is called the flag f-vector of P.

It is often the case that it is not the flag f-vector itself that is most natural to
use, but rather a certain linear transformation of it defined as follows. For S C [n]

Fp(S) = 3 (~1)S-Tlap(T). | ()
TCS
Equivalently (by the Principle of Inclusion-Exclusion},

ap(S) = 3 Be(T). @

TCS

The function fp is called the flag h-vector of . This function was fiest deﬁnet_i for
distributive lattices in [56][57], and subsequently extended to other posets. It is an
immediate consequence of “Philip Hall’s theorem™ {52, §3, Prop. 6] [65, Prop. 3.8.5]
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in thé theory of Mdbius functions that
Bp(8) = (—1y#5 1 ug (0, 1), (3)

where g denotes the Mobius function of Py (see [65, (34) on p. 131)).
We briefly explain the reason for the terminology “flag h-vector.” Let A be any
simplicial complex of dimension n — 1, with f; {-dimensional faces. The h-veclor

(ho, 1, ... hy) of A s defined by

Z fii(z =1 = Zh,z""" (4)

i=0 .

The k-vector has long been known to be of fundamental importance; see for instance
[62] and Section 3 below. If P is a poset with 0 and 1, define the reduced order
complex A(F) of P to be the ordinary order cornplex A(P —{,1}) of P {6,1}.
If now P is graded of rank »n 4 1, then it is easy to see that

fz'mx(A(P)) =Y ar(s)

5G[n]
#5=i

h(AP) = Y 8p(8)-

SC[a]
#3=i

Thus the flag f-vector is a refinement, in a natural way, of the usnal f-vector; and

_in exactly the same way the flag h-vector is a refinement of the usual A-vector.

We now discuss an important class of Eulerian posets. A poset P with () and 1
is said to be Cohen-Macaulay (over a fixed ground field K) if for every s <t in P
we have .
dim H;(A(s,2); K) =0 if i < dim A(s,1),

“where f;(A(s,£); K} denotes the ith reduced simplicial homology group (over K) of
the order compiex A(s,t) of the open interval (s,#). (The coefficient field K is fixed
once and for all and is often suppressed from the notation.) In other words, every
open interval has all its (reduced) homology only in the top possible dimension. Tt
is easy to show from this definition that every Cohen-Macaulay poset is graded.

If f is a function whose domain consists of the set of intervals [s,] of a poset
P, then we often abbreviate f([s,t]) as f,;. Let g denote the M&bius function of P.
Recall that if s < £ in P, then Philip Hall’s theorem is equivalent to the formula

par = X(A(s, 1)),

where ¥ denotes the reduced Euler characteristic. [t follows that if P is Cohen-
Macaulay, then for any 5 < ¢ in P we have

pise = (—1)™ dim B, (A(s, 1)), (5

where m = dimA(s,t). (Because P is graded, we in fact have m = p(s,1) — 2.) In
particular, if P is Cohen-Macaulay and Eulerian then

dim H,,(A(5,8)) = 1, for all 5 < ¢ in P.
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A poset P which is both Cohen-Macaulay and Eulerian is called a Gorenstein*® poset.
The following theorem summarizes two basic results in the theory of Cohen-
Macaulay posets. For further information and references, see [16].
1.1 Theorem. () Cohen-Macavlayness is a topolagical property, i.e., the gues-
tion of whether a posel P (say with 0 and 1) is Cohen-Macaulay (over o fized field

- K) depends only on the geometric realizalion jA(P)| In particular, P is Cohen-

Macaulay if |A(P)| is a sphiere.
© (b} If a poset P is Cohen-Maceulay, then so is any rank—selecied subposet FPs.
1.2 Corollary. If P is Cohen-Macaulay then Bp(S) > 0 for all S.
Proof. Immediate from Theorem 1.1(b) and equations (3) and (6}. @
A more general notion than Cohen-Macaulay poset that we will need later is a
Cohen-Macaulay simplicial complex {over a field K}. This is a simplicial complex A
such that for every F € A (including F = ), we have

dimg Hi(lkaF; K) =0, if i < dim(lkp F).

Here H;(Ika F; K } denctes the ith reduced homology group of lka F' with coeflicient
field K, and 1k F is the link of F in A, defined by

kaF={GeA:GNF=0and GUF € A}.

In particular, lka® == A. Examples of Cohen-Macaulay simplicial complexes include
triangulations of spheres and balls, and the independent sets of a matroid. It can
be shown that a simplicial complex A is Cohen-Macaulay as a simplicial complex if
and only it is Cohen-Macaulay as a poset (i.e., its face poset is a Cohen-Macaulay
poset). Moreover, using comrmutative algebra techniques one can show that the h-
vector of a Cohen-Macaulay complex {short for Cohen-Macaulay simplicial complex)
is nonnegative. In fact, Cohen-Macaulay comnplexes seem to be the most general
“natural” class of simplicial complexes whose h-vector is nonnegative.

2. The cd-Index.

In this section we will discuss what can be said about the flag f-vector (or flag
h-vector) of a general Eulerian poset. First let us consider lineer conditions on the
flag f-vector. For instance, it is an immediate consequence of the definition of an
Eulerian poset {say of rank = + 1) that
fo—fitfom o F (G mr = 14 (1)

This is a linear condition on the flag f-vector (since f; = a{i+ 1)). However, there
are many additional linear conditions. We will mention a couple of special cases
before moving to the general result.

Let P be a poset with ( and I. The zefa polynomzalZ(P ) is defined for r € P
te be the number of multichains § =ty €<, € --- <t = 1 of length rin P. It
is easily seen thai Z(P,r} is a polynomial functton of r whose degree is the rank of
P. In particular, since Z{P,r) is a polynomial it is defined for all integers (or even
complex numbers) r. For these and other basic properties of the zeta polynomial
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see [65, Ch. 3.11]. For an Eulerian poset P of rank n+ 1, it is not hard to show [65,
zop. 3.14.1] that
Z(P: T') = (WI)H‘HZ(P! —F‘). ' ) . (6)

For insfance, the face-lattices of the dodecahedron and icosahedron have zeta poly- -

nomial 57% — 4r?. Equation (6} is eguivalent to certain linear conditions on the flag
f-vector of P, which turn out to be given by

hi{ M P)) = ha—i(A(P)).
In fact, there holds the much stronger resnlt

Br(8) = Br(S5), ' (7}

for all § C [n], where § = [n] — S. See e.g. [65, Cor. 3.14.6] for a proof.

Fquation (7) yields 27! independent linear relations satisfied by the flag f-vector
of an Eulerian poset. But there are still others; for instance, every element of rank
two in an Eulerian poset covers exactly two elements, from which it follows that
a1, 2) = 2a(2). This is a linear relation independent from (7). A complete set of
linear relations was found by Bayer and Billera [6]. An elegant formulation of their
result due to Fine (see [7]) will now be discussed. (Anather proof appears in [70].)
The idea is to work with certain noncommutative generating functions for the flag
f and h-vectors. Fix a graded posei P of rank n 4+ 1 with § and 1. If § C [n], then
define a noncommutative monomial ug = uyus - - - u, in the variables a and b by

vl @ ifigs
Tl h ified.

For instance, if n = 6 and § = {2, 6}, then us = abaaab. L(;t

Tp(a,b)= ) ap(Shus (8)

5Cin]

Ve(,b)= 3 Ar(S)us.

$¢(n]

1t is an immediate consequence of (1) or (2) that
Wp(a,b)=Tp(a—b,b) (9

Tp(a,b)=¥pla+bb).

For instance, if F is the boolean algebra Bz, then

Tp(a,b) = a® + 3ba + 3ab + 652

Tp(a,b) = o+ 2ba + 2ab+ b2, (10)

The result of Bayer and Billera, as formulated by Fine, is the following.

Ry
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2.1 Thecrem. Let P be an Eulerian posel. Then ¥p(a,b) can be writlen a5 a
polynomial ®p(c,d) inc=o + b and d = ab + ba.

The polynomial ®p(c,d) is called the ed—indez of P. The «d-index of an Eu-
lerian poset is unique since a 4+ h 2nd ob 4+ ba are algebraically independent {as
noncommutative polynomials) over any field K, For instance, from (1G) we see that
®p,(c,d) == ¢+ d. If we define deg(c) = | and deg(d) = 2, then clearly ®p(ec,d) is
homogeneous of degree n with integer voeiicients. The cd-inde< is a ery compart
way of presenting the flag f-vector ot an Eulerian poset. For instance, if P is the -
Bruhat order of the symmetric group: Sa (as defined e.g. in [18]), thes: P is a fairly
complicated poset of rank 6 with 24 elements and 168 maximal chains, yet *

@p(c,d) = ¥ + dc® + Zede® + 2c*de + Pd + 2d%c + ded + 2¢d?.

Note that since a + b and eb + ba are invariant under interchanging a and b,
it follows fromn Proposition 2.1 that for an Eulerian poset P we have ¥p(a,b) =
Up(b, a). This formula is equivalent to (7). This symmetry condition is not enough
to guarantee the existence of the cd—index. Indeed, a noncommutative polynomial
W{a,b) satisfies ¥(a,b) = ¥(b,a) if and only if ¥(a,b) is a polynomial (necessarily
unique) in the variables a + &,a® + 8%,4® + b%,.... On the other hand, ¥(a,b} =
®{a + b, ab+ ba) for some polynomial ® if and only if ¥(a, b} is a polynomial just in
the variables a + b and @® + b* = (a + 4)2 — (ab -+ be).

The existence of the cd-index imposes certain linear relations on the flag f-vector
of an Eulerian poset, and it is not hard to show that there are no other relations.
Indeed, Bayer and Billera [6] prove the stronger result that there are no additional
relations even among flag f-vectors of face-lattices of convex polytopes. For arbitrary
Eulerian poséts the proof is easier and appears in {70, Prop. 1.5].

