H. Combinatorial Communications: Some Results on the Capacity of Graphs, R. J. McEliece,

R. P. Stanley, and H. Taylor

1. Introduction

Suppose $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$ are two codewords in a zero-error probability block code of length n from C. Now x and y can be confused by the channel only if x_i and y_i can be confused for each i; but this is equivalent to saying that x and y are connected in the graph G^n . [If G is a graph, the direct power G^n has as vertices the set of *n*-tuples (v_1, v_2, \cdots, v_n) , where v_i are vertices of G; (v_1, v_2, \dots, v_n) and $(v'_1, v'_2, \dots, v'_n)$ are connected if and only if for each i either $v_i = v'_i$ or v_i , and v'_i are connected in G.] Thus, the number of words in the largest error-free code of length n from C is the largest number of vertices in G^n , no two of which are adjacent. Berge (Ref. 2) defines the coefficient of internal stability of any graph G, $\alpha(G)$, as the largest number of vertices of G which may be chosen such that no two are adjacent. Hence, using Berge's notation, the zero-error capacity of C is

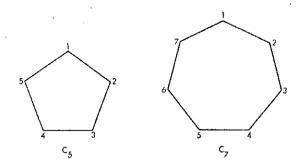
$$\sup_{n}\frac{1}{n}\log\alpha\left(G^{n}\right)$$

(And, in fact, it is not hard to see that we may replace "sup" by "lim".) This leads us to define the *capacity* of any finite undirected graph G as

$$\operatorname{cap}(G) = \lim_{n \to \infty} \frac{1}{n} \log \alpha(G^n)$$

It turns out that for most graphs G, cap $(G) = \log \alpha(G)$; but for the few which have cap $(G) > \log \alpha(G)$, cap (G) is unknown! It is the object of this article to study the

functions α and cap, especially as applied to the so-called odd cycle graphs C_{2m+1} , which have an odd number of vertices $v_1, v_2, \cdots, v_{2m+1}$ and for which v_i is connected to v_j if and only if $i - j \equiv \pm 1 \pmod{2m+1}$. C_5 and C_7 are illustrated below:



It is very easy to show that

$$\log \frac{p-1}{2} \le \exp(C_p) \le \log \frac{p}{2}$$

We shall be able to increase this lower bound for all odd $p \ge 5$; in particular, we shall show

$$_{lpha}\langle C_{p}^{2}
angle =\left| egin{array}{c} rac{p^{2}-p}{4} \end{array}
ight|$$

for all odd p, and that

$$\mathrm{cap}\left(C_{p}\right)>\frac{1}{2}\log\alpha\left(C_{p}^{2}\right)$$

for infinitely many p, including p = 7 and p = 9.

2. A Useful Result About α

We begin with some definitions; throughout G is a finite undirected graph. A clique in G is a set of vertices of G such that every pair is connected in G. A brouhaha is a set of vertices, no two of which are connected. The dual graph G of G has the same vertices as G, but v and v' are connected in G if and only if they are not connected in G. Thus, a clique in G is a brouhaha in G, and conversely. Finally, if G is another graph, and if each vertex of G is part of exactly G subgraphs of G isomorphic to G for some fixed G, we say that G is G is G is G is regularity is a special case of G is the graph consisting of two connected points.)

THEOREM 1. If G is H-regular, then $\alpha(G)/|G| \leq \alpha(H)/|H| \cdot (|G|)$ is the number of vertices in G.)

Proof. Suppose X is the largest browbaha in G; $|X| = \alpha(G)$. Then for each subgraph H' of G which is isomorphic to H, the vertices of H' which are members of X form a browbaha in H', and so $|X \cap H'| \le \alpha(H') = \alpha(H)$. Since each vertex of G is part of r copies of H and each copy of H involves |H| vertices of G, there are $|G| \cdot r/|H|$ copies of H altogether; thus,

$$\alpha(G) \cdot r = \sum_{\text{sophis of } H} |X \cap H'| \leq \alpha(H) \cdot \left(\frac{|G| \cdot r}{|H|}\right)$$

and the theorem follows.

Corollary 1 (the sphere-packing bound). If G is H-regular and H is a clique, then $\alpha(G) \leq |G|/|H|$ and

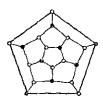
$$\operatorname{cap}(G) \leq \operatorname{log}\left(\frac{|G|}{|H|}\right)$$

Proof. The first part follows, since $\alpha(H) = 1$ if H is a clique. The second part follows from the fact that G^n is H^n -regular for all n and H^n is a clique.

Corollary 2. More generally, if G is H-regular,

$$\operatorname{cap}(G) \leq \operatorname{cap}(H) + \log\left(\frac{|G|}{|H|}\right)$$

Let us give one example of the use of Theorem 1. Suppose G is the graph of the regular dodecahedron:



The eight distinguished vertices show that $\alpha(G) \ge 8$; on the other hand, G is C_5 -regular (C_5 is the pentagon). Thus, by Theorem 1 $\alpha(G) \le (20/5) \cdot \alpha(C_5) = 8$, and so $\alpha(G) = 8$.

