
Discrete Mathematics 115 (1993) 65-75 

North-Holland 

65 

Derangements on the n-cube 

William Y.C. Chen* and Richard P. Stanley* * 
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 

Received 5 November 1990 

Revised 14 August 1991 

Abstract 

Chen, W.Y.C. and R.P. Stanley, Derangements on the n-cube, Discrete Mathematics 115 (1993) 

65-15. 

Let Q. be the n-dimensional cube represented by a graph whose vertices are sequences of O’s and l’s 

of length n, where two vertices are adjacent if and only if they differ only at one position. 

A k-dimensional subcube or a k-face of Q. is a subgraph of Q. spanned by all the vertices u1 u2 u, 
with constant entries on n-k positions. For a k-face Gx of Q. and a symmetry w of Q., we say that 

w fixes Gt if w induces a symmetry of Gt; in other words, the image of any vertex of G,, is still a vertex 

in Gk. A symmetry w of Q. is said to be a k-dimensional derangement if w does not fix any 

k-dimensional subcube of Q.; otherwise, w is said to be a k-dimensional rearrangement. In this 

paper, we find a necessary and sufficient condition for a symmetry of Q. to have a fixed k- 

dimensional subcube. We find a way to compute the generating function for the number of 

k-dimensional rearrangements on Q.. This makes it possible to compute explicitly such generating 

functions for small k. Especially, for k =O, we have that there are 1.3 . (2n- 1) symmetries of Q. 

with at least one fixed vertex. A combinatorial proof of this formula is also given. 

1. Introduction 

Let Q, denote the n-dimensional cube. In this paper, we shall adopt the well-known 
representation of Q, as a graph Q. = ( V,, E,), where V, is the set of all sequences of O’s 
and l’s of length n and (uluz ... u,,,uluz ... u,)EE, if and only if uluz ... U, and 
01212 ... U, differ at only one position. Let B, denote the group of symmetries of the 
cube Q,, or, equivalently, the automorphism group of the graph Qn. B, is the 
hyperoctahedral group of degree n or (by abuse of notation) the Weyl group of type B,. 
We may represent an element WEB, by a signed permutation of { 1,2, . . . . n}, i.e., 
a permutation of { 1,2, . , . , n} with a + or - sign attached to each+elfment 1,2, . . . . n. 
For simplicity of notation, we omit the + sign in examples. Thus, ( 2 4 5) ( 3) ( i 6) or 
(2 4 j)( j)( 1 6) represents an element of B6 with underlying permutation 
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(2 4 5) (3) ( 16) (written in cycle notation). We call such a representation of an element 

of B, a signed-cycle decomposition. A signed permutation w acts on a vertex u1 u2 ... u, 

of Qn by the rule 

w(l.41 I.42 ... KJ=~7c(l)&(2) ... &,n,, 

where z is the underlying permutation of w and 

& .- 
i 

%j) if j has the sign +, 

IrCJ)- 1 --uzCjJ if j has the sign -. 

If we define the sign uector (sl, s 2, . . . , s,) of a signed permutation w as 

0 if j has the sign +, 
Sj = 

1 if j has the sign -, 

(1.1) 

then (1.1) can be rewritten as 

Let S, denote the subgroup of B, consisting of those w whose signs are all + . Thus, 

S, is isomorphic to the symmetric group of degree II. An element WE& will be called 

a permutation. Let 2, denote the subgroup of B, consisting of those w whose 

underlying permutation is the identity. Thus, 2, is isomorphic to the abelian group 