Even the cd-index Up(c,d) of the boolean algebra B,, is a subtle object. It
turns out to be identical {as shown by Purtill [50]) to a polynomial studied earlier
by Foata and Schiitzenberger [28], called a (noncommutative) André polynomial.
Several related combinatorial interpretations of U (c,d) were given by Foata and
Schiitzenberger. We state here a slightly simpler interpretation due to S. Sundaram.
We say that a sequence p = p1p2 -+ Pm of integers has no double descents if there”
does not exist i for which p;.1 > pi > pip1. A simsun permuiation {named after
Rodica Simion and Sheila Sundaram; see [71]) is a permutation r of [m] such that
for any j > 0, the word p1p2- - pm_j obtained from 7 = m173- -7, by removing
n,n—1,...,n—j+1 hes no double descenis. (In particular, the case j = O states
that 7 has no double descents.) The number of simsun permutations of [m] is the
Euler number By, defined by

¢ ™

z Emm =tanz 4 secz.

m20
B is also the number of aliernating permutations of [m), as defined e.g. in [65, pp.
148-148]. If x has no double descents, then define Uz to be the noncomimutative
monomial obtained from = by replacing each factor mimiy, with a o if m > mipa;
and replacing each remaining term = with a c.

2.2 Proposition. We have

Un(e,d) =Y Us,
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summed over all simsun permulations of fm].
For instance, the sixteen simsun permutations r of [4], together with the mono-
mials U/y, are given by '

1234  ceec 1324 cde . 3412 ede 2143 dd
1243 ccd 1423 cde - 2134 dec 3142 dd
1342  ced 2314  cde 3124 dee 4132 dd
2341 ced 2413 ede 4123 dec 4231 dd

Hence Us{ec,d) = ¢* + 3c?d 4 Sede + 3dc® + 4d%. One can also give a formula for the
(noncommutative) exponential generating function Y, .., Um(c, d)z™/m!; see [70,
Cor. 1.9] for details. -

Note that Proposition 2.2 gives a combinatorial interpretation to the coefficients
of Upn(e,d), thereby showing that they are nonnegative. We can ask whether there
are similar results for other Eulerian posets. In general the cd-index of an Eulerian
poset need not be nonnegative (i.¢., have nonnegative coefficients). It is easy to see
[70, Prop. 1.6] that for an Eulerian poset P, the numbers 8p($) are sums of certain
coeflicients of ®p(c,d). Hence a necessary condition for ®p(e,d) to be nonnega-
tive (denoted &p(c,d) > 0) is that each fp(S) is nonnegative. This observation,
together with Corollary 1.2, suggests the following conjectire, which is one of the
most intriguing open problems in the theory of Eulerian posets.

2.3 Conjecture. Let P be a Gorenstein® posel. Then ®p(c,d) > 0.

Conjecture 2.3 was first formulated by Fine for face lattices of convex polytopes,

. then for regular CW spheres by Bayer and Klapper [7, Conj. 5] and extended to its

present form in [70, Conj. 2.1].- To prove Conjecture 2.3, presumably one would have
to give either a combinatorial or algebraic (e.g., the dimension of a vector space)
interpretation of the coeflicients of ®p{c,d). It is easy to see that the sum ®p(1,1)
of all the coefficients is given by @p(c,d) = #p(1,3,5,...) = #p(2,4,6,...). Hence
when 8p(1, 3,5, ...) has a natural combinatorial or algebraic interpretation, one can
try to find a “reﬁnement” into the coefficients of the cd-index. Only for very special
posets called lezicographically shellable is a combinatorial interpretation known for
Ap(1,3,5,.. ) (or more generally for any #p(S5)). For certain of these, most notably
face lattices of simplicial polytopes, Purtill [50] was able to interpret the cd-index
combinatorially and thereby prove nonnegativity., However, even though the face
lattice of any convex polytope is lexicographically shellable, Purtill’s methods have
not yet been extended to them. Note that equations (3) and (5) give an interpre-
tation of Ap(S) as the dimension of a certain vector space (homology group). Thus
a more promising line of attack on Conjecture 2.3 would be to find a refinement of
the homology of A(P). The face ring techniques discussed in the next section can
be used to interpret #p(S) as the dimension of a certain homogeneous part of a
graded algebra [59], so one could also try to impose further structure (such as a finer
gradation or filtration) on this algebra. Despite the plethora of techniques involving
face rings which are now available, no progress has been made on the problem of
finding a suitable refinement of the gradation.

Despite the lack of progress discussed in the previous paragraph, nevertheless
some positive results related to Conjecture 2.3 have been obtained. One such result
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appears in the next section (Theorem 3.6). An additional result is given by the
following theorem {70, Thm. 2.6].

2.4 Theorem. Let P be the face poset of an S-shellable regular C'W sphere T,
with a 1 edjoined. Then ®p(c,d) > 0.

We will not give the rather technical definition of “S-shellability™ here. It says
roughly that there is 2 “nice” ordering of the facets of T The recursive nature of
the definition allows one to prove Theorem 2.4 by induction. The definition of S-
shellability differs slightly from the more standard notion [14, §4] of shellability of
a regular CW complex. However, the Bruggesser-Mani line shellings of a polytope
[20] turn out to be S-shellable. Hence as a corollary to Theorem 2.2 we get & proof
of the original conjecture of Fine that polytopes have nonnegative cd-index,

Conjecture 2.3 (and the weaker Theorem 2.4) give linear inequalities satisfied by
the flag f-vector of certain Bulerian posets. It is natural to ask whether there are
any additional inequalities independent from these. The answer is given by the next
result, which explains the importance of Conjecture 2.3,

2.5 Fheorem. Conjecture 2.8, if irue, gives all linear mcquuhizes satisfied by
flag f-vectors of Gorensiein™ posets. Moreover, Theorem 2.4 gives (without any
conjectures) all the linear inequelities satisfied by flag f-vectors of S-shellable regular
CW spheres. ‘

Proof. (sketch) For any Eulerian poset P, the coefficient of ¢® in &p(c,d) is
equal to one. Hence it suffices to show that for any cd-word w # ¢* of degree n
(where deg c = 1 and deg d = 2), we can find an S-shellable CW sphere whose face
poset with a 1 adjoined has cd-index for which the coefficient of w is an arbitrary
factor larger than any of the other coefficients. Suppose w = wy «+ - wy, where wy = ¢
or d. Fix m > 3. Define posets T; for 1 < i < k by T; = By (the boolean algebra of
rank two) if w; = ¢, and T} is the face lattice of a convex m-gon if vy = d. Given two
Eulerian posets P and @, define their join P*Q to be the poset obtained by removing
the 1 of P and § of @, and putting every element of {J — ) above every element of

P —1. It is easy to see that P « @ is Fulerian. Now define Py o = T ¥ T # - % T}

It is easy to show that Py, is S-shellable {(and a regular CW sphere), and that
dp, . (c,d) = wlc, ¢+ d),

ir.e., substitute ¢? + d for d in w. The coefficient of w in w(ec, ¢* + d) is ¢, where ¢

- is the number of d's in w. The coefficient of any cther cd-word in w(ec,c? + d) is m*

for some s < t. Hence the proof follows by letting m —c0. 0 -
Unfortunately the posets Py, m are not face lattices of polytopes (indeed, they
are not even lattices), so Theorem 2.5 does not (necessarily) give all the linear

‘inequalities satisfied by flag f-vectors of convex polytopes. In fact, one can show that

flag f-vectors of polytopes satisfy linear inequalities not implied by the nonnegativity *
of the ed-index. An example of such an inequality, due to Kalai [37, Thm. 7.1], is
3f2(P) 2 2£1(P) + 2f3(P), '

valid for every 5-polytope P (where f(P) = (fu, fi, fa) f3, f4) is the usual f-vector
of P). '

In general, in trying to understand f-vectors, flag f-vectors, etc., of certain

. posets, geometric complexes, etc., there are three successively stronger levels of



;
;
i

i

R

a
EF

310 . RICHARD P. STANLEY

results: (@) linear equalities, (b) linear inequalities, {(c) complete characterization,
For flag f-vectors of Gorenstein* posets, we have just discussed the fivet twe Toval
Namely, (a) is completely solved, whila (b) lan 2 concoiared solotion wiiici hay
been proved to be necessary in some significan: epecial cases. Al present very lit-
tle progress has been made toward = complete charscterization, so this remains an
interestinr area of research. In the nexi section we will see some further =xamples
of thi= Lierarchy of reauls, including o difficult - 2roplete ckuractenization { Thecrem
3.9

‘ihe aext result, proved in 159, Cor. 45, does give some uuulinear information
about tlag f-vectors. However, it is a rather wezk result when applied to Gorenstein*
po:ets, sinen it holds for a much ~ide~ clas. of ok incts (“completely w:lanced Cohen-
Macaulay simplicial compleses”).

2.8 Theorem. Lel P be a Gorenstein® posel of rankn+ 1. Then there exists
simplicial compler A of dimension n — 1 on a verfer sel V aend a map n:V - [n]
satisfying the following conditions:

(a) The restriction of i) to any face F of A is injective.

(t) For any S C [n], the number of faces F € A for whick 5(F) = § is equal to

Bp(S). : :

A numerical form of Theorem 2.6 can be gleaned from the results of [15] and [30].
{The statement in [59] after Corollary 4.5 that the converse to Corollary 4.5 is false
is incorrect.} : _

Conjecture 2.3 and Theorems 2.4 and 2.5 suggest looking also at inhomegencons
linear equalities and inequalities satisfied by the coeflicients of the e¢d-index, but in
general they give only trivial additional information. For instance, the only inho
mogeneous linear equality or inequality satisfied by flag f-vectors of Gorenstein*
posets independent of Conjecture 2.3 is that the coefficient of c® in @ p(c, d) is equal
to one. However, additional hypotheses lead to more interesting possibilities. For
instance, suppose that one particular coeficient of ®p(c, d) is specified. What can
be said about the minimum value of the other coeflicients? This question has yet to
be investigated. We also venture the following conjecture.

