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1. Introduction
In all areas of mathematics, questions arise of the form “Given a description of a finite
set, what is its cardinality?” Enumerative combinatorics deals with questions of this
sort in which the sets to be counted have a fairly simple structure, and come in indexed
families, where the index set is most often the set of nonnegative integers. The two
branches of enumerative combinatorics discussed in this book are asymptotic enumeration
and algebraic enumeration. In asymptotic enumeration, the basic goal is an approximate
but simple formula which describes the order of growth of the cardinalities as a function of
their parameters. Algebraic enumeration deals with exact results, either explicit formulas
for the numbers in question, or more often, generating functions or recurrences from which
the numbers can be computed.

The two fundamental tools in enumeration are bijections and generating functions,
which we introduce in the next two sections. If there is a simple formula for the cardinality
of a set, we would like to find a “reason” for the existence of such a formula. For example,
if a set S has cardinality 2n, we may hope to prove this by finding a bijection between S
and the set of subsets of an n-element set. The method of generating functions has a long
history, but has often been regarded as an ad hoc device. One of the main themes of this
article is to explain how generating functions arise naturally in enumeration problems.

1 Partially supported by NSF Grant DMS-8902666
2 Partially supported by NSF Grant DMS-8401376

This paper will appear in the Handbook of Combinatorics, edited by Ronald Graham,
Martin Grötschel, and László Lovász, to be published by North-Holland.
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Further information and references on the topics discussed here may be found in the
books of Comtet (1972), Goulden and Jackson (1983), Riordan (1958), Stanley (1986), and
Stanton and White (1986).

2. Bijections
The method of bijections is really nothing more than the definition of cardinality: two sets
have the same number of elements if there is a bijection from one to the other. Thus if
we find a bijection between two sets, we have a proof that their cardinalities are equal;
and conversely, if we know that two sets have the same cardinality, we may hope to
find an explanation in the existence of an easily describable bijection between them. For
example, it is very easy to construct bijections between the following three sets: the
set of 0-1 sequences of length n, the set of subsets of [n] = {1, 2, . . . , n}, and the set
of compositions of n + 1. (A composition of an integer is an expression of that integer
as sum of positive integers. For example, the compositions of 3 are 1 + 1 + 1, 1 + 2,
2 + 1, and 3.) The composition a1 + a2 + · · · + ak of n + 1 corresponds to the subset
S = {a1, a1 +a2, . . . , a1 +a2 + · · ·+ak−1} of {1, 2, . . . , n} and to the 0-1 sequence u1u2 · · ·un
in which ui = 1 if and only if i ∈ S. Moreover, in our example, a composition with k parts
corresponds to a subset of cardinality k−1 and to a 0-1 sequence with k−1 ones and thus
there are

(
n
k−1

)
of each of these.

It is easy to give a bijective proof that the set of compositions of n with parts 1 and
2 is equinumerous with the set of compositions of n + 2 with all parts at least 2: given a
composition a1 +a2 + · · ·+ak of n+2 with all ai ≥ 2, we replace each ai with 2+1 + · · ·+ 1︸ ︷︷ ︸

ai−2

and then we remove the initial 2. If we let fn be the number of compositions of n with
parts 1 and 2, then fn is easily seen to satisfy the recurrence fn = fn−1 + fn−2 for n ≥ 2,
with the initial conditions f0 = 1 and f1 = 1. Thus fn is a Fibonacci number. (The
Fibonacci numbers are usually normalized by F0 = 0 and F1 = 1, we have fn = Fn+1.)

As another example, if π is a permutation of [n], then we can express π as a product of
cycles, where each cycle is of the form

(
i π(i) π2(i) · · · πs(i)

)
. We can also express π

as the linear arrangement of [n], π(1)π(2) · · ·π(n). Thus the set of cycles {(1 4), (2), (3 5)}
corresponds to the linear arrangement 4 2 5 1 3. So we have a bijection between sets of
cycles and linear arrangements.

This simple bijection turns out to be useful. We use it to give a proof, due to Joyal
(1981, p. 16), of Cayley’s formula for labeled trees. First note that the bijection implies that
for any finite set S the number of sets of cycles of elements of S (each element appearing
exactly once in some cycle) is equal to the number of linear arrangements of elements of S.

The number of functions from [n] to [n] is clearly nn. To each such function f we
may associate its functional digraph which has an arc from i to f(i) for each i in [n]. Now
every weakly connected component of a functional digraph (i.e., connected component of
the underlying undirected graph) can be represented by a cycle of rooted trees. So by the
correspondence just given, nn is also the number of linear arrangements of rooted trees on
[n]. We claim now that nn = n2tn, where tn is the number of trees on [n].