Z;, Every element WEB, can be written uniquely as w=uv, where UES, and UEZ, (in 

fact, B, is a semidirect product of S, and Z,), and 1 B,) = 2”n!. An element of Z, will be 

called a complementation. 
A k-dimensional subcube or a k-face of Qn is a subgraph of Q,, spanned by all the 

vertices u1 u2 ... u, with constant entries on some IZ - k positions. In particular, any 

vertex of Qn is a O-dimensional subcube of Q,,. Henceforth, we shall use a sequence of 

k*‘s and n-k O’s or l’s to denote a k-dimensional subcube of Qll. For example, 

*O * 1 denotes a 2-dimensional subcube of Q4 induced by four vertices 

0001,0011,1001,1011. We say that WEB, has a fixed k-dimensional subcube or an 

invariant k-dimensional subcube if there exists a k-dimensional subcube Gk of Qn such 

that the image of every vertex of Gk under w is still a vertex of G,; in other words, the 

set of vertices of Gk is invariant under w. We shall call w a k-dimensional rearrangement 
if it has some fixed k-dimensional subcube. On the other hand, if w does not have any 

fixed k-dimensional subcube, we call it a k-dimensional derangement. In this paper, we 

find a necessary and sufficient condition for a symmetry w of Qn to be a k-dimensional 

rearrangement. In general, we find a way to compute the generating function for the 

number of k-dimensional rearrangements. Especially, for k = 0, 1,2 and 3, we obtain 

explicitly the corresponding generating functions. For k =O, a O-dimensional re- 

arrangement is a symmetry with some fixed vertices, while for k= 1, a l-dimensional 

rearrangement is a symmetry with some fixed edges. We also give a combinatorial 

proof of the formula for the number of vertex rearrangements. 



Derangements on the n-cube 61 

For simplicity, we shall use the following notation of double factorials for non- 

negative integers: 

(2n)!!=2.4.6...(2n) 2 

(2+1)!!=1.3.5...(2+1). 

It is clear that (2n)!! = 2”n!, which is the total number of symmetries of Q,,. Moreover, 

we shall adopt the convention that (- l)!! = 1 and (- 3)!! =O. 

2. Signed cycle decomposition 

A signed cycle is said to be balanced if it contains an even number of minus signs. 

Call an element w of B, balanced if every signed cycle in its signed cycle decomposition 

is balanced. Although we do not need this fact, let us note that WEB, is balanced if and _- 
only if w is conjugate to an element of S,. For instance, (3 1 4 6) (5) ( 2 7) is balanced. 

We need the following definition in order to characterize elements WEB, with a fixed 

k-dimensional subcube. 

Definition 2.1 (k-separable and strongly k-separable permutations). Let { Ci, C1, . . . , C,} 

be a signed cycle decomposition of a symmetry w of Qn. We say that w is k- 
dimensional separable (or simply k-separable) if we can partition the cycles 

{Cl,CZ> ..., C,} into two parts, say A and B, such that every cycle in A is balanced 

and B contains exactly k underlying elements (i.e., the sum of cycle lengths of B is k). 
Moreover, if w is both balanced and k-separable, then we say that w is strongly 

k-separable. 

In the above definition k is allowed to be zero, in which case part B reduces to the 

empty set. The following proposition gives a characterization of a k-dimensional 

rearrangement in terms of k-separable signed permutations. 

Proposition 2.2. Let w be a symmetry of Q,,. Then w has ajxed k-dimensional subcube if 
and only if w is a k-separable signed permutation. 

Proof. Let { C1, C2, . . , C,} be the signed cycle decomposition of the symmetry w, and 

(sl, s2, . . . , s,) be the sign vector of w. First we suppose that w has a fixed k-dimensional 

subcube; without loss of generality, say the subcube Gk = a, a2 ... a, _k * * ... *, where 

ala2 ... an_k is a given sequence of O’s and 1’s. We would like to show that any two 

elements i and j satisfying i 6 n-k and j> n- k cannot be in the same cycle in the 

signed cycle decomposition of w. Otherwise, there must exist two elements 1 and r with 

1~ n - k and r > n - k appearing in the same cycle C. Let L be the set of all elements i in 

