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Abstract.

In this paper, we present a self-contained introduction to the algebraic theory of convo-
lutional codes, which is partly tutorial, but at the same time contains a number of new
results which we believe will prove useful for designers of advanced telecommunication sys-
tems. Among the new concepts we introduce here are the Hilbert series for a convolutional
code, and the class of compact codes.

1. Introduction.

Convolutional codes have played a central part in NASA’s deep-space telecornmunications
systems for many years. In all such applications to date, the convolutional codes have
been codes of dimension 1, which are commonly, but not strictly correctly, referred to as
“rate 1/n" codes. However, as systems become more sophisticated, the coding subsystems
must keep pace, and in this paper, we shall outline an algebraic theory for the most
general class of convolutional codes known, the so-called “(n, k, m)" codes, of which the
usual “rate 1/n” codes form the special case ¥ = 1. Much of this theory was originally
developed by Forney ([1]-{4]), but this paper adds to what is already known, as well as
pla:ing many of the older results into a modern, “system-theoretic” context. In particular,
we introduce here for the first time the “Hilbert Series” for a convolutional code, which is
a generating function from which the dimensions of certain polynomial subcodes can be
easily computed in terms of the “Forney indices” of the code. By using the Forney indices,
we give a derivation of an upper bound on the free distance of a convolutional code which
in some cases improves the bounds previously known, and whose derivation makes no use
of the structure of any particular encoder structure. Finally, we introduce the notion of
“compact” and “noncompact” convolutional codes, and argue that only compact codes are
likely to be interesting for applications.



2. Convolutional Codes. Polynomial Generator Matrices.

Let F be a field, usually GF(2), and let F(D) be the field of rational functions over F.
An (n, k) convolutional code over F is a k-dimensional subspace of F/(D)"™. The elements
of the code are called its codewords. A codeword is thus an n-tuple of rational functions
over F(D). The weight of a codeword is defined to be the sum of the weights of its
components, where the weight of a component (i.e., rational function) is the number of
nonzero coefficients in its expansion as a Laurent series in increasing powers of D, The
free distance of a convolutional code is defined to be the mimimum nonzero weight of any
codeword.

If C is an (n, k) convolutional code over F, a generator matriz G{D) for Cisa k xn
matrix over F(D) whose rows form a basis for C. If the entries of G(D)} are polynomials,
then G(D) is called a polynomial generator matriz (PGM) for C. Any convolutional code
has a polynomial generator matrix, since if G is an arbitrary generator matrix for C, the
matrix obtained from G by multiplying each row by the least common multiple of the
denominators of the entries in that row is a PGM for C.

Let G(D) = (gi;(D)) be a k x n PGM for C. We denote the ith row of G, i.e., the
n-vector (gi1,..., gin), by gi, and we define the degree of g; as the maximum degree of its
components. In a similar way we define the degree of any n-tuple of polynomials as the

maximum degree of any component. We now define the internal degree and external degree
of G(D} as follows.

int.deg. G{D) = maximum degree of G(D}’s k x k minors
ext.deg. G{D) = sum of the row degrees of G(D).

The following two definitions will be essential in our discussion of convolutional codes.

2.1. Definition. A kxn polynomial matrix G(D) is called basic if, among all polynomial,

matrices of the form T(D)G(D), where T(D) is a nonsingular k x k matrix over F(DY); it

has the minimum possible internal degree. W s — I T A
| e . S —/

2.2. Definition. A k xn polynomial matrix G(D) is called reduced if, among all matrices
of the form T(D)G(D), where T(D) is unimodular,* G(D) has the minimum possible
external degree. Since any unimodular matrix is a product of elementary matrices, an
equivalent definition is that a matrix is reduced if its external degree cannot be reduced
by a sequence of elementary row operations.

Before continuing along our main line, we pause to present a simple theorem that
provides several useful facts about the internal and external degrees of a polynomial matrix.

* A unimodular matrix is a square polynomial matrix whose determinant is a nonzero
scalar.