2.7 Conjecture. Lef P be a Gorensiein® lattice of rankn+ 1. Then ®p(e, d) >
Unyi{c,d). In other words, among all Gorenstein* lattices of rankn+1, the boolean
algebra By,.1 minimizes all the coefficients of the ed-index.

Some of the inequalities implied by Conjecture 2.3 have the particularly simple
form Ap(7T) < Bp(5). These are summarized by the next result. To this end, given

S C [n] define w(5) C [n — 1] by the condition i € w(S) if and only if exactly

one of i and { + 1 belongs to S. For instance, if n = 8 and § = {2,4,5,8} then
w(S)={1,2,3,5,7}. If n > 9 then w(S) = {1,2,3,5,7,8}.

2.8 Proposition. Let P be Eulerian with ®p(e,d) > 0. Then Bp(T) < Ap(S)
whenever w(T) < w(5). Moreover, if § and T' gre subsets of [n] such that Bo(T) <
ﬁP(S) Jor every Gorenstein® poset {or even face poset of an S-shellable regular cwW
compler, with a 1 adjoined) P of rank n + 1, then w(T) C w(S). .

2.9 Corollary. If ®p(c,d) > 0 as above, then 3p(S) is magimized for § =
{1,3,5,...}n[n] end § = {2,4,6,...}N[n] (and possibly other values of S, depending
on the posel P). )

There is an application of the cd-index to an intriguing conjecture of Charney
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and Davis [24, Conj. D). The conjecture is a kind of combinatorial a.nalog.ue of a well-
inewn conjecture of Hopf that the Tnle- chara~taristic of a ?ﬂ~d-men51on@l clgsefl
Hiemannian Lacifold M of nonpesitye seciitnal cut e :',.):qs]ies (—1}“x(_lM) b
‘i~ giate the Charney-Davis conjecture, asfize a flag cmn_z:?mc to be @ slﬂ,p}_!r‘.-'zl
somplex for which every min‘rial set o veriices » uigh Go notb ‘orm a Face (so!{;etunes
calied 2 “aiwing face”) has two elemrats. Charnev and Davis conjecture “hat the

B ¢octor (B« oy o) G- o (L -~ i dimensional Corenstein® fla, complex satisfies

(—1)m(,2n ~h +hy—---+ hgm) > 0

Now the order complex of any poset is » flag complex. When specialize.:d to f)oren-
stein* poscis P, it was observed by E. Dabson that ilm'iﬁimruey--{)_a\'ls conjectice
is equivalent to the statement that the coefficient of d™ in ®p{c,d) is nonnegative.
Hence the Charpey-Davis conjecture for the special case of order complexes fo]loufs
from Conjecture 2.3. Moreover, it follows from 'Theorem 2.4 that the Charney-Davis
conjecture holds for face-lattices of convex polytopes (or even S—shellable regular
CW spheres), as noted by Charney and Davis in Section 7 of their paper.

3. Simplicial Eulerian Posets.

In this section we discuss some Eulerian posets for which much more can .be said
about the flag f-vector. We define a poset P with 0 to be simplicial if thel mte.r\.ral
{0,1] is a boolean algebra for all t € P. For instance, the [ac-e potse‘t Pofa Slmpll(.:lal
complex A is simplicial. One should think of an arbitrary simplicial poset as a kind
of “generalized sirplicial complex” in which the intersection of two 'faces can be
any subcomplex of their boundaries, and not just a single fz.ace. By Ashgght .a,busle .of
terminology, we say that an Eulerign poset P is simplicial if P — {1} is simplicial
(as defined above). Thus if A is a triangulation of a sphere (regarded as a poset),
then AU{ i} is Eulerian and simplicial. )

" Suppose that P is simplicial and Eulerian of rank n4-1, with fi elements of ra'mk
i+1. Ift is an element of P of rank m < n + 1; then since the interval [0,%] is a
boolean algebra we see that the number of chains 0 = g <1 < - <¥fp =1 suc.h
that p(t;) == a; is given by the multinomial coefficient (al,anma;T..m—ak_l)‘ Hence if
$ = {a1,a2,...,8}, then there follows :

m )fm—l-

a8y —a1,..., M — Q-1

ap(8) = (

As a consequence, the flag f-vector is completely determined by the f-vector. Thus
we may restrict our attention just to the f-vector when dealing with the flag f-vector

- of simplicial (Eulerian) posets. Just as we defined the A-vector of a simplicial complex

in (4), so we can define the h-vector (ho, b1, - % fin) of any simplicial Eulerian poset.
P of rank n+ 1. More precisely, let P"= P~ {1}, and define h(P) = {ho, Py, ... Bn)
by . .
J ., o
Y fialz—1rTi=) ket ey
i=0

i=0
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where P has fi—1 elements of rank 4. The reason we define (ho, h1y ... hy) to be
the h-vector of P rather than P is that in the next section we will define the h-
vector of a class of posets (called lower Euferian) which includes both P and B,

such that the definition agrees with (11) for the case P. (Of course we could define

h(P) for any Eulerian poset P by (11). In fact, one could define the h-vector of any
graded poset P by (11), but this turns out to be a not very useful definition when
P i.s not simplicial. The “correct” definition of A{P) for an arbitrary Eulerian poset
P 18 quite subtle and will be discussed in the next section. There is no “correct”
definition known of the h-vector of an arbitrary {graded) poset.) .

Gur main concern here will be with the f‘o!.lowing classes of simplicial Eulerian
posets: (a) Gorenstein*, (b) face lattices of simplicial polytopes, and {(c) Gorenstein*
!atttces. For the first case, the f-vecior (or h-vector) has been completely character-
ized for, loosely speaking, 3/4 of the posets. More precisely, we have the following
result {67, §4].

3.1 Theorem. Leth = (ho, hy,...,h,) € ZFL, Suppose thal either n is odd, or
that n is even and hujz is even. Then the following twe conditions are equivalcn’t.
fa) h is the h-vector of a simplicial Gorenslein* poset of rankn 4 1.

() ho=1, h; > 0, and h; = h,_; for all i,
The first step in the proof of Theorem 3.1 is the following result.
3.2 Theorem. Let P be e Gorenstein* simplicial pesel (ot more generally a

Cohen-Macaulay simplicial poset) with h-vector (hos k1, ..., hn). Then h; > 0 for

all 4.

Proof (sketch). The idea is to associate a commutative ring Ap with P and
use techniques from commutative algebra. Heénce we first review some concepts
from commutative algebra. Let K be an arbitrary ground field. A finitcly-generated
graded K-algebra is a commutative ring R which is an algebra over the field K
together with a vector space direct sum decomposition B = Ry Riepy--- satisfying,:
the conditions: ' ‘

— "R = K (so that the identity element 1 of X is the-identity element of K)

RiR; C Ryy;. We then say that elements of R; are komogeneous of degree 1.

—  Risfinitely-generated as a K-algebra.

Henceforth we will call a finitely-generated graded K-algebra R simply a graded
algebra. If the graded algebra R is generated as a K -algebra by elements of degree
one, then we say that R is standard. If R is integral over the subalgebra K[R;] of B
generated by elements of degree one (equivalently, R is a finitely-generated K[R,]-
module), then we say that R is semistandard. Clearly standard graded algebras are
semistandard. '

The Krull dimension dim R of a graded K-algebra R is the maximum number of
elements of R which are algebraically independent over K. (See e.g. [1, Thm. 11.14]
for some equivalent definitions of Krull dimension.) The Noether normalization
lemma asserts that if d = dim &, then we can find d homogeneous elements 8y, . ., 04
of R of positive degree such that the quotient ring R/{f,..., 64) has Krull dimension
zero (equivalently, is a finite-dimensional vector space). The elements 8;,...,0, are
called a homogencous system of parameters (h.s.o.p.). If each #; has degree one, then
we call 6,,...,04 a linear system of parameters {Ls.c.p.). If the ground field K is
infinite, then the existence of an Is.0.p. is equivalent to R being semistandard.
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The hypothesis that R is finitely-generated guarantees that each homogeneous
component B is a finite-dimensional vector space. The Hilbert funciion H(R,-) is
defined for nonnegative integers { by H(R,?) = dimg{R;). It is the most natural
invariant which measures the “size” of a graded algebra R. The Hilbert serics of R
is the formal power series '

F(R,x)= Y H(R,i)2. |

i>0

A well-known result of Hilbert (see e.g. [58, eqn. (1)]) asserts that when R-is semi-
standard, then ' '
P(z)

T=ay )
where P(z) € Zlz], P(1) # 0, and d = dim R. It follows from standard results
about generating functions (e.g., [65, Prop. 4.2.2 and Cor. 4.3.1]) that H{(R,{) is a
polynomial in i of degree d — 1 for sufficiently large i. This polynomial is called the
Hilbert polynomialof R. The Hilbert polynomial agrees with the Hilbert function for
all i > 0 if and only if deg P(z) < d. If P(z) = ha+h1z+ .-+ h,z* for sorne 5 > 0,
then we write A(R) = (ho, b1, ..., h,) and call R(R) the h-vector of R. Similarly P(z)
is called the h-polynomial of R. The h-vector and h-polynomial are only defined
when R is semistandard. Note that trailing 0’s in the h-vector are irrelevant, e.g,
(1,2,1) and (1,2,1,0,0} are considered to be the same h-vector.

