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=t — 1 difference sets, and equivalently cyclic Hada-
mard matrices, can, to a greater cxtent than would be
possible without the multiplier theorem, be approached
by performing an exhatistive search on a digital computer.

In employing the above technique, for each different |

assignment of 1's and —1's to the individual cosets, the
first test is to determine if the number of —1's that were
accordingly assigned to the individual members of the
sequence of length ¥ — 1 is equal to N/2. Only those
sequences which satisfy this condition require further
testing; the others are no Jonger candidates. Next, the
autocorrelation is computed, Leginning with a phase dif-
ference of one element and increasing this difference until
either the autocorrelation fer a particular phase shift is
other than —1 or the phase difference bzcomes (N — 1)/2.
In either case, the disposition of the test sequence is de-
termined: failure to generate the proper Hadamard matrix

Table 1. Existence of ¢yclic Hadamard matrices®

| o 1 100 | 200 [ 300 | 40¢ | S00 | 400 | 700 | 800 9001
E E v 5 5 E u U v )
£ E s E s S E § 5 £

12 E 5 E E s E s U g E
14 E H 5 U H S v v H u
20 E 5 5 5 E 5 E E u E
24 E S E E s E v u E. L
28 .8 E E 1 13 S u E E s
2 E E u E £ u E H u u
35 E u s S U S H v H v
Al 5 E E 5 E s 1] E E S
44 E E 5 5 E s |k E u U
45 E 3 u E s E E S 5 E
52 5 £ E I 5 u § v E s 5
56 -1 5 E S S U H H u H
&0 E s s E $ U E U E §
64 E E £ s E E u U E S
11 E E U E E u 5 3§ H E
72 £ U E 5 S E u ) b E
74 s 1] u s u 5 H H - U
20 E E. s E E 5 5 u 5 S
B¢ i E 5 E E 5 5 £ v E E
a8 5 5 y U E E u E E S
b s el st's)elstels|ule
1) H 5 3 -] u u 5 v 5 S

100 S E ) U E E 5 S E 5

Kay: E*-:E:::-: Hodamard matrix knawn te sxist from previevsly publithed
S-—Cy_ci':: Hademard motrix derivcble from dilferancs ot found not to
exist by Ihis siudy,
U~ Uninttled,
N = a + b, erdar of the Hadamerd morix,

208

71966 )

if the autocorrelation is anywhere other than —1 {except
when in phase}; suceess if the phase difference reache,
{N — 1)/2 without the —1 condition being violated.

3. Results

Although many irregularities occur, the number of co-
sets which are gencrated for a particular value of ¥ gon-
erally increases as N grows in size. This [act and the
increased length of the generated sequences fur larger
values of N combine to increase, in the extreme, computer
time required to settle the issue for larger matrices, The
cases considered were confined to N=<1000 (Table 1}
Even then, 54 of these 230 cases could not be tested, due
to the time each would have required on the USC Honey-
well 800 computer. Of the 196 remaining cases, 5 had
already been settled by virtue of N — 1 being prime or 2
twin prime product, or N being a power of 2. The 10;
cases which could be tested in what was deemed a rea-
sonable length of computer time (the longest required on
the order of four hours of machine time, the shortest oniy
seconds, and the others, with few exceptions, less than
30 min) revealed that no cyclic Hadamard matix deriva-
ble from a difference set exists for these values.

B. Combinatorial Communications:
Enumeration of a Special
Class of Permutations
R. Stanley

l. Sumhary

Let = be a permutation a,, a,, + ,a, of the symbols
1,2, - - ,n. We say that = contains a run of length ¢, if
for some i and k, 1=={=<n, 1=k=<n, we have 3, =%,
aGa=k+1 ", g =k+t—1 Al numbers are
regarded as taken mod n; for instance, the permutaticn
23546 contains the run 6123 of length 4, Let F(n,t)
denote the number of permutations of 1,2, - - - , n which
contain no runs of length ¢ (or greater). Our object is to
estirnate the function F(n,¢) for fixed t.