C such that i < n - k, and R be the set of all elementsj in C such that j > n - k. Since 1 EL 
and rg R, we know that L # 8 and R # 8. Because the elements of L and R are arranged 
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on a cycle, there must exist a pair of elements (i,j) such that iEL andjEl7 and i and 

j are adjacent on the cycle C. Moreover, we may assume that j follows i in C, namely 

C can be written in the form of C=( . . . ij . . . ), regardless of signs. Given a vertex 

blbZ...b, of Gk, let c,c2~..c,=w(b1bz ..e b,). Since j follows i in C, we have 

ci=si+bj(mod2). (2.1) 

Then it is easy to see that w fixes the ith position of Gk (i.e., ci= bi for any vertex 

b,bz . . . b,EG,) if and only if bi= si + bj(mod 2). Consider the two vertices in the 

subcube Gk: u=a,a, ...a,_kOO...O and u=a,a,~~~a,_kOO~~~ 1 . ..O (where the 1 ap- 

pears in the jth position). Let clc2 ... c,=w(u) and dldz ... d,= w(v). From (2.1) it 

follows that 

ciEsi(mod2) and di=si+l(mod2). (2.2) 

Since Gk is a fixed k-dimensional subcube of Q., w must fix the ith position for both 

u and u. Hence, we must have ci = di = Ui, which is a contradiction to (2.2). It follows 

that i and j cannot be in the same cycle in the signed cycle decomposition of w. 

Therefore, { C1, C2, . . , C,} can be partitioned into two parts A and B such that the 

underlying set for A is { 1,2, . . . , n-k} (note that B reduces to the empty set if k = 0.) 

What we still need to show is that every cycle in A is balanced. Let w’ be the signed 

permutation on { 1,2, . . . , n-k} with signed cycle decomposition A. Then w’ fixes all 

thepositionsofa,,u,,...,~,_,foranyvertexa,u,...u,_,b,b,.,.b~ofG~.Therefore, 

we may assume, without loss of generality, that k = 0, namely a, u2 . . . a, is a vertex 

fixed by w. Let C be a signed cycle of w. Without loss of generality, we may assume 

that the underlying permutation of C is (1,2 ... r). Let cl c2 ... c, = w(ur a2 ... a,). Since 

w fixes all the positions of al, u2, . . . , a,, i.e., ci = ai for 1~ i < r, we have 

r 

ai-s1+u2(mod2), 

u2=s2+u3(mod2), 
(2.3) . . . . . . 

a,-s,+ui (mod2). 

It follows that 

sr+s2+ ... +s,=O(mod2). 

Thus, C must contain an even number of minus signs. This proves the first part of the 

proposition. Because equation (2.3) always has a solution if s1 + s2 + +.. + s, = 0 (mod 2), 

the converse of the proposition can be proved by reversing the steps of the above 

argument. 0 

Corollary 2.3. Let WEB,. Then w has some jixed vertex if and only if w is balanced. 

Corollary 2.4. Let V, be the number of vertex rearrangements on Q,,. Then we have 

V,=(2n- I)!!. 
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Proof. Let K,k be the number of symmetries w such that w has some fixed vertices 
and w has k cycles in its cycle decomposition. Given any unsigned cycle C of length 
1, it is clear that there are 2 ‘- ’ balanced cycles based on C. Therefore, for any 
permutation rc on { 1,2, . . . . n} with k cycles, there are 2”-k signed 
based on n with each cycle balanced. Since we know that there are (s(n, k)l permu- 
tations on n elements with k cycles, where s(n, k) is the Stirling number of the first 
kind, satisfying 

x(x+~)(x+~)...(x+~-l)= 
k=l 

We have V,,, = ) s( n, k) 1 2n-k, and the total number of vertex rearrangements equals 

n 

c Is(n, k)12”-k=2”.-.- 1 3 ...&+(2n_1)!!. 
22 

0 
k=O 

Let V(x) be the exponential generating function for V,. From the well-known 
generating function 