From now on let us assume that R is semistandard and K is infinite, so R has
an l.s.o.p. We now come to the crucial concept of a Cohen-Macanlay ring. We will
be content with an “operational” definition of what it means for B to be Cohen-
Macaulay. It is not difficult to show that this definition is equivalent to the more
customary definition involving regular sequences. For further information see e.g.
[213[36][43][58][62][63]. Namely, we say that R is a Cohen-Macaulay ring if for some
{equivalently, every) ls.op. #,...,84, the quotient ring § = So & 5 @ --- =
R/(8:1,...,04) (where the grading is inherited from R) satisfies H{S,i) = h;(R) for
all i. Equivalently (by (12)) the Hilbert series F(S,z} of S is given by

F(S5,2) = (1 — 2)°P(R,2). . (13)

F(R,x) =

It is an imnmediate consequence of the above definition that h(R) > 0 if R is Cohen-

Macaulay, '
Erample. Let R = K[u,v]/{uv) with degu =degv =1. Let 6, = u+v. Then §;

is an ls.o.p. for R, and § := R/#; R has a K-basis {1, u}. Hence H(S,z) = 1+ =.

. Moreover, a K-basis for R is given by {1,u,v,u%%,.. }, s0

2r _1+=
-z 1-z

F(R,z)=1+

Hence F(S,z) = (1 — z)F(R, ), so R is Cohen-Macaulay. Ou the other hand,
we leave it to the reader to verify that the ring K[u, v, w]/(uv, uw) is not Cohen-

Macaulay.
We are now ready to discuss the ring Ap which we associate with a simplicial

poset P, First let us consider the case when P is a meet-semilattice, so that P is the
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face lattice of a simplicial complex A. In this case Ap turns out to be the fece ring
{also called the Stanley-Reisner ring) K[A] of A, where K is an arbitrary {infinite)
ground field as before. Let us review the definition of K[A]. 1t the vertizes of A be
L1y, Zm,and let K[zy, ..., 25] dencte the pofvnomial ring ¢ ver K in the variables
(indeterminates) z1,...,%m. Set K[A] == iy, .., 2m /s, where iy is the ideal
generated by all moncmials (which we mn; assume are squarefree) @i, =, -~ 2,
such that {zi,, iy, .-, 2} € &. We wish to extend this definiiion to Ap, for any
simplicial poset P. Suppose that the elements of P are § = y,31,.. ., yp. Define Ip
o be the ideal of the polynomial ring Kfyo, ;. ..., 1] generated by the following
elements:

(R1) vy, if g5 and 3 have ng comman upper bound in P.

(Ra) wiy; — (i Ay ), 2), where z tanges over all minimal upper bounds of g
and yj, if 3 and y; have a common upper bound in P.

(Ra) o — 1. :

NotE. It is clear that the greatest lower bound g; A y; exists whenever y; and

- yj have an upper bound 2 in P, since the interval [0, 2] is a boolean algebra (and
therefore a lattice). Thus (Ra) is well-defined.

It is easy to see that when P is the face poset of a simplicial complex A theén Ap =
K[A}, the face ring of A. Hence Ap is a generalization of the face ring. We can give
the polynomial ring K[yo, %1, - .., ¥p) the structure of a graded K-algebra by defining
the degree of ¥ € P to be its rank p(y). The relations (R;)-(R3) are homogeneous
with respect to this grading, so we obtain a grading 4p = (Ap)e ®@ (Ap)1 @ --- of
Ap. An important property of Ap [67, Lemma 3.9] is that it is semistandard (with
respect to the grading just defined).

A simple computation [67, Prop. 3.8] shows that the Hilbert series of Ap is given
by

' ho+hz - 4 haz”
(1~ '

F(Ap,z) = (14)
where (hg, b1, ..., a) is the h-vector of P. In other words h(P) = h(Ap). This is
the means by which the h-vector enters into the structure of Ap. :

A famous thesrem of G, Reisner {21, Cor. 5.3.9][36, Ch. VI][51](62, Cor. 4.2]
characterizes those simplicial complexes A for which the face ring K[A] is Cohen-
Macaulay, :

3.3 Theorem (Reisner’s theorem). The face ring K[A] of a simplicial complex
A is Cohen-Macaulay if and only if A is @ Cohen-Macaulay simplicial comples (over
K ). In particular, the face ring K[A(P)] of the order complex of e posei P is Cohen-
Macaulay if and only if P is a Cohen-Macauley poset. ]

Theorem 3.3 of course explains the terminology “Cohen-Macanlay complex” and
“Cohen-Macaulay poset.” We will assume the validity of Theerem 3.3 in this survey.
A detailed proof involves concepts from homological algebra which require some work
for the uninitiated to absorb. The extension of Reisner’s theorem to simplicial posets
P is given by the next result [67, Cor. 3.5]. :

3.4 Theorem. Lel P be a simplicial posei. Then Ap is Cohen-Macaulay if and
only P is Cohen-Muacaulay.

Proof (brief sketch), The only part to concern us here is the “if” part. By Reis-
ner’s theorem the face ring K[A(P)] of the order complex of P is Cohen-Macaulay
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if (and only if) P is Cohen-Macaulay. One then shows that Ap Iq an .“algebra wit!m
straightening law” {ASL) on P. This means that Ap in a sense is “nizely apperxi-
mated” by K[A(#)]. In particular, the property that K[A{P)] is Cohan-Macaulay
is transforred 50 Ap, so Ap iz Cohen-Macaulay when P is Cob: w-Macaalay. 12 _

Note that the prosf of Theorers 2.2 is sow humediate. If P is Coken-Macaulay
then Ap is a Cohen-Macaulay ring; and hence by (13) the A-vecior of P is nonneg-
ative. O __

Theorem 3.2 can be used to prove Conjecture 2.3 for Eulerian simplilcm] posets
(generalizing the special case of simplicial polytopes due to Purtill [50],.59 now we
havs two generalizations of this result, viz., Theorems 2.4 and 3.6). We simply state
the reievant result [70, Thm. 3.3] here.

3.5 Theorem. feln be a positive infeger. Then there erist homogeneous poly-
nomiols ®y,...,Ba_y of degree n in the variables ¢, d (with dege = 1, degd = 2)
with nennegative coefficients such that for every simplicial Eulerian poset P of rank
n+ 1 with h-vector (ho, by, ..., hy), we have

(I)P(C, d) = ni hg@.’(C, d)

i=0

Putting together Theoremns 3.2 and 3.5 yields the following result. .
3.6 Theorem. Let P be a Gorenstein® simplicial posel. Then ®p(c,d) = 0.
The next ingredient we need for our 3/4-characterization of f-veetors of Goren-

stein*® simplicial posets is the following result,; known as the Dehn-Sommerville equa-

tions for Fulerian simplicial posets. ’

3.7 Theorem. Let P be a simplicial Eulerian posel of rank n + 1 with h-vector
(ho, b1y ha). Then by = ho_; for alli. o

Theorem 3.7 goes back to Dehn, who proved it in 1905 for simplicial fl-polytopes
and 5-polytopes and suggested that it be extended to higher dimensions. _Such
an extension was carried out by Sommerville in 1927, who proved it for arbitrary
simplicial polytopes. A generalization to what is essentially the special case of
Theorem 3.7 when P is a meet semilattice (i.e., the face poset of a simplicial complex)
was proved by Klee in 1964. Numerous generalizations and extens‘ion-s have been
subsequently given. A result equivalent to Theorem 3.7 itself appeats in [65, Thr‘n.
3.14.9]. A very general version of the Dehn-Sommerville equations may be found in
168, Lemma 6.4]. ,

Theorems 3.2 and 3.7 show that (a) implies (b} in Theorem 3.1. To show the
converse, it is necessary to construct simplicial Gorenstein* posets with suitéble h-
vectors. This is a fairly easy inductive comstruction whose details appear 1n [67,
Lemmas 4.1 and 4.2). With this the proof of Theorem 3.1 is complete. O

It is an intriguing problem to fill in the gap inherent in Theorem 31, ie, to
characterize h-vectors of simplicial Gorenstein* posets P of odd rank n +1 for whlc.h
hnsg.is also odd. Given that P has odd rank, the condition that A,z is odd is
equivalent to the condition that P has an odd number of facets (elements of rank
n). This is because h; = hn—j and ho+ b1+ -+ hn = fo1, the number of fa.cet?.
We collect together from [67) and [27, Ch. 2] some partial results related to this
problem. ) '
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3.8 Proposition.
(a) Suppose ho =1, h; = ha_;, and h; > 0 for all i. Then there exists a simplicial
Gorenstein* poset P with h(P) = (ho, h1, ..., k).
(8) There is no Eulerian simplicial poset P with an odd number of facets (equiva-
- Aenily, P has odd rank n 4+ 1 and hyyy is 0dd) and hy(P)= 0.
(c) There is no Eulerian simplicial posel P of rankn + 1 with an odd number of
facets such that

ho(P) = hl(P)

wherei> 1l and i 1< n.
(d) There is no Eulerian simplicial posel P of rank n + 1 with an odd number of

facets such that 3 1o hi(P) < n.

{e) There is no Eulerian simplicial poset P with an odd number of facets such that
hi(P) =2, ha(P) = 0.

(f) There is no Gorenstein® simplicial poset P with an odd number of facets such
that h (P)=23, ha(P) = 0.

The following question in particular remains open concerning simplicial Goren-
stein* posets P. If P has odd rank n+ 1 and h; = G for some 1 < i < n— 1, then
is hnyo even? If the answer is positive then Theorem 3.1 and Proposition '$.8(a)
would give a complete solution to the problem of characterizing h-vectors of sim-
plicial Gorenstein* posets. Let us finally remark that the problem of characterizing
h-vectors of simplicial Gorenstein* posets bears some similarities to the problem of
characterizing the Betti numbers of compact manifolds (see [23, Thm. 2.2]).

