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An important class of single-error-correcting codes for binary and nonbinary
discrete asymmetric channels recently discovered by Varshamov is studied. Among
other things, a wide generalization of Varshamot's construction is given, and the
complete weight distribution of Varshamov’s codes is caleulated,

l. Introduction

Recently Varshamov (Ref, 1) discovered an impressive
class of single-error-correcting codes for the binary asym-
metric, or “Z” channel. (The reason for the letter “Z°
appears in Fig. 1.}

In the Z channel, a 0 is always transmitted reliably but
1 may be received as either 1 or 0. Actual physical chan-
nels, in particular the Ground Communications Facility
(GCF), usually exhibit some degree of asymmetry, and
s0 a study of the Z chamnel provides insiglit into the effects
of asymmetry on practical data-processing systems.

It is the object of this paper to extend Varshamov’s
work in several directions. In Subsection II, Varshamov's
codes will be introduced, and a larger class of single-
error-correeting codes will be described that contain Var-
shamov codes as a proper subset. Estimates on the number
of codewords in these codes will be obtained, and a gen-
eral upper bound on the number of words in any single-
error-correcting code for the Z channel will be obtained.
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In Subsection II, the exact number of codewords in each
of Varshamov's codes will be caleuluted: indeed the com-
plete weight distribution of each code will be found. (In
fact in Subsection IIT we will consider g-ary, rather than
binary, codes, where g is an arbitrary integer.)

Il. A Generalization of the Binary
Varshamov Codes

Varshamov’s single-error correcting codes for the binary
Z channel may be described as the set of all vectors
(e, €1, * * + ,e,) with e; = 0 or 1, such that

"

% tey==d(modn + 1)

i=1
for a fixed d. There are, then, n + 1 distinct Varshamov
codes of length n, one for each choice of d. A generaliza-
tion of this construction that immediately suggests itself
is the following: let G be an arbitrary group of order
n-+ 1 and let g, g, - - -, g« be an ordering of the non-
identity elements of g. For a fixed d e G consider the set
of {0,1} vectors (e;,e., - * * ,e,) such that

1l gi= (1)

izt
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Varshamov's codes are the special ease where G is a cyclic
group. Unfortunately in this generality the sets of {0,1)
vectors thus formed are not necessarily single-error cor-
recting codes for the Z channel. We must restrict both the
group G and the ordering of the elements of G, as in
Theorem 1,

Theorem 1

Let G be a group of order n -+ 1 such that every ele-
ment commutes with all of its conjugates (e.g., if G is
abelian or nilpotent of rank 2 this condition is satisfied).
Let gi, 2., * * * , . be an ordering of the nonidentity ele-
ments of G with the property that the conjugacy classes
appear serially; i.e., every conjugacy class appears as a
set of consecutive elements g, Zunes, * ° o I the
ordering. Then for every deG, the set of {0,1} vectors
(e, es * * + ., en) which satisfy Eq. (1) is a single-error cor-
recting code for the Z channel.

Proof:

We first observe that no two vectors satisfying Eq. (1)
differ in only one position; for if (e,, -+ ' ,e;, -+, ea)

and (e, -+ * ,e;, - * *,e,) both satisfy Eq. (1), we would
have
W0, = d = 10,1,
where
wmgn gy, wmegy g

But then g; =1, a contradiction. Also, it is easy to prove
that there cannot be two vectors such that a single error
in one produces the same result as a single error in the

other; for in such a case there would result an equation

W Eitathy — d= Wil 8 0y

Then g; = w;'g;w,, and so w,, being a product of ele-
ments that lie between the conjugates g; and g; com-
mutes with g; and so g; = g;, another contradiction.

Of course we would like to know the number of code-
words in each of the codes constructed in Theorem 1.
Unfortunately this is a very difficult problem, for which
we have only partial solutions, If G is cyclic, ie., for
Varshamov’s original codes, a complete solution will be
given in Subsection III. In the general case, we make the
chservation that the 2 {0,1} vectors are distributed into
n + 1 codes and so at least one such code contains at least
2"/(n + 1) codewords. On the other hand, Hamming's
bound says that a single-error-correcting code for the
binary symmetric channel has at most 2"/(n + 1) code-
words. Thus unless n = 2" — 1 for some m the asymmetric
channel will support a larger single-error-correcting code
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than the symmetric channel! will. If n = 2" — 1 for some
m the asscrtion very probably remains true, but the codes
of Theorem 1 cannot be used to demonstrate that fact,
because of Theorem 2.