3. The Graphs Cp

In this subsection, we shall restrict our attention to the graphs C_p for odd $p \ge 5$ mentioned in Subsection 1. If the vertices are numbered $1, 2, \dots, p$, the vertices $1, 3, 5, \dots, p-2$ are a brouhaha, so that

$$\alpha(C_p) \geq \frac{p-1}{2}$$

On the other hand, C_p is C_2 -regular, so that by Theorem 1 $\alpha(C_p) \leq p/2$. Thus, $\alpha(C_p) = (p-1)/2$, and so

$$\operatorname{cap}(C_p) \ge \log \frac{p-1}{2}$$

Also, by Corollary 2 to Theorem 1, cap $(C_p) \leq \log p/2$. We shall not be able to decrease this upper bound for any p, but Theorem 2 increases the lower bound for all odd $p \geq 5$.

THEOREM 2. $\alpha(C_p^2) = [(p^2 - p)/4]$, and so

$$\operatorname{cap}\left(C_{p}\right) \geq \frac{1}{2} \log \left\lfloor \frac{1}{4} \left\langle p^{2} - p \right\rangle \right\rfloor$$

Proof. We first show that $\alpha(C_p^2) \leq \lfloor (p^2 - p)/4 \rfloor$. This follows directly from Theorem 1, since C_p^2 is $C_p \times C_2$ -regular, and

$$\alpha(C_p \times C_2) = \alpha(C_p) = \frac{p-1}{2}$$

To show that $\alpha(C_p^2) \ge \lfloor (p^2 - p)/4 \rfloor$ as well, we must explicitly exhibit a brouhaba in C_p^2 of that size:

For $p \equiv 1 \pmod{4}$, say p = 4a + 1:

$$(t, 2t + 4s) \begin{cases} t = 0, 1, \dots, p - 1 \\ s = 0, 1, \dots, a - 1 \end{cases}$$

For $p \equiv 3 \pmod{4}$, say p = 4a + 3:

$$(2s, 2t + s) \begin{cases} s = 0, 1, \dots, 2a + 1 \\ t = 0, 1, \dots, a - 1 \end{cases}$$

and

$$(2s+1,2t+s+2a+1)$$
 $\begin{cases} s=0,1,\dots,2a \\ t=0,1,\dots,a \end{cases}$

We omit the straightforward but tedious verification that these sets of vertices do form brouhahas and regard Theorem 2 as proved.

Theorem 2 shows that for all odd $p \ge 5$,

$$\operatorname{cap}(C_n) > \log \alpha(C_n)$$

eorendeed, combining our results, we have shown that for ≥ 5,

$$\frac{1}{2}\log\left[\frac{1}{4}(p^2-p)\right] \leq \exp\left(C_p\right) \leq \log\frac{p}{2}$$

pd for p = 5, that is where matters have stood since $\log p$ hannon's original paper. In Subsections 4 and 5, we will and how that this lower bound can be improved for infinitely for early p, including p = 7 and p = 9.

Good Packings in C_n^n for $n \ge 3$

$$\alpha(C_p^n) \leq \frac{p}{2} \alpha(C_p^{n-1}).$$

roof. Immediate from Theorem I, since C_p^n is $C_p^{n-1} \times C_2$. The gular, and $\alpha(C_p^{n-1} \times C_2) = \alpha(C_p^{n-1})$. $\times C_i$

$$\alpha\left(C_{p}^{n}\right) \leq \frac{\left(p^{n}-p^{n-1}\right)}{2^{n}}.$$

Proof. From Theorem 3 (or Theorem 2),

mus

, 2a

, a

hat

ard

111

$$\alpha\left(C_{p}^{2}\right) \leq \frac{p^{2}-p}{4}$$

The corollary follows from Theorem 3 by induction on n.

Although for fixed p, as n increases the upper bound of the corollary is doubtless very crude; for fixed n and large p, it is probably very good. In particular, we present the following conjecture:

For all
$$p \ge 2^n + 1$$
, $\alpha(C_p^n) = \frac{p}{2} \alpha(C_p^{n-1})$

And while we will not be able to prove this conjecture (except for n = 2), we will be able to prove Theorem 4, which is related:

Тнеокем 4. If $p = 2^n + 1$,

$$\alpha(C_p^n) = \frac{p^n - p^{n-1}}{2^n} = p^{n-1}$$

Proof. We have seen that

$$\alpha\left(C_{p}^{n}\right) \leq \frac{p^{n}-p^{n-1}}{2^{n}}$$

Thus, it remains to exhibit a brouhaba of size p^{n-1} . We claim the following set will do:

$$(x_1, x_2, \cdots, x_{n-1}, x_n)$$

where x_1, \dots, x_{n-1} are arbitrary and

$$x_n = 2x_1 + 4x_2 + \cdots + 2^{n-1}x_{n-1} \pmod{p}$$

To see this, suppose $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$ are two vectors in the set, and that they are connected in C_n^n . Then