In Section 2, we consider the case ¢ = 2. We obtain a
recurrence relation for F(n,2), compute its generating
Function, give a closed expression for it, and derive its
complete asymptotic cxpansion. In partienlar we show
that the probability that a random permutation of
L2 -+ ,n has no runs of length 2, approaches /e &s
n—>oeo.
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‘he situation becomes more complicated when ¢t > 2.
‘We are unable to give as exact results as obtained for
¢t = 2, but use of the principle of :nclusion and exclusion
enables us to develop a method which vields the asymp-
totic expansion of I'(1,¢). Here we get the probability
that a vandom permutation of 1,2, - - ,n has no runs
of length ¢, t > 2, approaches 1 as n— oo, '

2. Permutations With No Runs of Length Two

It is convenient to work with the function G (n,t) =
(1/n) F (n,t). If we consider two permutations as cquiva-
lent, if they are cyclic shifts of each other, then G (n,?)
enumerates the number of equivaience classes of permu-
tations containing no permutation with a run of length 2.

We claim that the number of classes of cyclically
equivalent permutations containing precisely & runs of
length 2, I==k=n~-2, is {*) G(n — k,2). For there are
(3) ways of choosing which % runs occur, namely, the ()
ways of choosing k elements from the set {12,23,
34, - - - ,n1}. Eachchoice partitions the set {1,2, - * - , n)
fnto n — k subsets, each subset representing symbols
which must remain adjacent. For instance, the choice
12,23,56 when n =7 gives the partition 123,4,56,7.
"y number of cyclically inequivalent ways of rearrang-
iug the parts of the pastition without introducing any new
runs is clearly G(n — k,2), and the assertion follows.

When k= n — 1 the argument breaks down, as the
partition 123 - - - n introduces the extra run nl. If we
define C (0,t) = 1, then the above result is also valid for
k = n, Hence, we obtain the recurrence relation

Gn2) =(n— 1)l — [k:l(Z)G(n ~%2) _ n] )

The —n term appears to cancel the term (7) G(1,2) = n.

If we put G = G{k,2), then Eq. (1) can be written sym-
" bolically as

n=Dl+n=0+Gr, @)
where exponents are changed to subscripts after expand-
ing the right side by the binomial theorem. Eq. (2) pro-

vides a rapid method for calculating G(n,2). Table 2
gives the values for 1=n=15 -

We now define the generating functions

cw= 3B
= F
F(x)“"-: Eo (::1’2) "

i (

o
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P
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Table 2, Valuesof G(n, 2} =1/nFln,2}

n Gin, 2)
1 |}
z- 0
J 1
4 l
5 8
é k[
7 229
8 1,625
L4 13,208
10 120, 288
- il 1,214,673
12 13, 496, 897
13 162,744, 944
14 2,128,047,988
15 29,943,053, 061

Clearly F{x) = 1 + xG’ (x). We compute

“)(Z%)

Gx)e = (Sj Ci2)

a=0 n'!

=—log{l—x)+2xe"+ 1.
Hen.ce
Gx)=e*{l1—log{l—=x)]+x, (3)

and

F(x)=1+xGI(x)=xe-=(1ix+log(1—x))+:c+1.

From Eq. (3) we get

1 ) iy ®© gf
2“ ((1))O+Zi+x
i=0 ’ f=1 !

n-1 ( l)k oo(_._]_)nxn
- 3(Znpn)e+ 2 T

n=0
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Equating coefficients gives

Gin2)=nl 3 H(-:"l-)f—--i-(‘—l)"  nstl (4)
S, SHE=R T T

and

{(—=1F =n .
F(ﬂ2)—-nGn?.)—ﬂfg;‘,0 T m+n(-—1), nl. {5)

Egs. (4) and (5) can also be obtained from the principle of inclusion and exclusion (Ref. 3, Ch. 3 or Ref. 5, Ch. 2)

We now use Eq. (5) to obtain the asymptotic expansion of F(n,2)/nl. We have

O
CBGEL R ) 56 Teeh
O AEY ] B 3 S
P&+ (B ]