It is clear that n2tn is the number of triples (x, y, T ), where x, y ∈ [n] and T is a tree
on [n]. Given such a triple, we obtain a linear arrangement of rooted trees by removing all
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arcs on the unique path from x to y and taking the nodes on this path to be the roots of
the trees that remain. This correspondence is bijective, and thus tn = nn−2.

Prüfer (1918) gave a different bijection for Cayley’s formula, which is easier to describe
but harder to justify. Given a labeled tree on [n], let i1 be the least leaf (node of degree
1), and suppose that i1 is adjacent to j1. Now remove i1 from the tree and let i2 be the
least leaf of the new tree, and suppose that i2 is adjacent to j2. Repeat this procedure
until only two nodes are left. Then the original tree is uniquely determined by j1 · · · jn−2
and conversely any sequence j1 · · · jn−2 of elements of [n] is obtained from some tree. Thus
the number of trees is nn−2.

Both proofs of Cayley’s formula sketched above can be refined to count trees according
to the number of nodes of each degree, and thereby to prove the Lagrange inversion formula,
which we shall discuss in Section 6. (See Labelle (1981).)

There is another useful bijection between sets of cycles and linear arrangements which
we shall call Foata’s transformation (see, for example, Foata (1983)) that has interesting
properties. Given a permutation in cycle notation, we write each cycle with its least element
first, and then we arrange the cycles in decreasing order by their least elements. Thus in
our example above, we would have π = (35)(2)(14). Then we remove the parentheses to
obtain a new permutation whose 1-line notation is π̂ = 3 5 2 1 4.

If σ is a permutation of [n], then a left-right minimum (or lower record) of σ is an
index i such that σ(i) < σ(j) for all j < i. It is clear that i is a left-right minimum of π̂ if
and only if π̂(i) is the least element in its cycle in π. Thus we have the following:

(2.1) Theorem. The number of permutations of [n] with k left-right minima is equal to
the number of permutations of [n] with k cycles.

This number is (up to sign) a Stirling number of the first kind. We shall see them
again in Sections 3 and 9.

In Section 10 we shall need a variant of Foata’s transformation in which left-right
maxima are used instead of left-right minima.

3. Generating Functions
The basic idea of generating functions is the following: instead of finding the cardinality of
a set S, we assign to each α in S a weight w(α). Then the generating function G(S) for S
(with respect to the weighting function w) is

∑
α∈S w(α). Thus the concept of generating

function for a set is a generalization of the concept of cardinality. Note that S may be
infinite as long as the sum converges (often as a formal power series).

The weights may be elements of any abelian group, but they are usually monomials
in a ring of polynomials or power series. In a typical application each element α of S will
have a ‘length’ l(α) and we take the weight of α to be xl(α), where x is an indeterminate.
Then knowing the generating function

∑
α∈S x

l(α) is equivalent to knowing the number of
elements of S of each length.

Analogous to the product rule for cardinalities, |A||B| = |A×B|, is the product rule
for generating functions, G(A)G(B) = G(A × B), where we take the ‘product weight’ on
A×B, defined by w

(
(α, β)

)
= w(α)w(β).
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As an example, suppose we want to count sequences of zeros and ones of length n
according to the number of zeros they contain. We can identify the set of 0-1 sequences of
length n with the Cartesian product {0, 1}n. If we weight {0, 1} by w(0) = x and w(1) = y
then the product weight on {0, 1}n assigns to a sequence with j zeros and k (= n− j) ones
the weight xjyk. Thus

(x+ y)n =
∑
j+k=n

(
n

j

)
xjyk

is the generating function for sequences of zeros and ones of length n by the number of
zeros and the number of ones. If we want to count sequences of zeros and ones of all
lengths with this weighting, we sum on n to obtain the generating function

∞∑
j,k=0

(
j + k

j

)
xjyk =

1
1− x− y .

Now suppose we want to count compositions with parts 1 and 2. Rather than picking
an integer n and considering the compositions of n, we pick an integer k and consider the
set Ck of all compositions of any integer with exactly k parts (each part being 1 or 2). We
may identify Ck with {1, 2}k. If we assign 1 the weight x and 2 the weight x2, where x is
an indeterminate, then the product weight of a composition of n in Ck is xn. Thus

G(Ck) = G({1, 2}k) = G({1, 2})k = (x+ x2)k =
2k∑
n=k

(
k

n− k

)
xn.