Theorem 2

If |G [ = 9» then all of the codes defined in Theorem 1
contain 22"--* codewords; i.e. no more than the Ham-
ming codes of the same length.

Proof:

It is easier to prove the more general statement that
if (gi, @, "+ ,g) is a sequence of clements of G such
that every element with the possible exception of 1
appears at least once, then the number of {0,1) vectors
(e1,es -+ ,e,) such that

H gh = (2)

is independent of d. To prove this fact we induct on m,
the case m = 1 being easily treated. For m > 1, let 2541
be an element of order 2 in the center of G. For con-
venience we assume g, = z. Then if ¢ is the homomor-
phism from G - G/{z}, and if Eq. (2) holds, we have

H b () = ¢ (d) (3)

Furthermore, every element 1 of G/{z} occurs among
the ¢ (g;), and so by induction the number of vectors
{e,, - + »,e,) which satisfy Eq. (3) is independent of d.
But if Eq. {3) is satisfied it follows that

I g5i=d or dz

iz2
and so there is a unique choice of e, that forces Eq. (2)
to hold.

Although Theorem 2 shows that the codes of Theorem 1
are unimpressive when n = 2™ ~ 1, there is good reason
to believe that codes of these lengths do exist with more
than 27/(n -+ 1) codewords, if m==3. For n =7, a code
with 18 codewords exists:

600CG0O00Q0 1100100 0101101
0100010 1010010 0110110
00100601 1001001 1100111
0001100 1110001 1011101
0111000 10011190 1111010
0000111 0011011 1111111

JPL TECHNICAL REPORT 32-1526, VOL. XtV



It is in fact possible to show that no single-error-
correcting code of length 7 for the Z channel can have 19
words. The above code was found ad hoc by hand caleu-
lation. A computer search might yield an n = 15 code
with more than 2'* words, but a general construction is
desirable.

We conclude this section with a general upper bound on
the number M, of codewords in a single-error-correcting
code for the Z channel.

Theorem 3

Mn éBnn

where B,.; is the maximum number of words possible for
a single-error correcting code for the symmetric channel.

Proof:

There are two asymmetric binary channels: one that
changes (s to I’s, and one that changes 1's to (’s. It is an
odd but easily checked fact that a code which corrects ¢
errors on one of these channels will also correct ¢ errors
on the other. We use this fact to obtain the upper bound
of Theorem 3.

For a given code of length n for the Z channel, con-
struct a new code of length n + 1 by adding a “parity”
bit to each codeword that is 0 if the weight of the code-
word is congruent to 0 or 1 (mod 4) and is 1 if the weight
is =2 or 3 {mod 4). Now this extended code will correct 1
error on the symmetric channel, since an error in the

parity bit will be obvious (the first n hits will be a code- -

word from the original code, but the parity bit will not
check), and if an error occurs elsewhere the parity bit will
indicate whether it wasa 0 —+ I or a 1 —» 0 transition, and
thus the error can be corrected. Thus M, = B,.,, the maxi-
mum number of words in a single-error-correcting code
for the symmetric channel,

Corollary
7+l
=
M, = n+ 2
Proof:
2n+1
=
B‘N-P] _ ’1 + 2

by Hamming’s bond.
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Remark:

It is very probable that Theorem 3 is quite weak, and
that

on
n+1

M"_“_.n-a

for large n.

. The Weight Distribution of Varshamov's
Codes

Let g, m, and d be natural numbers satisfying g > 1,
m>1,1=d<m. Set n=m— 1. Let C(q,n,d) be the
set of all n-tuples (vectors) e ={e,, e, ' -, €s), where
e;e{0,1,2, -+ ,g—1}, and

S ie,=d (mod m) (4)

Then C{g,n,d) is a single-error-correcting asymmetric
code in the sense of Varshamov. Since multiplying Eq. (4}
by a unit module m merely permutes the /s, from now
on we assuwme without loss of generality that d divides m
(written d|m).