T NG R O]

k '.’*1
'2’( Iy kre 3 (—1p| 1 “(?I) I Gl
= S kl{n — k) —n' N 1 _:;IE. (n— 1)1
n

k 41
1—-{— .
logn k”” n-1 kr-u L, ‘u: (._._1).’: (n) nr
=T  R ITery Rl N Wy "Ry R CES VT
n

| - n+1)”‘
(logn)(logn)™! n™*len 1 n’
< Tp—logn Gogm! TV m+ 11 (n-i—l) MRCES

The next to last term is obtained by using the fact that the error in truncating an alternating series of decreasing terms
tending to zero is less than the first term om'tted
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Clearly

log {logn)™* (logn)r+2 B

new - logn

Morcover, using the estimate x! > (x/¢)*

nf{'.'

m " lim _ %
LT (Iog ﬂ)! n‘—om (Iog H/G)Iosrl

= lim g(f-H) logn-(logn)?

=0.
I&ext
1— n+ I\r+?
lim " n
--m(n+1)l 1- n+1
| (=)
- m (ﬂ + l)ru — el
LT (n -+ 1)!
=(,
Finally
lim =
| ey eyl
If we put
- L kr(__l)k
b,=
2 —x

then we have just established the asymptotic expansion

F(n,2)__ : b, 1
n! Eo n’ +0(n“‘)'

The numbers b, can be computed as follows: First

- e A
=2 g =
We now have F
_ o kru(_l)k
b= 2T
_ [ kr(_l)k

=20

-~
s
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o (k+ 1) (~1)"
=2 Tl

252 v(G)
-2 (3

brei= —(1+b).

I
I
| L]

I

or symbolically

-

This recurrence relation shows that b, is always an integer

multiple of 1/¢, say b, = (1/e}a.
If we write
o« br
b= 3 5w,

then similarly to ti]é den‘vah’on of Eq. (3) we get
~b(x)e = 5‘_, m xr=b(x).
Hence
bix)=e"*.
If ¢, denctes the number of partitions of a set of r ele-
“ments, then it is well known (Bef. 4) that
° o

> qEe=et

r=0

Hence the a;. are the so-called Blissard or umbral inverses
of the set partition function ¢, (Ref. 3, p. 27).

The above results are summarized by the following
theorem, which also gives the values of a, for 0==r==20.

Theorem 1. Let F (n, 2) be the number of permutations

of 1,2, ---,n with no runs of length 2 and put
G(n,2) =(1/n)F(n,2). Then

@ n+(a—1l= é‘ (’;)c(k,z).

(ii) lzc(kz) =¢g-*[1 ~log(l —2)] +x,
é. (k2) —xc"[:-i—;-a—:+log(l—~x)]+x+l.

(i) Fmg),uz(l)nfk+np4mn¢1.
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(iv)

F(n2 9
F(2 10 1. 1. 1 _2_9
ﬂ] e n? nt Y ns ne
9 50 267 413 2180 177l
T T Ty T T T T Ty
50533 110176 1966797 . 9938069
- nl.’l + nl{ + n15 + j—;iﬁ
. BB387I8 278475061 2540036509
+ nlf - nlﬁ - nlﬂ
981 5 _
_ 06880558 | L&, )
n /3
where

—at = -ef+1
Zu¥=e

In particular, the probability that a random permuta-
tion of 1,2, -+ - ,n has no runs of length 2 is

F(n,2)
nf

1
--);-=0.36788 s - asn-»oo.

3. An Asymptotic Formula for Arbitrary ¢

The main result of this section is the following theorem:

Theorem 2. Let F (n,t) be the number of permutations
of 1,2, - + - ,n with no runs of length ¢. Then

Fn3)_ _1_31 M1 /1
nl n 20 3 nt/®
F{n,4) 1 5 291 1

m*4—?-$“3$+%§)

while for fixed ¢ >4

F(n?) _

1 {—-2(+1) 1
nl -

1- nf-2 3 i1

_ e+ 1)@ -5t —10) 1
24 n!