Thus there are
(

k
n−k
)

compositions of n with k parts, each part 1 or 2. As before, if we don’t
care about the number of parts, we sum on k to obtain

∑∞
k=0(x+ x2)k = (1− x− x2)−1 as

the generating function for all partitions into parts 1 and 2. By the same kind of reasoning,
if A is any set of positive integers, then the generating function for compositions with k

parts, all in A, is
(∑

i∈A x
i
)k and the generating function for compositions with any number

of parts, all in A, is
(
1−

∑
i∈A x

i
)−1. In particular, if A is the set of positive integers then∑

i∈A x
i = x/(1− x) so the generating function for compositions with k parts is(

x

1− x

)k
=

∞∑
n=k

(
n− 1
k − 1

)
xn

for k > 0 and the generating function for all compositions is(
1− x

1− x

)−1

=
1− x
1− 2x

= 1 +
x

1− 2x
= 1 +

∞∑
n=1

2n−1xn.

The generating function for compositions with parts greater than 1 is(
1− x2

1− x

)−1

=
1− x

1− x− x2 = 1 +
x2

1− x− x2 = 1 +
∞∑
n=1

Fn−1x
n.
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Similarly, the generating function for compositions with odd parts is(
1− x

1− x2

)−1

= 1 +
x

1− x− x2 = 1 +
∞∑
n=1

Fnx
n.

Thus we have proved using generating functions two of the results we proved using bi-
jections in the preceding section. Notice that the generating functions take into account
initial cases which did not arise in the bijective approach.

For our next two examples, we consider another bijection for permutations. Suppose
that π is a permutation of [n]. We associate to π a sequence a1a2 · · · an of integers satisfying
0 ≤ aj ≤ j−1 for each j as follows: aj is the number of indices i < j for which π(i) > π(j).
The sequence a1a2 · · · an is called the inversion table of π: an inversion of π is a pair (i, j)
with i < j and π(i) > π(j), and thus aj is the number of inversions of π of the form
(i, j). It is not difficult to show that the correspondence between permutations and their
inversion tables gives a bijection between the set Sn of permutations of [n] and the set Tn
of sequences a1a2 · · · an of integers satisfying 0 ≤ aj ≤ j− 1 for each j. Note that Tn is the
Cartesian product {0} × {0, 1} × · · · × {0, 1, · · · , n − 1}. We shall use the inversion table
to count permutations by inversions and also by cycles.

Let I(π) be the number of inversions of π. We would like to find the generating function
G(Sn) for permutations of [n] where each permutation π is assigned the weight qI(π). To
do this we note that I(π) is the sum of the entries of the inversion table of π, and thus if
we assign the weight w(a) = qa1+···+an to a = a1a2 · · · an ∈ Tn, then we have

G(Sn) = G(Tn) = 1 · (1 + q) · · · (1 + q + · · ·+ qn−1).

Next we count permutations by left-right minima. It is clear that j is a left-right
minimum of π if and only if aj = j − 1. Thus if we assign the weight tk to a permutation
in Sn with k left-right minima, and to a sequence in Tn with k occurrences of aj = j − 1,
then we have

G(Sn) = G(Tn) = t(t+ 1)(t+ 2) · · · (t+ n− 1) =
n∑
k=0

c(n, k)tk,

where c(n, k) is (by definition) the unsigned Stirling number of the first kind. By Theorem
2.1, it follows that c(n, k) is also the number of permutations in Sn with k cycles.

4. Free Monoids
Free monoids provide a useful way of organizing many simple applications of generating

functions. Let A be a set of “letters.” The free monoid A∗ is the set of all finite sequences
(including the empty sequence) of elements of A, usually called words, with the operation
of concatenation. We can construct an algebra from A∗ by taking formal sums of elements
of A∗ with coefficients in some ring. We write 1 for the empty sequence, which is the
unit of this algebra. These formal sums are then formal power series in noncommuting
variables. The generating function G(S) for a subset S of A∗ is the sum of its elements.
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If S and T are subsets of A∗, we write ST for the set {st | s ∈ S and t ∈ T}. We
say that the product ST is unique if every element of ST has only one such factorization.
The fundamental fact about generating functions is that if the product ST is unique, then
G(ST ) = G(S)G(T ).