If e = (e, 9,
e} by

,en) €C (g,n,d), define the weight

le| =e, + e+ - -+ + e, (real addition)

Although this definition of weight differs from the usual
Hamming or Lee weights (except when ¢ = 2), it is in
accordance with Varshamov's usage.

Let ¢; = ¢: (g, n,d) be the number of vectors in
C{g,n,d) of weight i, and define the weight enumerator
W (y) =W i(g,n,d;y) by

W(y) = Z cy
iz

W (y) is actually a polynamial since ¢; =0fori>(g—1)n
Finally let c =c(g,n, d) = |C{g,n,d)[, so c = Z¢; =
W (1}. Our object is to obtain an expression for W (y} and
for ¢ (gq,n,d).

Theorem 4

We have
Wig,n,dyy) =

1 - y (1 — J!yq/(fa.q))m(lﬂ 0/fe
m (1~ wa Z”“ @ g =y

fld m
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where (fg, q) is the g.e.d. of fg and q.

Before proving Theorem 4, we first discuss some

conseguences.

Corollary 1

Let k be the largest factor of m relatively prime to q.

Then
¢(g,n,d) =—— E E

f!f’v d} gk

q(m/.'p) -1

Proof of Corollary 1:

Set y = 1 in Theorem 4. For a given choice of f and g,
the factor 1 — y appears 1+ m (fg, q)/fg times in the
numerator and 1 + m/fg times in the denominator. Hence
the term corresponding to £, g will be 0 unless (fg, ) = 1.
Hence we may assume f{(k, d) and

’i‘,
17
s0
_ — Y
c{g,nd) = Py
1 — ny)m/fﬂ
X E f E #(g) [ (l . yfg)m/,rg j| .
flik,d) & ' =
O E wg) g

nu- RN

Remark:

Let M(q,7) be the number of g-symbol “necklaces”
with r beads and with no symmetry. As is well-known

%Z#(d)qffd

d|r

M(q,1) =

Hence, by Corollary 1,

_ kK o K
) = mg M (q ”, ?)

fik, d)

e(g,n,

where M (q"‘/", %) > 0. Hence we have:
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Corollary 2
If e|d|m, then

c{g,n,d}=c(q,n,e)
with equality if and ounly if every prime dividing d/e also
divides g. In particular, ¢ (g, n,d) is maximized {for fixed

g, 1} at precisely those d}m such that every prime divisor
of m/d also divides g, and therefore for d =m

Corollary 3

For fixed g, n, we have

1
max ¢(g,n,d} =c(q,n,m) = P E & (h) gtm/m-a

d)mn
Rk

where k as usnal is the largest factor of m relatively prime
to q.

Proof of Corollarsf 3:
By Corollary 2, maxc(qg,n,d) = c¢(q, n,m). By Corol-
lary 1,
¢(q,n,m) E r‘z,u(g gmpe-t
AL
_ 2 h
=~ qm E ful= (h=1fg)
hik ik
But
h
> in(3)=em
i

so the proof follows.

Remark 1;

The number N (¢, r) of inequivalent t-symbol necklaces

with » beads is
% E ¢ (h) t'/".
hlir

Hence

k
= —— m/k
o(a,nm) = =N (@K
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This suggests that a combinatorial proof of Corollary 3
may be possible, especially in the case (m, g) =1
(so k= m), but we have been unable to find one. More
generally, if (m, ¢) = 1 and »; is the number of g-symbol
nocklaces with m beads summing to i (where the symbols

are 0,1, - - -, g — 1), then it follows from Theorem 4 that
m=citeciat T+ Cign
since
o1 .
D mt =y SOy

fim

This suggests that with each word e € C (g, n, m) of weight
i, one can associate a g-symbol necklace with m beads of
weight i +§ for each §=0,1, - - - ,g — 1, but we have
been unable to find such a correspondence.