1
0 (nt + l) *
Proof. The proof is based on the principle of inclusion
and exclusion referred to earlier. Let w (i, iy, « - ,i,) be
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the number of permutations of 1,2, + - - ,n with runs of
length ¢ beginning on the symbols i,4, - - - ,i. Let
Wiy =S wli,i, + - ,i), where the sum is taken over
all subsets (i, i, - - - i) of {12, -+ ,n} with r ele-
ments. It {ollows from the principle of inclusion and
exclusion that

al ~ W) + W) — WB) < F(n,t)

<nl =W+ W (@~ W)+ W,

If we can show that

W (d)/n! = o(

1
nh-l !

W) WwW(@3)
nl al

then

F (ﬁ, t)
nl

Wl

=1- n!

+

1
+0(}-;TT;)'

Then to compiete the proof of Theorem 2 we need only
calculate W (1), W(2), and W(3).

‘We now show that for £ > 2,

Wir)/nl = 0(—-—1—-—)

nl+r-.‘!

This will be seen to be false for ¢ =2, which explains
why this case was handled separately. For each subset
T={i,i, - ,i} of S={L2, - -, n}, we associate
a partition of n as follows: the set T partitions § into
subsets of symbols which must remain adjacent in order
for a permutation to have runs of length ¢ beginning on
1,82, - * * ,i,. The number of elements in each subset is
taken to be a term in the partition of n.

Example: Let n=15, ¢ =3, T = (2,5,7,8,12). Then §
is partitioned into the subsets {1}, {2,3,4}, {5,6,7,6,9,10},

{11}, {12,13,14)}, (15}. This yields the partition 15 = 1 +
1+1+3+3+6.

Let n="5b,+2b,+ - - - + nb, be the partition of n
induced by T. Observe that b, ==n — r#, with equality
holding when each element of T belongs to a distinct sub-
set of the partition of S. Hence, there are at most () dis-

. tinct partitions of S induced by all subsets T with r ele-

ments, since we can assume that r elements of T are
chosen from a specified set of size rt.



Given the partition n = b, +2b, + -
are

ways of choosing subsets of S with this partition (with
the property that each subsct of order i must contain {
consecutive elements of §), [For each choice, there are

n(ébgﬂl){

W)
nl

(e n*(n—bt+2b—r— 12
- 1') b,lnl

- + nb,, there
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ways of rcarranging these subsets to give different permu-

tations of S. Hence -
et n”(i‘ b;-—l)l
W (r) = ax — ik <, 6
) (r)m“ bibl D) ®)

where the maximum is taken over all partitions of n wh1d1
can arise from subsets 7" of order r.

Now if b, 4 + -+ + b, =b, then

3 bin-—bt—(r—b)+b

since b, =b, = -+ + =b,., =0 and there are r runs of
length . Hence, from Eq. (6) we get

—~bt+b—r)

T

1
=0(;;ﬁ?;m)-

Since b=1, we get
bt —3b+rx=¢t+r—3whent>2.

Note that this is false for ¢ = 2, whenever b > 1. It fol-

Iows that
\'Z 1
2 =o(zmm) 2,

nl

as asserted.

We now complete the proof by caleulating W (1}, W (2),
and W (3) for n sufficiently large to accommodate all
runs in question.

One run of length £ can begin on any one of n symbo]é,
leaving (n — t}l ways of permuting the n — ¢ remaining
symbols and n ways of shifting and pcrmutmg cyclically.

‘Hence

W{l)=n(n—0l, nx=t+1,

(rt)ﬂ’(n—bt-i-ﬂ)—r—l)(n—bt+2b~—r—-2) <o (n
n(n—1)(n—2)

(n—bt+2b—r)

Note that

F(";t)al _wa)_ +0(-1—)
nl. n| nt-2 /"

so that this simple estimate suffices to show that the proba-
bility that a random permutation has no runs of length
t > 2 approaches 1 as n— co.

