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1. Infroduction

Let C be a finite discrete memoryless channel which
is specified by its transition probability matrix [p (j]4)],
where p (7]1) is the probability that input letter { will be re-
ceived as output letter j (i=1,2, - - - ;=12 -+ ]}
In 1956, Shannon (Ref. 1) defined the zere-error capacily
of such a channel as the least upper bound of rates at
which it is possible to transmit information at zero-error
probability. Shannon observed that the adjacency graph
of C is fundamental to the study of zero-error capacity.
The adjacency graph G has I vertices vy, va, © -, 0505
is connected to v;. if there is an output letter § such that
p (i|i) and p(j}i") are both nonzero. That is, v; and v;-
are connected in G if the input letters i and i’ can be con-
fused by the channel. The importance of the adjacency
graph may be seen as follows:

Suppose x = (x;, %, * * * %) and ¥ = (U182 * ° ° ,Yn)
are two codewords in a zero-error probability block code
of length n from C. Now x and y can be confused by the
chanmel only if »; and y; can be confused for each 1, but
this is equivalent to saying that x and y are connected
in the graph G7. [ 27 is a graph, the direct power G
has as vertices the set of n-tuples (4, vs, * * * , v,), where
vy are vertices of G; {v,,vs, * - -, v, and (0,0, - - - L vh)
are connected if and only if for each { either v; = o} or
vy, and v} are commected in (G.] Thus, the number of words
in the largest error-free code of length n from C is the
largest number of vertices in G*, no two of which are
adjacent. Berge (Ref. 2) defines the cocfficient of internal
stability of any graph G, « (G), as the largest number of
veriices of G which may be chosen such that no two are
adjacent. Hence, using Berge’s notation, the zero-crror
capacity of C is

1
sup —~ log « (G")

(And, in fact, it is not hard to see that we may replace
“sup” by “lim”.) This leads us to define the capacity of
any finite undirected graph G as’

cap (G} = lim *;1; log a {G")

1i 4 oy

It turns out that for most graphs G, cap (G) = log «{G);
but for the few which have cap (G) > log « (G), cap (G)
is unknown! It is the object of this article to study the

functions « and cap, especially as applied to the so-called
odd cycle graphs Cun.,, which have an odd number of
verbices Uy, Uz, © -, Uamey, and for which ©; is connected
to vy if and only if i — j==x1{mod2m + 1). C; and C;
are illustrated bhelow:

It is very casy to show that

p—1
2

log P — < cap (C) < log =

We shall be able to increase this lower bound for all odd
p==35, in particular, we shall show

2
cton=| B |

for all odd p, and that

. I .,
cap (Cp) > g log o (Gﬁ)

for infinitely many p, including p =7Tand p = 9.

2. A Useful Result About o

We begin with some definitions; throughout G is a
finite undirected graph. A cligue in (3 is a set of vertices
of G such that every pair is connecied in G. A brouhaha
is o set of verlices, no two of which are connected. The
dual graph G of G has the same vertices as G, but v and
v’ are connected in G if and only if they are not connected
in G. Thus, a cligue in G is a browhaha in G, and con-
versely, Finally, if H is another graph, and if each vertex
of G is part of exactly r subgraphs of G isomorphic to H
for some fixed r, we say that G is H-regular. (Thus,
ordinary regularity is a special case of H-regularity, where
H is the graph consisting of {wo connected points.)

Tueoren 1. If G is Heregular, then « (G)/ G| = a{H)/
[ H| (1G] is the number of vertices in G.)
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Proof. Suppose X is the largest brouhaha in Gy | X = «{Q).
Then for each subgraph H’ of G which is isomorphic to
H, the vertices of I’ which are members of X form 2
brouhaha in ', and so|X N H'| == o {(I{") = o {H). Since
each vertex of G is part of r copies of H and each copy of
H involves |H| vertices of G, there are |G| « /] H| copies
of H altogether, thus,

@(@)er = Z [XﬁH’[éa(H)'(if}Hr>

copies of A

and the theorem follows.