2n c( 1 030 
n 

Y=g===& 

we obtain that 

(2.4) 

We can also give a combinatorial proof of Corollary 2.4 based on Corollary 
2.3. Define a signed-cycle decomposition of WEB, to be standard if in each cycle the 
minimum element appears at the beginning. For instance, w =( 2 8 3 3) 
(16)(4 3 ?)E& is standard. We now describe a way of inserting n+ 1 into the 
standard cycle notation for a balanced standard element WEB, to create balanced 
standard elements w’E&+ 1. Either put n+ 1 into a cycle of its own (with a + sign), 
or else insert n+l into a cycle (iI, iz, . . . . ik) of w. We can place n + 1 immediately 
after ij for 1 <j< k (we cannot put n + 1 before iI because the new cycle would 
no longer be standard). Choose arbitrarily the sign of the largest element among 
. * 
11, z2 . . . . ik and keep all other signs the same. The sign of n+ 1 is then uniquely 
determined in order for the new cycle to be balanced. Thus, there are a total of 
2n+ 1 ways to insert n+ 1 into w, as described above. Given w’, we can uniquely 
recover w by removing n + 1 and adjusting the sign of the largest element (if it exists) 
of the cycle containing n+ 1 to insure that it is balanced. From this it follows that 
we obtain every balanced element w’ of I?,+ 1 exactly once by the above procedure; 

so, K+1= (2n + 1) V,. Since VI = 1 is trivial, we have obtained a combinatorial proof 
of Corollary 2.4. 
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The referee of this paper suggested the following combinatorial proof of 

Corollary 2.4 based on the ‘greedy method’. We shall denote a signed permutation on 

{ 192, . . . . n} in the following form: 

w=( w’, w’,::: ;1,)2 
where to each Wi is attached a sign + or -. In order to construct all the balanced 

permutations w, we can use the following greedy algorithm: 

(1) Choose w1 as any signed element except 1; otherwise, w would contain an 

unbalanced cycle (1). So, there are 2n - 1 possibilities for wi. 

(2) Now suppose w1,w2, . . . , wi _ 1 have been so chosen that every completed cycle is 

balanced. Ignoring the balanced cycle condition, there are 2n - 2i + 2 possibilities for Wi. 

However, among these 2n - 2i + 2 choices for Wi, exactly one choice would create a com- 

plete unbalanced cycle (containing Wi), because such a Wi must be chosen as the element 

j with proper sign such that j<i and j is the first element in the uncompleted cycle 

containing i: in other words, i is in an uncompleted cycle (j ... i regardless of signs. 

Therefore, there are 2n-2i + 1 choices for Wi such that no unbalanced cycle would 

occur. 

This gives that the number of balanced permutations on n elements is (2n - 1 )!!. 

From the proof of Proposition 2.2, we may obtain the structure of the set of all fixed 

vertices of a symmetry of Qn. 

Proposition 2.5. Let F, be the set of all vertices of Qn fixed by an element WEB,. 
Suppose F, #@. Then there exists a partition n = { D1, . . . , Dk} of the set { 1, . . . , n} with 

the following property: If u1 u2 . . . u, is any given element of F,, then all the elements of 
F, are obtained by choosing a subset { Di,, . . . , Dij} of the blocks of n and complementing 

those u, for which rEDis for some 1 <s < j. In particular, tf w contains k signed cycles, 

then (F,l=2k. 

Proof. Let {C1,C2 ,..., Ck} be the signed-cycle decomposition of w and (si ,s2, . . . , s,) 

the sign vector of w. Suppose C is any signed cycle of w. Without loss of generality, we 

may assume that the underlying permutation of C is (12 ... r). By Proposition 2.2, it 

follows that C is a balanced cycle. Therefore, s1 +s2 + ... +s, is even. Let a, a2 ... a,, be 

any vertex fixed by w. Then (aI, a2, . . . , a,) is a solution to the system of equations (2.3). 