. d



2.3. Theorem. Let G(D) be a k x n polynomial matrix.

(a) If T(D) is any nonsingular k£ x k polynomial matrix, then int.deg. T(D)G(D) =
int.deg. G(D) + deg det T(D). In particular int.deg. T(D)G(D) > int.deg. G(D), with
equality if and only if T(D) is unimodular.

(b) int.deg. G(D) < ext.deg. G(D).

Proof: (a) The k x k submatrices of T(D)G(D) are just the k& x k submatrices of G(D),
each multiplied by T'(D). Thus the k x k minors of T(D) are just the k x k minors of
G(D), each multiplied by det T'(D). The result now follows.

(b) Denote the degree of the ith row of G{D) by e;. In the expansion of any k x k
minor of G(D), each term is the product of k entries of G(D), one from each row (and
column). Since each entry from the sth row has degree < e;, it follows that the degree of
any k X k minor is at most e; + - - - + e = ext.deg. G(D). =

Basic and reduced polynomial matrices enjoy many useful and surprising properties.
In the Appendix, we give two theorems, Theorem A.1 and Theorem A.2, delineating these
properties. We will refer to these Theorems constantly in the rest of this paper.

2.4. Example: Here are eight generator matrices for a (4,2) convolutional code over
GF(2). Of these eight, six, G through G7, are PGM’s.

1 1 14-D? 1+ D
G, = 1+D+D% 1+D¥ DT 1¥D¥D%

1 l:t‘DStDz D %

1 1+D+D? 14D? 14D
D 1+D+D? D? 1

1+ D+ D% 1+D%2 14D
1+ D D 1

D 1+D 0
1+D0 D 1

(
<
<
(5 b 3 ?)
(
<
(

1+D+D? D2 1



Here is a table listing the properties of the generator matrices Gi,...,Gs. {(Note that
only the polynomial generator matrices, viz., G2—G7, have external or internal degrees, or
can be basic or reduced.)

Basic? Reduced? int.deg. ext.deg.

Gy - - — -
G2 No No 3 4
Gs Yes No 1 3
G4 Yes No 1 2
Gs No Yes 3 3
Gg  Yes Yes 1 1
G» No Yes 2 2
Gs - - - -

These properties are easily verified by referring to Theorems A.1 and A.2. For example,
G is basic because the ged of its 2 x 2 minors is 1 (Theorem A.1, part (2)), and it is not
reduced because its internal and external degrees are unequal (Theorem A.2, part (2)). =

It follows from Definition 2.1 that among all PGM’s for a given convolutional code,
those for which the internal degree is as small as possible are exactly the dasic PGM’s.
It turns out, however, that the set of PGM’s for which the external degree is as small as
possible form a much more interesting class, the class of minimal PGM’s.

2.5. Definition. Among all PGM’s for a given convolutional code C, those for which the
external degree Is as small as possible are called minimal PGM'’s. This minimal external
degree is called the degree of the code C, and denoted degC.

As we shall see, minimal generator matrices have many remarkable properties. The
key to these properties is the following theorem.

2.6. Theorem. A PGM G(D) for the convolutional code C is minimal if and only if it is
both basic and reduced.

Proof: First we will show that a minimal PGM must be both basic and reduced. Then
we will show that a PGM that is both basic and reduced must be minimal.

To prove the first assertion, denote by mo the common internal degree of all the basic
PGM’s for C, and among all the basic PGM’s choose one, say Go(D), for which the external
degree is as small as possible. Then G¢ must be reduced, since if T(D) is unimodular,
int.deg. T(D)Gp(D) = int.deg. Go{D) = my by Theorem 2.3, and so by the definition of
Go, ext.deg. T(D)Go(D) 2 ext.deg. Go(D). Now let G{D) be any minimal PGM for C.
Then we must have

(2.1) int.deg. Gp < int.deg. G < ext.deg. G < ext.deg. Go.