We now consider cne of the most interesting classes of simplicial Gorenstein*
posels, viz., the face lattices Lp of simplicial convex polytopes P (i.e., convex poly-
topes all of whose facets are simplices). For general information about convex poly-
topes see e.g. [19][35]{47][73]. According to Theorems 3.2 and 3.7 the h-vector of P
satisfies hg = 1, h; > 0, and h; = h,;_;, where n = dimP. In 1971 McMullen and
Walkup [48] published the conjecture that the h-vector was unimodal i.e., weakly in-
creases and then decreases. In view of the Dehn-Sommerville equations (h; = h,—_;)
this is equivalent to the inequalities

l B~ h,‘(P) = 1, hn‘+1(P) = 0!

ho Shy <o < hynga- (18)

The inequalites (15) were called the Generalized Lower Bound Conjecture (GLBC),
because they implied an earlier Lower Bound Conjeciure (proved by Barnette [2][3]
in 1971 and 1973 by geometric reasoning}. McMullen and Walkup {48] showed that
the GLBC, if true, gave the all the homogeneous linear inequalities satisfied by the
f-vector of a simplicial convex polytope (except for by > 0, which is trivial since
ke = 1). Also, the only additional inkomogeneous linear equahty or inequality is
given by the terlaI Ry = 1.

In 1970 in East Lansing, Michigan, McMullen made an inspired conjecture, based
on very little evidence. Namely, he conjectured a complete characterization of the
h-vector of a simplicial polytope. This conjecture was published in 1971 [44] and
became known as McMullen’s g-conjecture (because of the use of the notation gi-1
to denote the crucial quantity h; — h;_q; it is now customary to use g; for this
quantity). It was later proved by Billera-Lee and Stanley (as discussed below), and
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so is now called the g-theorem. To state this result, we use the fact (casily proved
by induction) that given positive integers h and {, there is a unique way to write

e (1) () o (5) *

where n; > ni_1 > --->nj > j > 1. For a nice discussion of the 51gn1ﬁcance of this
representation, see [34 Section 8]. Now define

i n.,--i-l) . n;wl-‘{-l) ’-” ﬂj-i-l
h (1.“ + ; +- 4 i)

and set 0%) = 0. The number A% is sometimes called the ith upper pseudopower
of h. Call a vector (hg, hi1,...,ha) € Z91 an M-vecior (after F. §. Macaulay, for a
reason soon to be made clear) if kg = 1 and 0 < h;p1 < hf‘) forl<i<d-1 We
can now state the remarkable g-theorem first conjectured by McMullen. -

3.9 The g-Theorem. A vector (hy,...,ha) € Z%t? is the h-veclor of some
simplicial d-polylope P if and enly if h; = ha—y and (ho, by —ho,ha—hy,. .., hjarz) —
h|as2i-1) is an M -vector.

‘The sufficiency of McMullen’s g-theorem (i.e., the “if” part of the theorem) was
first proved by Billera and Lee in 1979 (see [12] and {13]) and the necessity soon
afterwards by this writer. The proof of Billera and Lee involved a clever inductive
construction. The proof of necessity, on the other hand, required deep techniques
from algebraic geometry. The first step is an algebraic interpretation of M -vectors.

3.10 Theovem. A vector (ko k1,..., k) € Z9* is an M-vector if and only if
there exists e standard graded algebra R = BB R1® - R, satisfying H{(R, )= Iy
for0 <i< s,

The difficult part of the proof of "Theorem 3.10 is due to F. S. Macaulay [40]. His
intricate argument has subsequently been simplified [55][72][25], though it is still
not an easy result. The purely numerical form of the theorem as stated here first
appeared in [58].

To prove the necessity of the g-theorem (i.e., the “only if” part), it follows from
Theorem 3.10 that we need to find a standard graded algebra' R whose Hilbert
function satisfies H{R, 1} = h; —h;.q for 1 < i < |n/2], where (ho, by, ..., hn) is the
h-vector of the simplicial polytope P. Reisnet's theorem implies that the face ring
K[P] of the boundary complex of P is Cohen-Macaulay. Hence if 81,...,8y is any
ls.0.p., then the quotient ring & = K[P]/(8s,...,8,) satisfies H(S5,i) = h;. This is
not what we want, but it is close. Suppose we could find an element w € 51 which
is a non-zerodivisor on §; for i < |n/2|. Let R = S/wS. Then the condition on w
implies that for i < [n/2],

dimg F; = dimg S; — dimg wS;.1

dimK S,' — dlm;( S§_1
= h; - h,"_1 .
Hence R is the desired ring, and the necessity of the g-theorem would be proved.

To show the existence of the critical element w (called a Lefschetz element),
assume without loss of generality that the simplicial n-polytope P is embedded in
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R" so that the origin is in the interior and the vertices have rational coordinates.
{Not everv convex polrtnpe is rationa!l ie, can be crobeddsd in B® s tlat the
vertices have rationai coordinates.  However, ail simplicial polytopes are rational
since small perturbations \ 7 their vertices do u.i chanv:: their combinatorial type.
For further information, se: {35, n. 95] {17, Fig. 8.4.1][73, Examyple 6.21].) 1t is then
possible to associatc with 7 an algebraic vaziety Xp, which is a special caze of a
toric varely. In general there is an intimate connection between convex polytopes
and related geometric objects on the one hand, and toric varieties on the other. For
further information oii these fascliating connections, see for example [26][28][31][497.
The connection between P and Xp which is of concern to us here is the following:
The (singular} coliomology ring {say with real coefficients) H*(Xp;R) of X5 is
isomorphic to R[P]/(f1,...,2,), where 61,...,6, is a certain Ls.o.p. of R[P] (which
depends on how P is embedded in &™),

The varisties Xp are projective and have very simple singularities (called “fi-
nite quotient singularities”). From this it can be shown that they satisfy the kard
Lefschelz theorem (50 called because Lefschetz stated two theorems about the coho-
mology of algebraic varieties, one of which is much more difficult to prove than the
other). The hard Lefschetz theorem implies the existence of the desired Lefschets

“element w, completing the proof of the necessity of the g-theorem.

For a more detailed exposition of the above proof, see {10][28][31][49][64]. The

reference [64] contains in particular some historical comments on the proof (p. 221).
Let us just add here an additional historical remark which does not appear in the
previous references. ‘The crucial and most difficult result nsed in the proof is the
hard Lefschetz theorem for the varieties X'p. In the original published proof [61] of
the necessity of the g-theorem, a proof of the hard Lefschetz theorem for Xp was
attributed to Steenbrink in 1976. However, it turned out that the proof of Steenbrink
was incorrect. The first correct proof was not given until 1983 by M. Saito [53], using
the deep machinery of filtered D-modules. Fortunately I did not become aware of
the incorrectness of Steenbrink’s proof until after Saito had published his correct
proof!
. After the g-theorem was proved by the methods indicated above, i became a
challenge to try to simplify the proof. The use of ring theory seems inevitable
because of the simple algebraic interpretation of M-vectors. One would like, however,
to show the existence of a Lefschetz element w without using the theory of toric
varieties. Recently exactly such a proof was found by McMullen [46], using his
important concept of the polyiope algebra [45]. McMullen’s proof is a high point in
the geometric tradition founded by Minkowski. The polytope algebra is a fascinating
object which will undoubtedly receive intense further study.

A natural question at this point is the following: Does the g-theorem hold for a

" wider class of geometric objects than simplicial polytopes? Three classes of objects
to consider in this context are {a) PL spheres (which may be defined a5 triangulations
of spheres such that the link of every vertex is also a sphere), (b) triangulations of
spheres, and (c) Gorenstein* lattices. Fach of the three classes is more general than
the preceding. For all three classes it remains open whether the g-theorem is valid.
A promising approach toward proving the g-theorem for case (b) (and possibly even
(c)) was found by Kalai, based on his theory of algebraic shifting and some work on
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embeddabilitv of simnlicin} complexes due to Sarkaria. However, this appr ~ch hns
not yab led wo a proof of the ¢-thecrein fry spheres, The probiein ol extending the
g-theorem o spheres is perhaps the most outstanding open problem in the subject of

“Enlerian poseis. About the only significant generalization of the g-theorem to date

is an extensivn of the GLBC to iriangulations of {n — 2)-dimensicnal spheres whici
are subcomplexes of boundary complexes of siranlictal n-polytopes. This result was
first proved by Kalai [38, §8] using algebraic shifting, and was given a somewhat
stmpler proof based on face rings in [69 Cor 2. 4]

4, The h-Vector of an Bulerian Poset.

In the prev’nus section we defined the A-vector ~f a simplicial Bulerian poset P using
the simple formula (11). (CavEAT: Do not confuse this h-vector with the h-vector of
the order complex of P.) W= mentioned that extending this definition in the obvious
way to an arbitrary Eulerian poset does nol seem interesting. Instead there is a
subtle generalization motivated by topology and algebraic geometry. Recall from our
discussion of McMullen’s g-theorem that if P is a simplicial n-polytope {(embedded
in R™ with rational vertices and origin in the interior), then the cohomology ring
H*{Xp;R) of the toric variety Xp is isomorphic to § := R[P]/(f,...,8,) for a
certain 1s.0.p 81,...,8,. The usual grading of H*(Xp;R) is such that Hz'(Xp ]H?.)
corresponds to S; {so that H2+1(Xp;R) = 0 for all i). Thus

dlmmHz'(X'p,]R) -—fl,'('P). (17)

Now a toric variety Xp can be defined for eny rational polytope 7. (It need not
be simplicial.} We could try to define an h-vector for P viz equation (17). Unfor-
tunately this naive definition is not satisfactory. For one thing, it is not determined
solely by the combinatorial type of P. but rather depends on how P is embedded
into R™. There is, however, a homology theory which is better behaved, viz., the
intersection homology (or cohomology) theory of Goresky and MacPherson (see e.g.
[32](33][42]). Let ITH'(Xp;R) denote the i-th real middle-perversity intersection
cohomology group of the toric variety Xp, and let

hi = hi(P) = dimg IH*(Xp;R).
One can show the following facts:
(IH,) The odd-degree groups TH*+(Xp;R) are all 0.

{IH;) h; depends only on the combinatorial type of the rational polytope P, and
not on its embedding.

{IH3) h; = hy_; for all i (where n = dimP), and h; = 0 for { > n. This result is a
consequence of Poincaré dualily for intersection homology.