It is easy to see that we can arbitrarily choose a 1 ; then the other at’s (2 d i < r) are 

uniquely determined by the value of a,. Moreover, if (al, a2, . . . , a,) is a solution to 

(2.3), so is the complementary sequence (1 -a,, 1 -a2, . . ., 1 -a,). Clearly, these two 

sequences are the only solutions to (2.3). This completes the proof. 0 

It should be noted that the set of fixed vertices of an automorphism of Qn is not 

necessarily a face of Q,,. In fact, F, is a face of Qn if and only if F, =8 or w is the 

identity. Thus, the problem of counting derangements of Q,, is not a Mobius inversion 

problem on the face lattice of Qn, as it may first look like. 
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3. k-Dimensional rearrangements on Q,, 

Let Sri,,, be the number of strongly k-separable (balanced and k-separable) 

permutations on n elements and S,(X) be the exponential generating function for the 

sequence {S&k)naO: 

Sk(x)= c ‘%,k$ 

fl20 

Let R,,k be the number of k-dimensional rearrangements on Qn and Rk(x) be the 

exponential generating function 

Proposition 3.1. We have 

Rn,k= c 
OSiQk 0 y (2i-l)!!S,-i,k-i, (3.1) 

Rk(X)= C (Z?i-I)!!Sk_i(X)g. 
OQi-Sk 

(3.2) 

Proof. From Proposition 2.2, we know that a symmetry w of Q,, is a k-dimensional 

rearrangement if and only if it is k-separable. Thus, w may have some unbalanced 

cycles on an underlying set with no more than k elements. Since we can always change 

the sign of the maximum element in an unbalanced cycle to make it into a balanced 

cycle, we see, by Corollary 2.4, that there are (2i- l)!! signed permutations on 

i elements with every cycle unbalanced. If w contains some unbalanced cycles with 

underlying set of i elements, the remaining cycles of w must correspond to a strongly 

(k- i)-separable permutation on rr- i elements. This proves (3.1). Thus, we have 

h(X)= c R”x$ 
II>0 

=,&&(‘) Iz’ 
(2i-l)!!S,_i,k-i; 

. . 

= C (2i-1)!!gCSn-i,k-i& 
O<i<k n>i 

I 
= 

c (2i_l)!!S,_i(X)$. 0 
OSiQk 

l! 
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We shall use the common notation A t n to denote that A is a partition of n, and 
;1=1Al2A2 . . . to denote a partition of an integer with A1 l’s, IVz 2’s, and so on. 
Moreover, we define the join of two partitions ,I and p as follows: 

(l”‘2”’ . ..) v (lP12/12...)=1Y12Y2 . ..) 

where yi = max( &, pi). 
As a refinement of the definition of strongly k-separable signed permutations, we 

give the following definition. 

Definition 3.2 (A-separable permutations). Let ,I be a partition of an integer k. A 
balanced permutation T is said to be I-separable if T has at least 1 i i-cycles in its cycle 
decomposition for any i. 

Definition 3.3 (Euler characteristic of a partition). Let i be a partition of an integer. 
Given an integer k, let ci(1) be the number of i-sets of partitions of k such that their 
join equals 2. Then the Euler characteristic of 1 is defined by 

Proposition 3.4. Let Sri,,, and Sn,l be the number of k-separable and A-separable signed 

permutations on n elements, and let S,(x) be the exponential generating function for S,, 1. 

Then we have 

sn,k=C Xk(~Pn,h (3.3) 
1 

sk(x)=c Xk(A)SA(X). 
I 

(3.4) 

Proof. Let w be a signed permutation on n elements. Then w is k-separable if and only 
if there exists a partition 2 of k such that w is &separable. Let p1,p2, . . . be all the 
partitions of k. Then, by the principle of inclusion and exclusion, we have 

Sn,k= 1 Sn,p<- C SnvP< VP~+ C S,,P~ VP~ VP~- ‘.. 
i21 i<j i<jCI 

= T xk(~)sn, 1. 