(The first inequality in (2.1) follows from the fact that Gy is chosen to have minimum
possible internal degree. The second inequality follows from Theorem 2.3(b). The third
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inequality is because G, as a minimal PGM, has minimum possible exernal degree.) But
since Go{.D) is reduced, we have by Theorem A.2(2) that int.deg. Go = ext.deg. Gy, so that
equality holds throughout (2.1). Thus int.deg. G = int.deg. Go = mo, so G is basic; and
int.deg. G = ext.deg. G, so that G is reduced, by Theorem A.2(2).

Conversely, suppose that G(D) is basic and reduced, and let Go(D) be any other
PGM for C. Then by Theorem 2.3(b), ext.deg. Go(D) > int.deg. Go(D). Since G(D)
is basic, we have int.deg. Gp(D) > int.deg. G(D); since G(D) is reduced, we have by
Theorem 2.3 that int.deg. G(D) = ext.deg. G(D). Combining these inequalities, we have
that ext.deg. Go(D) > ext.deg. G(D), which proves that G{D) is minimal. «

In the proof of Theorem 2.6, we saw that mg, the common internal degree for all
PGM’s for C, was equal to degC, i.e.,, the minimum possible external degree. Thus we
have the following two corollaries to Theorem 2.6.

2.7. Corollary. The minimal internal degree of any PGM for a given convolutional code
C is equal to the degree of C'.

2.8. Corollary. If G is any basic generator matrix for C, then int.deg. G = deg C'.

The following theorem shows that minimal generator matrices are “minimal” in a very
strong sense.

2.9. Theorem. Ife; < ey < --- < e are the row degrees of a minimal generator matrix
for a convolutional code C, and if fi < fo < --- < fr are the row degrees of any other
polynomial generator matrix, say G’, for C, thene; < f;, fori=1,... k.

Proof: If the statement is false, there exists an index j such that e; < fi,...,6; <
fi, but e;41 > fj+1. It then follows from the minimality of G (use the properties in
Theorem A.1(5), and Theorem A.2(3)) that the first 7 + 1 rows of G’ must be polynornial
linear combinations of the first j rows of G, which contradicts the fact that the rows of G’
are linearly independent. =

2.10. Theorem. The set of row degrees is the same for all minimal PGM’s for a given
code.

Proof: This result follows immediately from Theorem 2.9. =

The row degrees referred to in Theorems 2.9 and 2.10, say (e1,es,..., ek}, are called
the Forney indices of the code. The sum e; + --- + ef of the Forney indices, i.e., the
minimum possible external degree of any PGM for C, is the degree of the code. The
maximurn of the Forney indices is called the memory of the code. From now on, we
reserve the letter m to denote the degree of a given convolutional code, and refer to an
(n, k) code with degree m as an (n,k, m) code. An (n, k, m) code is called optimal if it has
the maximum possible free distance among all codes with the same value of n, k, and m.

2.11. Example: Continuing the study of the (4,2) code from Example 2.4, we see that
of the eight given generator matrices, only Gg is minimal (it satisfies condition (2) of
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Theorem A.1l and condition (2) of Theorem A.2, so it is both basic and reduced), so that
the degree of the code C is 1, and the Forney indices are (0, 1). The code is thus a (4,2, 1)
code. In Example 3.6, below, we will see that it is in fact an optimal (4,2, 1) code. =

3. The Hilbert Series and Free Distance Bounds.

If C is a fixed (n, k) convolutional code, a polynomial codeword of C is a codeword all of
whose components are polynomials. Recalling that the degree of a polynomial vector is
defined to be the maximum degree of any component, for any integer L > 0 we define Cp,
to be the set of polynomial codewords of degree < L. Cp, is a vector space over F'. Indeed,
it is a subspace of the set of all possible n-dimensional polynomial vectors of degree < L
over F'. We denote the F-dimension of C; by ;. The following theorem shows that the
dr’s can be computed from the Forney indices.