$$x-y=(x_1-y_1, \cdots, x_n-y_n)=(z_1, \cdots, z_n)$$

has all coordinates congruent to 0, or $\pm 1 \pmod{p}$. But since

$$z_n = 2z_1 + \cdots + 2^{n-1}z_{n-1}$$

we must show that if each z_i , i < n is $0, \pm 1 \pmod{p}$, that $2z_1 + \cdots + 2^{n-1}z_{n-1}$ cannot be. Now let P be the set of indices i for which $z_i = +1$, and let M be the set for which $z_i = -1$. Then, if

$$2z_1 + \cdots + 2^{n-1}z_{n-1} \equiv 0, \pm 1 \pmod{p}$$

we have a congruence of the form

$$\sum_{i \in P} 2^i \equiv \sum_{j \in M} 2^j \pmod{p}$$

(where either P or M has been intended to include 0, if necessary). But unless both sums are empty, they represent different integers of the range $[0, 2^n - 1] = [0, p - 2]$ and so cannot be congruent (mod p).

5. Miscellaneous Resulfs

We present three miscellaneous results concerning $\alpha(C_p^n)$ and cap (C_p) .

THEOREM 5. cap
$$(C_7) \ge \frac{3}{5} \log 7 > \frac{1}{2} \log 10$$
.

Proof. It is easy to verify that the following set of 7^3 vertices is a brouhaha in C_7^5 :

$$(x_1, x_2, x_3, 2x_1 + 2x_2 + 2x_3, 2x_1 + 4x_2 + 6x_3)$$

 x_1, x_2, x_3 are arbitrary.

THEOREM 6. $31 \le \alpha(C_7^3) \le 35$.

Proof. The upper bound comes from Theorem 3 with p = 7, n = 3. Here is a brouhaha of size 31:

5	3	1				7
		5	3	1		
3	1			5	3	1,5
	5	3	1			
1			5	3	1,5	3
5	3	1				
		5	3	1,6	4	2

It has often been conjectured that $\alpha(C_5^n) = 5\alpha(C_5^{n-2})$ for $n \ge 3$; this conjecture has been verified by exhaustive enumeration for $n \le 4$. [Notice that it is sufficient to verify the conjecture for odd n by Theorem 3, since $\alpha(C_5^n) \ge 5\alpha(C_5^{n-2})$.]

Now, by a systematic brownhaha, we mean a brownhaha like the ones exhibited in Theorems 4 and 5, i.e., one of the form

$$(x_1, x_2, \cdots, x_k, y_1, y_2, \cdots, y_{n-k})$$

where the x_i 's vary freely over the integers (mod p), and he y_i 's are uniquely determined by the x's. Let us denote he size of the largest systematic brouhaha in C_p^n by $c_{0yb}(C_p^n)$. Note that $\alpha_{0yb}(C_p^2) = \alpha(C_p^2)$.

THEOREM 7. $\alpha_{\text{sys}}(C_5^n) = 5^{\lfloor n/2 \rfloor}$ for $n \le 12$. (Thus, there is so systematic brouhaha which improves the bound ap $(C_5) \ge \frac{1}{2} \log 5$ for $n \le 12$.)

'roof. If $k = \lfloor n/2 \rfloor$, then for any n, the set

$$(x_1, x_2, \cdots, x_k, 2x_1, 2x_2, \cdots, 2x_k, 0)$$

a brouhaha of size 5^k in C_5^n . (The 0 coordinate is only resent for odd k.) From $\alpha(C_5^3) = 10$, $\alpha(C_5^4) = 25$, and sing

$$5\alpha\left(C_{5}^{n-2}\right) \leq \alpha\left(C_{5}^{n}\right) \leq \frac{5}{2}\alpha\left(C_{5}^{n-1}\right)$$

we obtain the following sequence of upper and lower bounds on $\alpha(C_5^n)$:

n	Lower bound	Upper bound	
5	50	62	
6	125	1.55	
7	250	387	
. 8	625	967	
9	1250	2417	
10	3125	6042	
11	6250	15105	
. 12	15625	37762	
13	31250	94405	

Now, since the number of vertices in a systematic brouhaha is always a power of 5, and $5^{(n/2)}$ is the largest power of 5 less than the upper bound $n \le 12$, the theorem follows. Finally, notice that $5^7 = 78125 < 94405$, so that it is conceivable that there is a systematic brouhaha for n = 13 which would show cap $(C_5) \ge 7/13 \log 5$. However, if it turns out that $\alpha(C_5) \le 51$, the above procedure would rule this out.

References

- Shannon, E. C., "The Zero-Error Capacity of a Noisy Channel," IRE Trans. Inform. Th., 1T-2, pp. 8-19, 1956.
- Berge, C., The Theory of Graphs. Methuen & Co., Ltd., London, England, 1962.

I. Combinatorial Communications: Negative Radix Conversion, S. Zohar

1. Introduction

In the common positional representation of numbers, negative numbers always present a special case. Thus, a machine that can add 3 + 5 has to go through a special sequence when the problem is to add 3 + (-5).

It has recently been pointed out⁹ that a computer mechanization which is completely indifferent to the sign of a number can be built if, instead of the standard positive radix usually adopted in number representation, a negative radix is chosen.

News item in *Electronics*, Vol. 40, No. 26, pp. 40-41, Dec. 25, 1967. The idea is credited to Mauritz P. de Regt.