There follows the desired generating function S,(x). 0 

For simplicity, we shall use the convention 

(2x)’ 
Yi=y. 
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For integers i 2 1 and j> 1, set 

j-1 f 
zij=e-Yi C 5, 

t=O t! 

while, if j = 0, set Zij = 0. 

Proposition 3.5. Let ;1= 1 I1 2A2 9.. mAm be a partition of an integer m. Let yi and Zij be as 

above. Then we have 

Proof. Let W,,(A) be the number of strongly I-separable signed permutations w on 
n elements such that w contains at least Ai i-cycles in the cycle decomposition. Recall 
that the number of unsigned permutations of type .D = 1 P12P* ... is 

n! 
l”2P’” . . . np”pl!pLz! . ..pn! 

Let Y,,, be the number of balanced permutations of type p. Since ,U is a partition of n, 
we have pl+2,uzi-3p3+.e.=n and 

x” n!2 n-(p1+p2+ ,,,) X” 

“‘n?=1”2~2...n’.p,!yl!...~.!n! 

(2x)’ pi 1 
= W) - i>l 2i ,Ui! 

Thus, we have 



W.Y.C. Chen, R.P. Stanley 

= I-I n( eYi l_e-Yi c Yf’ 
iZ1 i>l pi<ii pi! > 

=eY1+Y2+.- I-I (l-ziAi) 

i>l 

=e 
-(1/2)log(l-2.x) 

I-I C1 -ziAi) 
i>l 

Since Ziii = 0 for lli = 0, this completes the proof. 0 

By Propositions 3.1 and 3.5, we may explicitly give the generating functions I&(x) 
and Sk(x) for O<k<3: 

Sz(x)= 
1-( 1 +x)eeXmX2 

J1-2x ’ 

s3(x)=jl~zx 

[ 

1_e-x-4X3/3_ 

( 1 

x+: e-x-x2-4x”/3 1 , 

R,(x)= 
1+x-e-” 

JCz ’ 

R,(x)=~& 1 +x+~-Xemx--(l +X)e-x-xz [ 1 , 

_-(x+x2)e-x-x~_e-x-4x’/3_-(x+x2)e-x-x2-4x3/3 . 1 
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From the generating function R,(x), we may obtain the following formula for the 
number E, of edge rearrangements of Q.: 

E.=(2n-l)!!+n(2n-3)!!-2 (-1)“-k ; 
0 

(2k- l)!!. 
k=O 

Finally, we remark that when II goes to infinity, almost all symmetries of Q. are vertex 
derangements. It is also true that almost all symmetries of Qn are edge derangements 
while n+ co. What about k-dimensional derangements (for fixed k)? 

Acknowledgment 

We thank the referee for his helpful suggestions and for an alternative combina- 
torial proof of Corollary 2.4. 

References 

Cl1 
PI 
c31 

c41 

c51 

C61 

c71 

C81 

L. Geissinger and D. Kinch, Representations of the hyperoctahedral groups, J. Algebra 53 (1978) l-20. 

F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969). 

G. James and A. Kerber, The Representation Theory of the Symmetric Group (Addison-Wesley, 

Reading, MA, 1981). 

N. Metropolis and G.-C. Rota, On the lattice of faces of the n-cube, Bull. Amer. Math. Sot. 84 (1978) 

284286. 

N. Metropolis and Gian-Carlo Rota, Combinatorial structure of the faces of the n-cube, SIAM J. Appl. 

Math. 35 (1978) 689-694. 

J. Riordan, An Introduction to Combinatorial Analysis (Wiley, New York, 1958). 

R.P. Stanley, Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A 32 (1982) 
132-161. 

R.P. Stanley, Enumerative Combinatorics, Vol. 1 (Wadsworth, Monterey, 1986). 