3.1. Theorem. IfC is an (n, k) convolutional code with Forney indices (e1,...,ex) and
polynomial subcode dimensions 6, then

te1 Al
(3.1) S gt = LA
L>0 (1-1)

Note: The power series appearing in Theorem 3.1 is called the Hilbert series for the code.

Proof: Let G(D) be a minimal PGM for C, whose row degrees are the ordered For-
ney indices, say e; < .- < e, and let gi,...,g% be the rows of G. Let y(D) be any
polynomial codeword of degree < L. Then it follows from Theorem A.1, part 5, that
y(D) = z(D)G(D), where z(D) = (z1(D),...,zk(D))} is a k-vector of polynomials, and it
follows from the predictable degree property (Theorem A.2, part 3), that degx; +e; < L.
Thus a basis for the F-space Cy, is the set {D?¢;(D): j +e; < L}. Hence

k
> bt = Z Yo (= gty

L>0 i=1 3720

i

:=1

te it+d

3.2. Corollary. We have the following explicit formula for éy,:

k
(3.2) 6, =) max(L+1-¢;,0).

i=]



Proof: By elementary calculus, we have that (1 —#)~2 = 2i>0(F + 1)¢7. Applying this
fact to the formula (3.1), we have

k

AN
ZéLtL - Z (1 — t)2

L>0 i=1

k
_ ZZ(J + l)te;"i-j

i=15>0

k
=ZZ(j+1—-ei)tj.

i=1j>ey

Thus the coefficient of ¢* in the Hilbert series Y ;5 6rth is Zf_ﬂ max (L + 1 —e;,0),
which is what we wanted to prove. =

3.3. Corollary. Let C be an (n, k, m) convolutional code. Then for all L > 0, we have
(3.3) 61 > max{((L + 1)k — m,0).

Furthermore, we have equality for all L > 0 in (3.3) If and only if the Forney indices
assume only the two values [m/k| and [m/k]. A code for which this is true will be called
a compact code.

Proof: Since max(x,0) > z, eq. (3.2) implies that 6, > Ei‘;l(L +1—e)=(L+ k-
Z:;l e; = (L + 1)k — m. Since é;, > 0, too, it follows that é§; > max((L + 1)k — m,0) for
all L > 0. Assuming that the Forney indices are ordered so that e; < --- < eg, it follows
from (3.2) that 6, = (L+ 1}k—m =max({L+ Dk ~m,0) if L+ 1 > ek, and 6, =0 =
max{((L+ 1)k —m,0) f L+ 1 < e;. If e, — €1 < 1, one of these alternatives must hold for
all L. On the other hand, if ex — e; > 2, then there is at least one value of L for which
e1 < L+1 < e, in which case 0 < §; < (L+ 1)k —m, so that §;, # max{((L+ 1}k —m,0)=

Incidentally, it is easy to show that in a compact code, there are exactly (m mod k)
Forney indices equal to [m/k], and k — (m mod k) Forney indices equal to |m/k]. Thus
for exampile if k = 4 and m = 13, a compact code will have Forney indices (3, 3, 3, 4).

Since the subcode Cr, forms a (n(L + 1), 6.) linear block code over F, we know that
the free distance of C cannot exceed the mintmum distance of Cp, for L =0,1,.... Hence
we have Theorem 3.4.

3.4. Theorem. IfC is an (n, k) convolutional code with Forney indices (e1,...,ex), then

dfree(c) < ILné% AF(n(L + 1): 6L):

where A g(n, k) denotes the maximum possible minimum distance of an (n, k) linear block
code over F.

We note from Corollary 3.3 that §;, is minimized for all L, and so Ap{n{L+1),6r) is
maximized for all L, for a compact code. This suggests, but does not prove, that among -

7



all (n, k,m) codes, the compact codes will have the largest free distances. In any case, for
applications we will need a bound on dpee that applies to all (n, k,m) codes, regardless of
their Forney indices. Thus we offer the following Corollary to Theorem 3.4, which gives
an upper bound on dgee for all (n, k, m) codes, regardless of the Forney indices. It is good
to bear in mind, however, that it may be possible to improve the bound if the code is
noncompact.