Two runs of length £ can occur in one of two ways:
(i)onerun of length ¢ + 1, ¢+ 2, - - -, 2t — 1, or (ii) two
disjoint runs of length ¢ In the first case, one run of length
¢ -+ i can begin on any one of n syrbols, leaving (n — ¢t — i)}
ways of permuting the n — f remaining symbols and n ways
of shifting each permutation cyclically. In the second case,
there are n{n — 2¢ + 1)/2 ways of choosing two disjoint
runs of length ¢, (n — 2¢ + 1)I ways of permuting the
n — 2t + 1 subsets that remain when one run is fixed in
place, and n ways of shifting cach permutation cyclically.
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Hence

’ t-1 T f—
W(z)=§n=(n—t—f)l+"—i’i'——§-21ii)(n—zt+1)!,

n=2+4+1.

. Three runs of length ¢ can occur in one of three ways:
(i) one run of length ¢t + 2, £+ 3, - - -, 3t — 2, (ii) one
run of length ¢ and one of length ¢+ 1,¢+2, - - -, 2t —1,
or (iii) three disjoint runs of length ¢. In the first case, as
before, one run of length # + i can begin on any one of n
symbols, leaving (n — ¢ — i}l ways of permuting the n — ¢
remaining symbols and n ways of shitting each permuta-
tion cyclically. Now, however, we get an additional factor
of i — 1, as there are i — 1 places on which the middle run
can begin. In the second case, there are n{n — 2t + 1 — i)
ways of choosing two disjoint runs of length ¢ and £+ i,
.(n—2t+1—i)! ways of permuting the n— 2t +1—1
subsets that remain when one run is fixed in place, and
n ways of shifting each permutation cyclically. In the
third case, there are n(n — 3¢t + 2)(n — 3¢ 4 1)/6 ways
of choosing three disjoint runs of length ¢, (n — 3¢ + 2)!
ways of permuting the n — 3¢ + 2 subsets that remain
- when one run is fixed in place, and n ways of shifting
each permutation cyclically.

Hence

2i-2

W@)= X (i—1)n?(n—~1t— I

1-1 ‘ ,
+3nn—2t+1—-i)(n—2t+1-— !

fx1

t{n — 3t — 3¢
+n(n 3-!-%)(11 3+1)(n-—3t+2)!,

n=3t+1,

We leave it to the intrepid reader to expand
1-—W(L)/nl+ W (2)/nl —~ W(3)/n! in a power series in
I/n and verify that the terms given in the statement of
the theorem are correct. With this the proof of Theorem 2

is complete.

It is evident that the above procedure can be continued

to give the asymptotic expansion of F(n,t)/n! to any
desired accuracy.
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C Coding Theory: Moments of
‘Weight Distributions

R. Stanley

1.Introduction

In Section 2 of this report, a general combinatorial
formula is developed which allows calculation of sums
of the type

3 {o(v)]t, 0=t=r

ves

where § is a set of vectors v, ¢ (v) is the sum of the coordi-
nates of v, and r is an integer depending on a special
property of the set S. In Section 3, this formula is applicd
to (n, k) binary codes and yields explicit formulas for the
sums '

fta,, 0=t<d

o .

hfa

1

where a; words of the code have weight i, and d is the
minimum weight of the dual code. When enough infor-
mation about a code is known, these equations may suf-
fice to determine its weight distribution. As an example,
we calculate the weight distribution of the dual Golay
(23,11) code without using J. MacWilliams' formula.

2. A Combinatorial Formula

Let P={x,, - - - ,x,} be a subset of a commutative
ring R, and let § be a subset of order s of the direct prod-
uct P* = P°P* - - - *P (n times). Assume that S has the
following property for some integer r==n:

(1) The restriction of S to any r coordinates contains all
p’r-tuples of elements of P the same number of times.

(This necessitates p7s.)

Let o(v) denote the sum (in R) of the coordinates of
the element v of S. We then have:

Theorem 1. For 0 ==t==y, the sum

Z e (o)}

»z8

depends only on P,n,s (not on S), and we have

B3 (ool = = (o(o))- @