Remark 2:

The Hamming bound for symmetric g-ary single-error
correcting codes of length n =m — 1 is ¢"™'/m. Hence
by Corollary 3, Varshamov's code in the optimum case
d = m does better than any symmetric code as long as m
has a prime divisor not dividing g. As remarked in Sub-
section II, we have been unable to do better than the
Hamming bound when every prime divisor of m divides
q, except for the special cases for ¢ = 2 listed there. The
largest code has 18 elements (though ¢ (2,7, 8) = 186).
Tlere is also a 12-element binary code of length 6 and a
32-element binary code of length 8, both exceeding the
cardinalities given by Corollary 3 of ¢(2,8,7) = 10 and
c(2,8,9) = 30. These codes are:

n=6: 000000 011001
11000090 010110
001100 111100
000011 110011
101010 001111
106101 111111

n=8 00000000 10101000
11000000 160610010
00110000 10000101
000011060 01100001
00000011 01010100
11110000 010¢1010
11001100 001001210
11000011 00011001
006111100 01010111
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00110011 01101101
000031111 61111010
11111100 10011110
11110011 10101011
11001111 10110101
00111111 11011001

11111111 11100110

Proof of Theorem 4:

Set

Flzg)= 1+ yz+yiz2+ - - 4 yo i)
XL+ yz2 -+ gzt + - gyt eY)
e (1 -+ yzn + yzzzn 4+ o0 4 yq-lzn(q—s))

= 77 (L= o3ly) (L - oiz'y) - - - (1~ ot'5ty)
t=1

where o is a primilive g-th root of 1. Let G{z) be the
unigue polynomial in z of degree <C m such that

F(z) =G (z} (mod z" — 1)

Then the coeflicient of 2¢ in G (z) is W (g, n,d;y), since
choosing a term yx* from the i-th factor

1 -+ y i -+ yzzzi + e 4 yqﬁlz(q-l)i

of F (z) corresponds to choosing e; = j in Eq. (4).

Now G (z} is the unique polynomial of degres <m
satisfying F (£) = G ({) for every root £ of 2" — 1 =10 e,
for every m-th root of unity ¢. We shall therefore now
evaluate F (£). Suppose e|m and { is a primitive e-th root
of 1. Then

‘T"‘ (1 — mi.‘:keﬂy)

g-1 {(m/ey-1
=0 1=1

a-
= [77 1- miy)"]- T
» j=1 ok
1 — g-1 .
:1~;EHI—“TW“
(1) (1 — yeareaymaie.aye
1-yy (1 — yeymee

since f is a primitive ¢ /(e, g) root of 1.

We therefore have

1-— 1 — yea/te g ymle. )/
Gwzzz(zw y ) G, ()

(L =7y (L —y)mre

e|m
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where

1, if ¢ is & primitive e-th root of 1
| 0,if £ = 1but {is not a primitive
¢-throot of 1.

G (0 =

We claim

1
Gg(z)=;;(z”*-l)zzf_§

where the sum is over all primitive e-th roots of 1. Let

-1

H(Z)= z—

(where &, is a primitive e-th root of 1). If {m =1, {4 &,
then H(¢) =0. Also H (&) = H' (Lo} = m & = m{?
Hence G, () = (1/m) (m £*¢,) = 1, while G, (¢) = 0 if
¢m =1 and ¢ is not a primitive e-th root of 1, This proves
the claim.

Summing a geometric series, we have
1—z"

1- ¢z

1+ g%+ %+

{(zm— 1)
=—{

i

+ c-mzm

Interchanging ¢ with ¢! in the sum for G, (z) giveé

1 — j (l — ycq/(C,q))m(e.qJ/ﬂ

Hence
W{g,n d;y} = coefficient of z¢ in G ()
1 (]‘ — y) (]_ — ym/re.q))m(u.q)/c
Tmi-yLs g
X Z ¢
e

of t

It is well-known that 3 ¢ = u (e), where the sum ranges
over all primitive e-th roots of 1. Now {? is a primitive
e/(d, e) root of 1, so

D u= "ﬁﬁ}_i)

L =primitlve (d 3)

e-1h root
of }

Hence
1 (119 (1 — yea/te ymee, /e
W(Q,"’: dS y) = ;.: (1 — yq) Z (1 — yc)m/c
eim
( ¢>(8
\(d, e)
(d e )

To complete the proof we need the following result:

Lemma: (Brauer-Rademacher);

For all positive integers e, d,

m 1—ﬂ> (1 Sore(%)= ( ) ¢ (o)
elm A f (e,d) ] ¢{e/le,d)
Fice,d}
X E (L gzt - o+ o) Proof:
I =primitive
;[Hlt root See Ref. 2
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Fig. 1. The Z channel
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