3.5. Corollary. IfC is an (n,k,m) code, then

dfree(c) < %1;16 AF(n(L + 1)1 k(L + 1) - m)

Proof: Combine Theorem 3.4 with Corollary 3.3. «

The upper bound on dfree 0of Theorem 3.4 is attained for many, but not all, values of

n, k, and m. The following examples will illustrate this. (All examples in this paper are
over the field GF(2).)

3.6. Example: Continuing the study of the (4,2, 1) code in Examples 2.4 and 2.11, we
see that since the Forney indices are (0,1), by Theorem 3.1 the “Hilbert Series” for the

code is 1+t
_—_— = + 2 (2 L.,
L 143t 4562+ -+ (2L + 1)t“ +

Thus the dimension of the Lth subcode Cp, is 2L + 1. It then follows from Theorem 3.4
that the free distance of the code satisfies

diree(C) < ILI'I;% Agpeay(4(L+1),2L + 1).

In particular, for L = 0 the above bound gives dgee(C) < Ag(4,1) = 4. But in fact
diree = 4 for this code (use the generator matrix G4 to check this fact), so this particular
code has the largest possible free distance for a (4,2, 1) convolutional code, ie., it is an
optimal (4,2,1) code. =

3.7. Example: Consider (n,k,m) = (2,1, 2) codes. Since k = 1, there is only one Forney
index, and so any (2,1,2) code is compact. By Corollary 3.2, we have § = 0, and, for
L >1,d; =L-1, so that by Theorem 3.4, we have (here and hereafter we use Verhoeff’s
tables [7] of the values of Ap(n, k) when F = GF(2))

diree < min(A(2,0),A(4,0),A(6,1),A(8,2),A(10,3)...)
= min{o0, >, 6,5,5,...)
= 5.

In fact, there is a well-known (2, 1, 2) code with dgee = 5, whose (unique) minimal generator
matrix is

(3.4) G(D)=(1+D? 1+D+D?).
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(See [6], Chapter 9.) It follows then that the (2,1, 2) code defined by (3.4) is optimal. =

3.8. Example: Consider binary (4, 3, 2) codes. The Forney indices of such codes must
be either (0,1,1) (compact) or (0,0, 2) (noncompact). In the first case we have by Corol-
lary 32 6p =1, 6; =4, 8 =7, etc., and so by Theorem 3.4, we have

diee < min(A(4,1), A8, 4), A(12,7), A(16,10), ...)
= min(4,4,4,4,...)
=4,

However, it turns out that there is no (4, 3,2) code with diree = 4 (Ref. [9]). The largest

- possible dgee turns out to be dgee = 3, which is achieved by the second-order Wyner-Ash
code (Ref. [8]). A minimal PGM for such a code is

1 0 1
0 1 D].
D o 1

On the other hand, if the Forney indices are (0, 0, 2), then Corollary 3.2 tells us that o = 2,
81 =4, 8 =7, etc., and so by Theorem 3.4, we have

[l o e

=min(2,4,4,4,...)
=2

dives < min(A(4,2), A(8,4), A(12,7), A(16,10), .. )

And inded there is a (4, 3, 2) code with Forney indices (0,0,2) and dfee = 2. A minimal
PGM for one such code is

We therefore see that among (4,3, 2) codes, only the compact ones can be optimal. «



Appendix. Basic and Reduced Matrices.

In this appendix we collect for reference many useful properties of basic and reduced
matrices. We begin with the basic matrices.

A.l. Theorem. A k xn polynomial matrix G(D) is basic (see Definition 2.1) if and only
if any one of the following six conditions is satisfied.

(1) The invariant factors of G(D) are all 1.
(2) The gcd of the & x k minors of G(D) is 1.
(3) G(a) has rank & for any « in the algebraic closure of F.