Corollary 1 (the sphere-packing bound). 1f G is H-regular
and H is a clique, then o (G)== |G} /]H| and

cap{G)=log ({—g—l’*)

Proof. The first part follows, since «{(H}; =1 if H is a
clique. The second part follows from the fact that G” is
Hr-regular for all n and 11" is a clique.

Corollary 2. More generally, if G is H-regular,
3]
cap (G) == cap (H) - log fﬁ—&\
piGI=cap () = logg 1571 )

Let us give one example of the use of Theorem 1.
Suppose G is the graph of the regular dodecahedron:

The eight distinguished vertices show that «(G)==8; on
the other hand, G is C;-regular (C; is the pentagon). Thus,
by Theorem 1o (G)=1{20/5)*«(C,;) = 8,andso « (G) = 8.

3. The Graphs C,

In this subsection, we shall restrict our attention to
the graphs C; for odd p==5 mentioned in Subsection 1.

(f the vertices are numbered 1,2, - - - ,p, the vertices
,3,5 - - ,p—2 are a brouhaha, so that
p— 1
@ {Cﬂ) == '"?"T
i2

On the other hand, C,, is Cyregular, so that hy Theorem 1
a(C,)=ps2 Thus, «(C,)={(p—1)/2, and so

p—1
2

cap{C,) =log

Also, by Corollarf 9 to Theorem I, cap(C,)<logp/2.
"We shall not be able to decrease this upper bound for

any p, but Theorem 2 increases the lower bound for all
odd p=5.

TuroreM 2. o (C2) = [ (p® — p)/4), and so
. 1,
cap (Cy) =5 log } = (p* ~ p)

Proof. We first show that «{C2) = |(p* — p)/4). This
follows directly from Theorem 1, since C% is C, X C»-
regular, and

-1
#(Cy X C) = a(Cy) = F5=

To show that « (C3) = (p* — p)/4] as well, we must
expliciily exhibit a brouhaba in C; of that size:

For p==1(mod 4), say p = 4a + 1:
£=0,1, - ,p—1

(t, 2t -+ 4s)
| =01+ -,a—1

For p=23(mod4), say p=4a + 3: .
(szo,l, S 2241

(2s,2t+s)i o1 )
t: s,"')aH

andh
§=0,1, - ,2

{2+ 1,2t + s+ 2a + 1)
t=0,1, - ,a

We omit the straightforward but tedious verification that
these sets of verlices do form Dbrouhahas and regard
Theorem 2 as proved.

Theorem 2 shows that for all odd p =5,

cap (Cp} > log «{C,)
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eorendeed, combining our results, we have shown that for

=5,

{ 1 1 )
gl - | =)=l

\'

nd for p =75, that is where matters have stood since
tog p hannon’s original paper. In Subsections 4 and 5, we will
md fiow that this Jower bound can be improved for infinitely
for ?any p, including p =7 and p = .

E

Good Packings in C) for n =3

«(C) =g «(C}7).

z
r
1
J
i
;HEOm-:M 3
|
t

’roof Immediate from Theorem 1, since C% is C»* X C,-
. Thiegular, and a(C7* X C,) = «(C*),

ch
I

H oo 4q8-1
For'ollary. _9__p_l .

a (CF) = ( g

»

!
I

?’roof. From Theorem 3 (or Theorem 2),

mus e
| e(Cp =t

1
The corollary follows from Theorem 3 by induction on n.

\ Although for fixed p, as n increases the upper bound of
the corollary is doubtless very erude; for fived n and large
P, it is probably very good. In particular, we present the

folIowu-: g conjecture:

FmﬂpE%+Lamz=%M@ﬂ

[

{And while we will not be able to prove this conjecture

'{except for n = 2), we will be able to prove Theorem 4,
& ' which is related:-

|

,a
‘!THEOREM 4, Hp=2r+1,

hat : no.. n-1
. Ay — P _

ard ‘ & (C.p) — 2np — prl—l

Proof, We have seen that

|

| .
! n = _E:____.E'j:_,
{ .

|

|

VoL i
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_ sent different integers of the range [0,2* —1] =

Thus, it remains to exhibit a brouhaha of size p"-'. We
claim the following set will do:

(xhxﬂ; R P xn)

where 1, - -+, x,., are arhitrary and

x, = 8x, 4,4 00 42 1g, (mod p)
To see this, suppose x = (x,, * ** ,tand y = (g5, "+, yn)
are two vectors in the set, and that they are connected in

Cn. Then
x~y:(x1_yls e :xu'—yn):(zls T :zn)

has all coordinates congruent to 0, or =1 {mod p). But
since

Zy = 2z, + 21z,

we must show that if each z;,{ < nis 0, ==1 (mod p), that
D2y - - -+ 3212 cannot be. Now let P be the set
of indices { for which z; = 41, and let M be the set for
which z; = —1, Then, if

Oz 4

Lary

s 0 ig =0 1 (mad p)
we have a congruence of the form

S T

ieP jeM

(mod p)

(where cither P or M has been imtended to include 0, if

necessary). Bui unless both sams are empty, they repre-
[0,p—2]
and so cannot be congruent (mod p).

5, Miscellaneous Resulis

We present three miscellaneous results concerning
a(C") and cap (C,).

P

3 1
TuroreM 5. cap(C;)= 5 log7 > 5 log 10,

Proof. It is easy to verify that the following set of 7
vertices is a brouhaha in C3:

(x1,x2, Xa, 2x1 + 2:\:3 + 21‘3, 2x1 -+ 4:('3 -+ 6-\.3)
Xy, X, Xz are arbitrary,

Turones 6. 31 <=« (C%) =35,
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Proof. The upper bound comes from Thecrem 3 with

we obtain the following sequence
p =7, n=23 Here is a brouhaha of size 31:

of upper and lower

31311 7
-
51311
311 513915
5131
1 51 2311313
51311
5(3]16] 442

It has often been conjectured that «(C?) = 5a(Cn?)
for n==3; this conjecture has been verified by exhaustive
enumeration for n==4, [Notice that it is sufficient to

verify the conjecture for odd n by Theorem 3, since
@ (Crl==5a (C2).]

Now, by a systematic brouhaha, we mean a brouhaha

like the ones exhibited in Theorems 4 and 3, i.e., one of
he form

(xh T o T Yo.Yaz " ,ynﬁk}

vhere the xi’s vary freely over the integers (mod p}, and
he y:’s are uniquely determined by the «'s. Let us denote

he size of the largest systematic brouhaha in C® by
tovs (C). Note that e, (C3) = o (CE).

THEOREM 7. aay, (CT} = 5!%/2) for n=<12. (Thus, there is

0 systematic brouhaha which improves the bound
ap (Cpy=%log5 for n=12))

'roof If k = [n/2], then for any n, the set

(xhxm e :xkgle,zx'b e )Zxk: 0)

a brouhaha of size 5 in C*. (The 0 coordinate is only

resent for odd k.) From «(C?) = 10, « {C%) = 25, and
sing

Sa(Cy?} = a(C) =5« (C})

ro] e

bounds on «{C7):

n Lower bound Upper bound
5 50 G2
6 125 155
7 250 387
8 625 967
g 1250 2417
10 3125 6042
11 6250 15105
12 15625 37762
13 31250 94405

Now, since the pumber of vertices in a systematic
brouhaha is always a power of 5, and 5*% is the largest
power of 5 less than the upper bound n == 12, the theorem
follows. Finally, notice that 57 = 78125 < 94405, so that
it is conceivable that there is a systematic broubaha for
n =13 which would show cap (C,)=7/131log5. How-

ever, if it tums out that « (C3) =51, the above procedure
would rule this out.
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l. Combinatorial Communications: Negative
Radix Conversion, 5. Zohar

. Intreduction

In the common positional representation of numbers,
negative numbers always present a special case. Thus, a
machine that can add 3 + § has to go through a special
sequence when the problem is to add 3 + (—5).

It has recently been pointed out® that a computer mech-
anization which is completely indifferent to the sign of
a number can be built if, instead of the standard positive

radix usually adopted in number representation, a nega-
tive radix is chosen.

UNews item in Flectronics, Vol, 40, No, 26, pp. 40-41, Dec. 25,
1967. The idea is credited to Mauritz P. de Regt,
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