(mq) 1 = he € hi < -+ < hlnsay. This is a consequence of the difficult kard
Lefschelz theorem for intersection homology due to Beilinson, Bernstein and

Deligne [8] (see [42, §1.6.2]).
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Since h;(P) depends only on the combinatorial type of P, we would like a combina.-
torial formulayor rule for computing 4;(P). Such a result was given independently
by Khovanskit and MacPherson (and perhaps others), and was first published in
[66]. This rule turns out to make sense for any Eulerian poset P, so we use it to

define the h-vector of P (more precisely, of P — {1}). The definition depends on the
- following result. '

4.1 Theorem. Let P be an Eulerian posel of rank n+ 1 with rank Sfunction p.
Then there exists-a unigue funclion h : P — Z[z) satisfying the conditions (where
we write hy for the value of h at the pointt € P):

{u) For allt > 0 in P we have

deghi(=) < [3(o(0) ~ 1)),
(b} For allt € P, we have '

37 holz)e — 1969 = 220 (1 /7). - {18)

1<t

For instance, when the interval [0,1] is a boolean algebra, then the binomial

theorem implies that A,(z) = 1.

If P is Eulerian, then the polynomial A(P, z) := hj(x) is called the h-polynomial
of P or g-polynomial of P — {1}. We want, however, to define the h-polynomial of
P- {1}. More generally, define a {finite) poset P to be lower Eulerian if P has a
0 and every interval [0, {] is Eulerian. Note that for such a poset, the polynormial
fiy(z) of Theorem 4.1 is still defined for each t € P, viz., hy(z) = h(0,t], z). Thus
for any lower Eulerian poset P of rank n, we can define the h-polynomial of P by
the formula y B
2*h(P,1/z) = he(z)(z — 1)m=#00), (19)

tepP
Moreover, if hp(z) = hg + hyx + - -+ + hyz?, then we define (Ao, hy,...,h,) to be
the h-vector of P.

The definition of the h-vector of a lower Eulerian poset is not easy to understand,
and many of its properties remain mysterious. Let us point ont a few salient facts
concerning the above definition.

¢ Suppose that P is simplicial (and hence lower Eulerian) of rank n. Since
h(By, z) = 1 for any boolean algebra By, equation (19) reduces to

" h(P1fz) = Y (z —1)elt),

tgP
= Zf#—l(‘r - l)n_i:
i=0

where P has fi.., elements of rank ¢. Comparing with (11) shows that the the
two definitions we have given of the h-vector (or h-polynomial) of P agree.

¢ We mentioned that the original motivation for the definition of h{P,z) came
from the intersection homology of toric varieties. Specifically, if P is a rational
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n-dimensional polytope, then let P be its face poset with  removed. Thus
P is lower Eulerian. It is then the case that h;(P) = dimg JH%(Xp;R). In
particular, 2;(P) > 0. Note that (1Hs) gives h; = h,..; (a generalization of the
Dehn-Sommerville equations), while (IH4} yields 1 = Ay < hy < - < hpya)-

e It is natural to ask to what extent the three results h; = h,,_;, h; > 0, and hy <
hy < - £ hyyya) hold for lower Eulerian posets more general than face posets of
‘rational polytopes (with I removed). So far as the Dehn-Sommerville equations
are concerned, the following result can be obtained by a formal computation [66,
Thm. 2.4] {65, Thm, 3.14.9][68, Lemma 6.4]. - -

4.2 Theorem. Let P be an Eulerian poset of rankn + 1 with I removed (so P
has rank n). Then hi(P) = ho_(P) for all i.

o Suppose that P is Eulerian of rank n+ 1, and let 2 = P — {i}. Let A(P,z) =
hg + Rz + -+ haz". Thus by Theorem 4.2 we have h; = h,_;. It is a simple
consequence of the definition of A( P, z) that :

oy J BB = Ry (P, ifi < |nf2]
hi(P) = { 0, otherwise. : (20)
In particular, knowing either of (P, 2} or h(?,z) determines the other.

o Let us consider the question of the nonnegativity and unimodality of the h-vector
of an arbitrary lower Eulerian poset. The unimodality question seems natural
only in the presence of the Dehn-Sommerville equations h; = h,..;. The most
general! “natural” class of posets with this property consists of (by Theorem 4.2)
Eulerian posets with 1 remeved. Now note that by (20), we have (P, z) > 0 if
and only if h(P, =) is unimodal. Hence the unimodality question is subsurned by
the nonnegativity question. Moreover, since the most general “natural® class of
simplicial complexes with nonnegative h-vector are the Cohen-Macaulay ones,
we should restrict our attention to Cohen-Macaulay lower Eulerian posets.

It is false that A;(P) > @ for all Cohen-Macaulay lower Eulerian posets. For
instance, the Cohen-Macaulay Eulerian poset P given by Figure 1 satisfies
A(P,z)=1- z, since

(2*1)34-2(93—-1)2+2(-‘-':-—1)+(l—w}=xs(1—%).

Moreover, the Cohen-Macaulay lower Euleriar poset P (which is an Eulerian
poset, with 1 removed) given by Figure 3 satisfies

h(P,z) = 2h(P,1/z) = (z—1)° + 2z -1 +2(z-1)+2(1—2z) = 2zl —z+1.

Although not all Cohen-Macaulay lower Eulerian posets have nonnegative k-
vector, we do have the following conjecture (68, Conj. 4.2(b)].

4.3 Conjecture. Let P be a Cohen-Macaulay lewer Evlerian meet-semilatiice.
Then hi(P) > 0 for all i
Conjecture 4.3 is open even for face lattices of nonrational polytopes, with or
without i removed. Conjecture 4.5 is one of the outstanding open problems in
the theory of Eulerian posets.



plnoys eu(y ‘senpredord ureyer Fwidjsnyes T — 3 - o dewn ® aawy [Im oM ‘sosed
e uyp -oadJeserd o} UsIa Sa HOISIAIPGNS JO UOTJOU 9YJ JO 90UISED I[I19UI0LTF Y} JO
yonur moy -uo Furpuasdsp ‘suocnyuyep 2fqissod Auwnr ag 0} no WINg APY, [V JO
UOISIAIPQRS ® 2q 03 |7 10 SUAUL 91 JRi{Mm SUYSP 0} LBM [NJosti [BIAUST 4sOUL 2y} w1

X JO UOISIAIPQNS ® §1 T JRY) UOI0U 37} JORNEqR 24 WD MO "sIXS[dwiod rerarduns -
T pue 7 jo syesod 20m) oy
?q vV pu® V 19{ MON "X JO @E] e ug paum:;uo:) L T jo 591 A1949 ye1)) YoNS pue

&

poasqn s€ |y pue V piedo1 feur apy “A[earjosdsor ,
A3 E3o

‘rD ﬂ =0 m
1eqy pus X xajdwos [errduns
aupeuiosd € s1 g Jo (uoyombunriy v 9snl papma wyo ‘uoywnbusiy J;quioab' 10}
uowsinzpgns joroyduns 21upowoad y ~2 pue o yjoq Jo (Lydms Aqissod) soey wowrwos
s Lo Ul T D Lo (q) pue ‘T I L uey) ‘wjosRp B L pUR T D O
Jt (=) yeyy yons L UI psulelmod ssorpduns dixjeuwrosy duww A[93IUY jo X UOL}IL([0D
v st ropdwien pproypdwite otppwoesld y csjutod juapusdepul LSy Jo 198 B JO
aveds wespIany JWOS UI [[NY XaAT0d oY} 51 Zapdurs suppwesd ¥ (s19alqo stryswosd
[etewed siour jo Io) xs[duios Jeronjduris ® jo uoisiAlpgns e Jo £3ojodo; ul norjou
rensn a1y Aq pegeAniowt st jesod Uells[ny UR O UOISIAIPGHS % JO TONIHYSP YT,
‘sreruoudjod JIRIYH [IIm PUOIIS Y} PUR SUOISIAIPGNS [)Im
Bupeap }517 o1} 'se[dwrexs jo sesse]> amy SA1F [[Ia ap) jerwious[od-yf o1y 0} UoIIppe
ut ‘suorjouny s[qeidese jo sapdurexs Fulysaisyul 2wos 918 01 91| MOU PINOM Ip4 "o
UO SUSTIIUT] alq'e:da:roe e jo 9veds ayy jo 2IMYONIIS 5Y) $3qII0S3P ['Q UIRIOYT,

o (ouop saey am s  A[peaad, [ dn ppng o s[qissod
aq qou pInom 9t o8 ()} 95002 0) LM OU 3q PINOM BISTY USY) “JIISUIUIASI)UR JOU
alam (x)?y JU9RY) 210N) “smo[[o] Jooid 9y3 S} W04 'PoUTHIa)Sp A[nbrun uayy sre
gyustIgeod FUNTIPNIS] 9y pue ‘A[LIeljiqIe f Jo sjusiofjaos {H—(;)d%] 1511 31} 950072

" 0} se1y 1w em ‘olfeunudsijue sre (g7} Jo epis puey-jysu oy pue (z)'y yjoq soulg

(z2) (2) ~ (2[4 o= = (2)y

aary am (17} woxy mop fprg vumue] ‘gg] ses ‘(Bmryges (RI2USS s20tu ® uI)
srejep o1]diod 104 g 19s0d URLIS[NG 19MO[ B UI (4n)e(1—) = (7 ‘n )i jeyy you) oy
Fwisn ‘quorungre [eurzo] v £q pasoad st siyy, (T)Ry— = (z/1)y 91 duppwwhsyu 81