(4} G(D) has a right F[D)] inverse, i.e., there exists a n x k polynomial matrix H (D) such
that G(D)H (D) = I.

(5) If y(D) = z(D)G(D), and if y(D) € F[D]", then z(D) € F|D]*. (“Polynomial output
implies polynomial input.”)

(6) G(D) is a submatrix of a unimodular matrix, i.e., there exists a (n — k) x n matrix

L(D) such that the n x n matrix (g((g)) ) has determinant 1.
Proof: The proof is logically rather involved. We shall prove the following implications:
(Basic) — (1) — (2) — (4) — (5) — (Basic); (2) « (3); (1) < (6).

e (Basic) — (1): Suppose that ' is the k¥ x n invariant-factor form for G, ie, I' =
diag{~v1,v2,.-.,vx) where v; = A;/A;_1, A; being the ged of the i x ¢ minors of G. (We
take Ap = 1 by convention.) Then there is a k& x k unimodular matrix X and an n x n
unimodular matrix ¥ such that

(A.1) XGY =T.

(For a proof of this “invariant factor decomposition,” see [5], Theorem 6.3.16.) Thus if T'x
denotes the k x k matrix formed by the leftmost & columns of I', the matrix G/ = I, ' XG
is a polynomial matrix equivalent to G. Furthermore, since det(I';*X) = detTg' =
(det Tx)~™! = (y1---vk) ™!, unless the v;’s are all 1, the internal degree of G’ is strictly less
than that of I'. Thus if the invariant factors of G are not all 1, then G is not basic, which
proves (Basic) — (1).

e (1) < (2): According to the definitions given in the previous paragraph, the product of
the invariant factors of G is '

A,y ‘ Ag B Ag

Y172 Y = A, A, A1
_ Bk
= A

= Ag = (the ged of the & x & minors of G.)
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Hence the g;’s are all 1 if and only if Ag = 1.

e (2) — (4): Suppose that the ged of the & x k& minors of G(D) is 1, and denocte the
individual minors by A, (D), for v = 1,2,..., (7). Then by Cramer’s rule for each v, there
will exist a “pseudo-inverse” for G(D), with factor A, (D), i.e., an nx k matrix H, (D) such
that G(D)H,(D) = A,(D)I. Since the ged of the A, (D)’s is 1, there exists a polynormial
linear combination of the A, (D)’s equal to 1, say Y., A,(D)A,(D) = 1. It follows that
H(D) =3 _A,(D)H,(D) is an n x k polynornial inverse for G(D).

e (4) — (5): Suppose that G(D) has an n x k polynomial inverse H(D), and that z(D) =
(z1(D),...,zx(D)) is a k-vector of rational functions such that y(D) = z(D)G(D) is
an n-vector of polynomials. Multiplying this equation on the right by H (D), we obtain
y(D)H(D) = z(D), which implies that (D) is in fact a polynomial vector.

e (5) — (Basic): Suppose that (5) holds, and let (D) be an arbitrary nonsingular & x &
matrix of rational functions such that G' = T'G is a polynomial matrix. Then by property
(5), T must in fact be a polynomial matrix, so that by Theorem 2.3(a), int.deg. G’ >
int.deg. G, which means that G is basic.

e (2) «~ (3): Suppose that the ged of the & x k minors of G(D) is 1, let a be an arbitrary
element of the algebraic closure of F, and let p(D) be the minimal polynomial of a. Then
there must be at least one k x k subdeterminant of G(D) which is not divisible by p{(D},
which means that the corresponding k& x k submatrix of G(a) is nonsingular. Thus G{a)
must have rank k. Conversely, suppose that the ged of the & x k& minors of G is not 1,
which means that it is divisible by some irreducible polynomial p{(D). If @ is a root of
p(D) in some extension field of F, it follows that every k x &k minor of G(a) is zero, which
in turn means that G{a) has rank less than k.

e (1) « (6): Suppose the invariant factors of G are all 1. Then the invariant-factor
decomposition in eq. (A.1) can be written as

G=A(I Ok,n_.k)B,

By
it follows that G = ABy. But the matrix (Aé v ) is unimodular, since it is obtained from

where A = Xland B=Y"!. Thusif B = (BU) where By is kxn and By is (n—k) xn,

the unimodular matrix B via a sequence of elementary row operations on the first & rows.