155

ekl = ) (@) T = (a)y

' £q mamd (x)iy renwoudjod a1y yery st qurod £o7 syJ, “moQof 1M

jo01d =3 orym wrolp 1+ (3)¢%] wowuaup jo aveds 103004 € st (17) SmAgsiyes
srerwoufjod e Jo 196 943 Jue) wrep op (s Aq paverdal 3 qaim) sproy (1g) woryenba
yeiyy 08 1 > § [|B 1of °f pouyap vary om JBY) asoddng ‘4 27 197 (q21238) yooa g

d31

Z
T+ (¢)df]:z = () ump
uayy umany Jamo) st g osoddng ‘maexoar], 1°¢

[ rd s SLASOd NYIHITAH 0 AJAHNS V

“nser e8mosad 210w € $9A19 WIRIOSYY JX9U BYT,

31

(t+ DN S (dwrup

1Y) smo[of 1 (1d > i 3op somts

‘13A0510U1 . {) 19A0 97RdS 109234 € 81 ()Y AIRs[)) "[2]{) - 4 : f smorouny s[qeydeooe
[Ie Jo yes ag} aj0usp () 12 ‘[eruonijod ® oq jou prnoa ([g) jo epls puey-1g8na
21 ISEMIAYI0 PWS ‘g 3 2 [ 107 (1) S 1 Fop uwery a[qmda:xre 5L f 7 ey sjop

15

(12) (1/1)’1(;)# = (a1 — m)(x)‘fz

AR 9M g D 2 [re 0] 31 aquidsasr aq oy (919Y 08 Op 0} UOsESI On
81 31043 Inq ‘'(y Jo PESISUL pasn 2q P[nod sppRY 19130) [x]dy — 4 : f Uorpduny e suyep
'd tesod uRLISINH Iomo] ® UsAd snVYJ, "oy8s Um0 S} I0f Fmyysaraqur amb s1 jas0d
(UelIB[NY TaMO] URAR 10) UBLIRING UE JO 10193A-Y Y} £q paysires (g]) UOIIPUOD YT,

*19804 weLdiny Jamo| ' wo suoljoung o[qeidasoy -g

TPl + [Pl = [ouPl0.~ 0 = [l - w1 - 08 = (@)
[?:—uap] + [u"}(Z - u)'“ = (C[)Iq
[} = ()%

aaey om ‘(p'2)d P Ul M pIom-pa
9y} jo JUsIIIR0d oY} 10} [m] Sunjlsm ‘sdurexs 10 -esn Yonul Jo 10U pue Asseu

-@)mb stses Xapul-po o) Jo sty w { )y 10 (J)*y 103 uoisseadxe siyy ‘1oasmop

(d)y = {(p‘a)4 &) seysnes [ 4 u yuel Jo 7 1esod wenamy £19a0 20§ ga1yM
1+uf) s0uds oY) 0y sjusPe0d [euolRl Yim ([ensn se g = p 3ap pue [ = 2 Jop
31m) u 90189p jo senmouijod-po e Jo s0vds 9y UIOI} ¢b UOIRUNIOJSTRI} Jeouwy
anbrun € 81 8191) 1 [ora 0] ‘A[esmead s101 *(p ‘0}d p XepuI-pa S]] JO STUSIIY0D
a7 Jo uoneUIqwod Ieaul] anbiun v ST ()% 10 (J)%y 1oes USY) wRLANY SI g
JUfowg uf [17g “doig ‘gl 4 Jo 1oyvea-f Fep ayy woy payndmios aq wed ()Y
[erwoudjod-y aq) * g tesod uela[ng Ismof AU 10} Jey} moys O} NP JouU st 3]

10300A-y aatysoducu jim jes0d LSRG Bao] ¥ ¢ "Irg

AFTINVLS ‘& CUVHOIY Ay



324 RIGHARD P. STANLEY

think of o{t) as the smallest face of A which contains ¢ (called the carrier of £).
Thus the mativation for the following definition should be clear. We say that A’
(or more precisely, the pair (A o)) is a topological subdivision of A if (a) for every
face F of A, the subset o~1(2F) of A" (where 2F denotes the subcomplex of A
consisting of ¥ and all its faces) is a subcomplex of A" whose geometric realization
|e=1(2%)| is homeomorphic to a ball of dimension #F — 1, and (b} o~1(F) consists
of the interior faces of the ball ¢=1(2¥). We have called this type of subdivision
topological because it depends on the topological notion of dall to define it. As such
it is a difficult definition to work with, because there is no useful combinatorial or
algebraic characterization of simplicial complexes whose geometric realization is a
ball. In fact, it is known that the question of deciding whether a simplicial complex
is a ball is undecidable! What are the properties of balls that are essential here?
This depends on what kind of applications we have in mind. If one is only interested
in showing that certain functions are acceptable, then the key property we need is
the following result. For a proof of a more general result, see [62, Ch. II, Cor. 7.2]. A
result equivalent to a generalization of Theorem 5.2 to manifolds with boundary was
earlier proved by Macdonald [41, Thm. 2.1). Let A be a simplicial complex whose
geometric realization is an (n — 1)}-dimensional ball. Recall that the k-polynomial
h(A,z)=ho+ hiz+ - -+ hpz™ of A is defined by

(A, 1/z) = 30 (2~ 1) #F.
Fea
Define the interior h-polynomial A(int(A), z) by
Sh(int(A), 1/z)= B (z— 1",
Fegint{a)

where int{A} denotes the set of interior faces (fates not contained in the bouhdary)
of A,

5.2 Theorem. With A as above, we have
h(int(A), z) = z"h(A, 1/x).

Now let P and P’ be lower Eulerian posets, and let ¢ : P — P be a map
satisfying: :

(S1) Forallt € P', p(t)} < p(c(t)) (where p denotes the rank function of P).

(S2) Forevery u € P, let Pcy = {v € P :v < u} (the principal order ideal generated
by u). Then P, = ¢=!(Pgy) is an order ideal of Plie,ifte P ands <t
then s € P'.

Let A(FP', ) denote the h-polynomial of P', as defined by equation (19). Define
the interior int(Pq) of the poset P, by int(P,) = ¢~1(u). Finally define the k-
polynomial k(int{F, ), z) by

SR E), 1z = T by - A0,
teint(P))
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Guided by Theorem 5.2, we now say that P’ {of more accurately, the pair (P, o')) is
a formal subdivision of P if (S;) and (S2) ate satisfied, and if the following condition
is also satisfied: .

(S3) For all u € P we have o
2POR(F,, 1/2) = h(int(P, ), £). (23)

In particular, topological subdivisions of simplicial complexes (or.even of r.eg‘u.IaI CcwW
complexes, with an obvious extension of the definition of topological subdivision) are

" formal subdivisions. The main theorem on formal subdivisions is the following [68,

Thm. 7.5]. .

5.3 Theorem. Let o : P' — P be a formal subdivision of the lower Eulerian
poset P. Lel f: P — Z[z] be defined by fu(z) = h{P.,x). Then f is acceptable. _

Theorem 5.3 shows that every formal subdivision of an Eulerian poset P ‘fm—
duces” an acceptable function f on P. For topological triangulations A of a sim-
plicial complex A, the value f; of f on a face u of A is just tl:ne usual h-polynom_lal
of the restriction of A’ to A. For a formal subdivision ¢ : P — P of an Eulem_an
(rather than lower Eulerian) poset P, we can define a highly interesting polynomial
#(o,z) , called the local h-polynamial of o, by the formula

oo z)= 3 (1P DR(P,, 2)h(fu, 1%, 2). (24)

WEP

'Here {u, i]* denotes the dual of the interval [#,1]. One fundamental property of

#(o, x) is the following symmetry result (68, Cor. 7.7], which is proved as a formal
consequence of equation (23). ' ‘

5.4 Theorem. Lel o : P — P be a formal subdivision of the Eulerian poset P

of rankn+ 1. Then

: - g™ (o, 1/z) = £(e, ). (25)

In the more intuitive case of simplicial complexes, P is a boolean algebra (!:h'e
face lattice of a simplex 2V), so A([u,1]*,2) = 1 for all u € P. Moreover P s
just a simplicial complex T', and we often write £y {I', z) for {(o, x) (though &y (T, 2)
actually depends on ¢ [68, BEx. 2.3(e)]). Equation (24) takes the simple form

ty(T,z) = 5 (-1)Dh(P,, ), (26)
. ugP

i.e., the alternating sum of the k-polynomials of the restrictions of I' to the faces of
’ : V

the‘?’:angl:j;gt ila.ve the space here to go into a detailed discussion of the local A-
polynomial £y (T, z), but let us mention a few highlights. We need to ’introduce two
further types of subdivisions. Define a topological subdivision o : A B where
A' and A are simplicial complexes, to be quasi-geemetric if no face t of A" has the
following property: There ia a face F of A such that dim(F) < dim(t).and e\{ery
vertex  of ¢ satisfies o{z) < F. In other words, no face ¢ of & has all its vertices
on a face of A of lower dimension than't.
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) ll\Iote that geometric subdivisions {more accurately, triangulations of abstract sim-
plicial complexes which can be geometrically realized by a geometric triangnlation)
are quasi-geometric, since the vertices of a geometric simplex are affinely indepen-
dent. It can be shown that there exist quasi-geometric subdivisions which are not
geometric [68, p. 814). The simplest example of a topological subdivision which is
not quasi-geometric is the followin s Let A b2 a triangle with vertices a,be. Adda
new vertex d on the line ab and lev A" have facets abe and abd, This subdivision is
not quasi-geometric since the two-dimensional face abd of A Los all its vertices on
the one-dimension face ab of A. :

The last type of subdivision which we consider (though the - are still others of

interest, such as homological subdivisions and homotopical subdivisions) is the fel-
lowing. A geometric triangulation of a simpiicial complex is called regular if (speak-
ing somewhat informally) its restriction to each face (simplex) can be realized as the
projection of a strictly convex polyhedral surface. For a more detailed definition
see [15][39][68, Def. 5.1]. An abstract triangulation of a simplicial complex is regu!a;"
if it has a regular geometric realization. It can be shown that not every geometric
subdivision of a geometric simplicial complex is regular (15, Fig. 1][39, Fig. 2(b)].