Conversely, if B = (chr((g))) is unimodular, then the equation G(D) = It (I'y Ok n—k ) B

shows that the invariant factors of G(D) are all 1. =

A.2. Theorem. A k x n polynomial is reduced (see Definition 2.2) if and only if one of
the following three conditions is satisfied.

(1) If we define the the “matrix of high-order coefficients” G by

Gij = coeff g,;(D),
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where ¢; is the degree of G(D)’s ith row, then G has rank £.
(2) ext.deg. G(D) = int.deg. G(D).

(3) The “predictable degree property”: For any k-dimensional polynomial vector, i.e., any
z(D) € F[DJ*

deg(z(D)G(D)) = max (degzi(D) + degg:(D)).

Proof: The logical organization of this proof is as follows: we shall prove that (Reduced) —
(1) — (2) — (Reduced), and (1} ~ (3).

o (Reduced) — (1): Suppose (1) is false. Then there is a nonzero k-dimensional vector
from F, say o = (o,...,ax), such that @G = 0. Now suppose that the rows of G are
(91,-..,9%) with degg; = e;, and €1 < ex € --+ < ex. Then from aG = 0, it follows that
the coefficient of D®* in the linear combination

_g:c =) O_,lDek—e:gl + a2Dek—ezg2 + 4 akDek—ekgk

is zero, so that the unimodular transformation of G(D) that replaces g, with gi, and leaves
the remaining rows of G unchanged, reduces the external degree of G. In other words, if
(1) is false, G is not reduced, which is (the contrapositive of) what we set out to prove.

» (1) — (2): Suppose that G has rank k, and denote the k x k submatrices of G by G,, for
v=1,2,...,(}). Then since rank G = k, there is at least one index 15 such that detG.,, #
0. If now the row degrees of G are ej,...,ex, then (cf. the proof of Theorem 2.3(b))
the coefficient of D1+ "7 in det G,, is det G, # 0. Thus int.deg. G > ext.deg. G. The
opposite inequality is true for any matrix, as was shown in Theorem 2.3(b).

e (2) — (Reduced): Suppose int.deg. G(D) = ext.deg. G(D), and that T(D) is an ar-
bitrary k x k unimodular matrix. Then ext.deg. TG > int.deg. TG by Theorem 2.3(b);
int.deg. TG = int.deg. G, by Theorem 2.3(a); and int.deg. G = ext.deg. T, by assumption.
Combining this string of inequalities and equalities, we get ext.deg. T'G > ext.deg. G, which
proves that G is reduced.

o (1) « (3): Let z(D) = (z1(D),...,zx(D)) be a k-vector of polynomials, and let y(D) =
(y1(D),...,yn(D)) be defined by the equation y(D) = z(D)G(D). If the k rows of G(D)
are denoted by g;(D), ..., gx(D), then we have

y(D) =z(D)G(D)
=xz1(D)g1 (D) + - + 2k (D) gx (D).

If the degree of xi(D) is d;, for i = 1,...,k, and the degree of ¢;(D) s e;, fori =1,... k,
it follows from eq. (A.2) that the degree of y(D) is at most d = max;(d; + ;). We call
d the “prediction” of the degree of y(D). To test the prediction, we note that the vector
of coefficients of D9 in y(D) is @ = (ay,...,ax)G, where ¢; is the coefficient of D?~% in
z;(D). (At least one of the a; is nonzero, since d; +e; = d must hold for at least one index
i.) But oG # 0 for all nonzero «’s if and only if G has rank k, and so the prediction is
true for all (D)’s if and only if rankG = k. =

(A4.2)
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