We now have all the definitions necessary to summarize some basic properties of
the local A-polynomial &y (I', V) of a triangulation I' of the simplex 2V,

First, as a special case of the symmetry result (25), we have

"0y (T, 1/2) = &(T, z), {27)

where #V =n,

. Non let'A- be a pure (i.e., all ma.xima]’ faces have the same dimension) (r — 1)-
dunensmna_l 51mpli,c1al complex, and let A" be a topological triangulation. Then the
h-polynomial h{A', z} is given by the following result {68, Thm. 3.2].

5.5 Theorem. Wilk notation as above, we have

BA,2)= 3 te(Ap, o)h(lka F, 2), (28)
Fea

where A denotes the restriction of A' io the face F of A.

Equation (28) is a fundamental result for reducing questions about f-vectors of
triangulations Lo properties of local h-vectors. :

A much deeper result on local h-vectors than equation (27) and Theorem 5.5 is
the followng. ‘

5.6 Theorem. Lel T be a quasi-geometric triangulation of the simplex V. Then
£y (T, 2) > 0 (i.e., every coefficient is nonnegative).

Proof (brief sketch). The proof requires commutative and homological algebra.
The idea is as follows. Lei K[I'] be the face ring of T, and let V = {él N N
An lsop. Bi,...,0, Is called special if for each i, we have that #; is, a l)inear
combination of vertices of ' whose carrier contains ;. It is not hard to show that if
I'is a topological triangulation of 2V, then & special 1.s.o.p. exists if and only if T is
quasi-geometric [68, Cor. 4.4]. Supposing that 8;,...,0, is special, let Q be the ideal
of K[I'} generated by all monomials whose support does not lie on the boundary of
T'. Let Ly[I] be the image of Q in the quotient K{I1/(0y,...,6,). Then Ly(T] is
a graded K(Il-module, say Ly(I] = Ly @ L, @ ---. One shows by a homological
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argument [68, Thm. 4.6] that the Hilbert series F(Ly/[[],z) := ¥, (dimg L)z’ is
Just £y (T, z), and the proof follows. O

The conclusion of Theorem 5.6 fails for toralagical triangulations. For example,
let V = {a,b,¢,d}. Let [ be the triangulation of 2¥ obtained by adding a verlex e
inside face abc, and letting the faceis of I' be abed and abee. Then £y (T, z) = —z?.
This examyle was found by Clara Chan. :

'"lhe next result gives an imporisat application of Theorem 5.6 (in fact, the
original vaissn d’etre for the cocation of tocal k-vectors). _ :

5.7 Corollary. Let A be a Cohen-Macaulay simplicial complez and A" « quasi-
geomelric {riangulation. Then R{A') = h(A). In other words, the h-vector of a
Cohen-Macaulay complez increases under quasi-geometric triangulation.

Proof. Consider equation (28). By Theorem 5.6 each polynornial EF(A}., z)
is nonnegative, By definition of a Cohen-Macaulay complex A, each link lka#
is Cohen-Macaulay. We mentioned in Section 1 the resuft that Cohen-Macaulay
cornplexes have nonnegative h-vectors. Hence each polynomial i(lka F, z) appearing
in (28) is nonnegative. Moreover, the term in the sum on the right-hand side of (28)
indexed by F' = @ is just h(A, z). From this the proof is immediate. O

Corollary 5.7 is false if A is not assumed to be Cohen-Macaulay (but is assumed
to be pure) [68, Ex. 4.12]. It is not known whether the A-vector of a Cohen-Macaulay
complex increases under fopelogicaltriangulation. This is an intriguing open problem
in the theory of Cohen-Macaulay complexes (due to G. Kalai and this writer), which
we state as an explicit conjecture. .

5.8 Conjecture. Let A" be a topological triangulation of a Cohen-Macaulay

simplicial complez. Then ,
’ h(A') > h(A).

We next consider the situation for regular triangulations. :

5.9 Theorem. LetT be a regular triangulaiion of the simplex 2V, Then &y (L, z)
is unimodal, i.e. (using Theorem 5.4), if bv(F,z) = by + byz + - + £pz2™, then
fo <l <o nyyy

The proof of Theorem 5.9 is very deep; it requires the hard Lefschetz theorem
for the decomposition theorem of intersection homology (though the proof is quite
easy if one is willing to accept all this machinery). For further details see {68, Thm.
5.2]. Thete is an application of Theorem 5.9 analogous to how Corollary 5.7 follows
from Theorem 5.6. The easy proof is omitted.

5.10 Corollary. Let A be a pure simplicial complex such that for every face F €
A the h-veclor of Ik F is symmetric (hi = hg_pr—; for all i) and unimodal (ho <~
b <--- < h[g(d—#F)J: assuming symmeiry). Let A’ be a regular triangulation of
A. Then , , '

hi(A) —hia1(A) <h(A)- R (D), 0L5i<|d/2].

Note that by Theorem 3.7 the boundary complex of a simplicial convex polytope
satisfies the hypothesis of the above corollary, At the end of Section 3 some con-
jectured extensions are discussed. There is an intriguing conjectured generalization
of Theorem 5.9, analogous to the conjectured generalization of the g-theorem for
simplicial polytopes to the case of spheres.
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5.11 Conjecture. Theorem 5.9 continues to hold when T is a geomelric (or
even quasi-geomelric) subdivision of 2V.
Note that the example £y (T, z) = —z? of Clara Chan mentioned after Theorem
5.6 shows that Theorem 5.9 certainly cannot be extended to topalogical subdivisions.
There are many additional interesting open problems associated with local A-
vectors. For instance, can one find a “nice” characterization of quasi-geometric (or
geomnetric or regular) triangulations I' of 2 for which £y (T, z) = 07 For further in-
formation see [68, pp. 821-823]. Can one characterize (or at least obtain significant
new information on) the fi-vectors of suitable classes of triangulations (e.g., topo-
logical, quasi-geometric, geometric, regular) I' of 2¥? Even more strongly, can one
characterize the functions f defined on subsets W of V by f(W) = fw (Tw,z), where
E 21? a (suitably restricted) triangulation of 2V 7 For some work on this problem, see
We mentionad earlier that we would like to discuss two classes of acceptable func-
tions. The first class, just discussed, deals with subdivisions. We now come to the
second class, which is concerned with Ehrhart polynomials. There is by now a vast
literature on Ehthart polynomials, but we will be content with a few remarks which
show the connection with acceptability. For an introduction to Ehrhart polynomials
see [65, pp. 235-241] or [36, Part 2]. Our account below is taken from [68, Ex. 7.13].
- Let L be a lattice in RN, (One can take L = Z¥ without significant logs of
generality.) Let P be an L-polylope, ie., a convex polytope with vertices in L.
(Much of what we say below can be generalized to L-polyhedral complexes, but for
simplicity we only consider polytopes.) As usual we partially order the faces of P
" by inclusion; this makes P into an Fulerian poset. Given an integer n > 0 and a
d-dimensional L-polytope P C RN, define -

i(P,n) = #(nPNL),

where nP = {na ta € P}. Also set i(P,0) = 1. It is known that i(P,n) is a
polynomia! function of n of degree d, called the Ehrhart polynomial of P. It follows

that if we set

w(P,z) = (1-2)*1 Y " i(P,n)2", (29)

n>¢
then w(P,z) is a polynomial in x of degree < d. Since every face F of P is also an
L-polytope, we may regard w as a function on P, ie., the value of w at F' is Jjust
w(F, ). T is noted in [66, p. 201] (for the lattice [ = Z™) that w is an acceptable
function on P. This result is equivalent to Fhrhart’s “law of reciprocity,” which
states that
(=1)%i(P, —n) = #(int(P) N L),

where int(P) denotes the relative interior of P.

Now assume that § is a d-dimensional I-simplex in RY. The “Ehrhart analogue”
of the local h-vector of a triangulation of a simplex is given by Hw, :r) We will use
the notation £*(S, z) instead of €(w, z), where the asterisk * indicates that we are
working in the context of lattice points and Ehrhart polynomials. Thus we have
explicitly the formula

£(8,x) = Zw(le)(_l)d—dim(F)]
~ :
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Fig. 4. A lattice triangle : “

where F runs over all faces of §. Note a fundamental difference between £ and £*:
2y (T, z) depends on the choice I of triangulation of 2V, while £*(S, z) depends only
on & (but with the structure of an L-simplex, not just an abstract simplex): By
Theorem 5.4 we have the symmetry formula

214 (8, 1/x) = £(8, z).

Moreover, Betke and McMullen [9] (using a different notation and viewpoint) give
a geometric interpretation of the coefficients of £*(S, =) which show that they are
nonnegative (a coneiderably easier result than the analogous Theorem 5.6 for trian-
gulations). From this and the lattice analogue of Theorem 5.5 it follows that for any
L-polytope P the polynomial w(P, z) has nonnegative coeflicients. Another proof of
this fact based on shelling was given in [60]. An algebraic approach to £* analogous
to the theory needed to prove Theorem 5.6 was given by Batyrev [4, Def. 9.1ff]. For
further information and references, see [68, Ex. 7.13].

We conclude with an example illustrating the definition of £2{8, ). Let S = ABC

- be the triangle with vertices A = (0,0), B = (4,0), and € = (3,3), as shown in

Figure 4. Then 37 .o #{ABC,n)z" = (1 + 8z + 32%)(1 — )73, so w(ABC,z) =
1+ 8z + 322, Similarly w(AB z) = 1+ 3z, w(AC,z) = 1 + 2z, w(BC,2) = 1,
w(A, ) =w(B,z) =w(C z)=w(d, =) = 1. Hence

£(ABC,z) = 1+82+32% ~ (1+32) -~ (1+22) - 1+1+1+1—1
= 3¢+ 3% '

(For a lattice triangle § it is in fact not difficult to see that (8, z) = kz+k=?, where
k is the number of interior lattice points of &. For higher dimensional simplices the
situation is considerably more complicated.) Note that z3£*(ABC, 1/z) = £*(z), in
accordance with Thecrem 5.4, ) :
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