More generally, we may define a free monoid to be a set together with an associative
binary operation which is isomorphic to a free monoid as defined above. Let A+ = A∗ \{1}
and suppose that S is a subset of A+ such that for each k, every element of Sk has a
unique factorization s1s2 · · · sk with each si in S. Such a set S is sometimes called a
uniquely decodable code, or simply a code. Then S∗ =

⋃∞
i=0 S

i is a free monoid. We call
the elements of S the primes of the free monoid S∗. In this case

G(S∗) =
∞∑
i=0

G(S)i =
(
1− G(S)

)−1
.

In particular, G(A∗) =
(
1− G(A)

)−1.
Among the simplest free monoid problems are those dealing with compositions of

integers, as we saw in the previous section. A composition of an integer is simply an
element of the free monoid P∗, where P is the set of positive integers.

As a more interesting example, let A = {X,Y }, let S be the subset of A∗ consisting
of words with equal numbers of X’s and Y ’s, and let T be the subset of A∗ of words with
no nonempty initial segment in S. Then A∗ = ST uniquely, so G(A∗) = (1−X − Y )−1 =
G(S)G(T ). Moreover, S is a free monoid U ∗, where U is the set of words in S which cannot
be factored nontrivially in S. The sets S, T , and U have simple interpretations in terms
of walks in the plane, starting at the origin. If X and Y are represented by unit steps in
the x and y directions, then S corresponds to walks which end on the main diagonal, T
corresponds to walks that never return to the main diagonal, and U corresponds to walks
that return to the main diagonal only at the end.

It is often useful to replace the noncommuting variables by commuting variables. If
we replace the letter X by the variable x, we are assigning X the weight x. (More formally,
we are applying a homomorphism in which the image of X is x.)

In our example, if we weight X and Y by commuting variables x and y, then G(A∗)
becomes 1/(1 − x − y) and G(S) becomes

∑∞
n=0

(2n
n

)
xnyn = (1 − 4xy)−1/2 since there are(2n

n

)
ways of arranging n X’s and n Y ’s. Thus G(T ) becomes

√
1− 4xy/(1−x− y). It can

be shown that this is equal to

(4.1)
∞∑

m,n=0

|m− n|
m+ n

(
m+ n

n

)
xmyn,

where the constant term is 1. The coefficients in (4.1) are called ballot numbers and we
shall see them again in Section 6.

If we replace x and y by the same variable z, the generating function for T becomes
√

1− 4z2

1− 2z
=

1 + 2z√
1− 4z2

.
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Thus the number of words in T of length 2n is
(2n
n

)
and the number of words in T of length

2n+ 1 is 2
(2n
n

)
.

Although we usually work with formal power series, it is sometimes useful for variables
to take on real values. We derive an inequality called McMillan’s inequality which is useful
in information theory. (See McMillan (1956).) Let A be an alphabet (set of letters) of size
r, and let S be a code in A∗, so that S∗ is a free monoid. Let us weight each letter of A
by t, and let G(S) = p(t).

We know that G(S∗) =
(
1−p(t)

)−1 as formal power series in t. Since there are rk words

in A∗ of length k, the coefficient of tk in
(
1−p(t)

)−1 is at most rk. If 0 < α < 1/r then the

series
∑∞

k=0 r
kαk converges absolutely to (1− rα)−1, and thus

(
1− p(α)

)−1 ≤ (1− rα)−1,
which implies p(α) ≤ rα. Taking the limit as α approaches 1/r from below, we obtain
p(1/r) ≤ 1.

Thus we have proved the following:

(4.2) Theorem. Let S be a uniquely decodable code in an alphabet of size r, and for

each k let pk be the number of words in S of length k. Then
∑∞

k=1 pkr
−k ≤ 1.

In some applications of free monoids, the ‘letters’ have some internal structure. For
example, consider the set of permutations π of [n] = {1, 2, . . . n} satisfying |π(i)− i| ≤ 1.
We can represent a permutation of [n] as a digraph with node set [n] with an arc from i to
π(i) for each i. If we draw the digraph with the nodes in increasing order, we get a picture
like this one, which corresponds to the permutation 2 1 4 3 5 7 6:

It is clear that these permutations form a free monoid with the two ‘letters,’ or primes

and

Thus the generating function (by length) for these permutations is (1 − x − x2)−1, and
there is an obvious bijection between these permutations and compositions with parts 1
and 2.

Sometimes it is easier to count all the elements of a free monoid than just the primes.
If we represent arbitrary permutations as in the previous example, then we have a free
monoid in which the primes, called indecomposable permutations, are those permutations
π of [n] (for some n) such that for 1 ≤ i < n, π restricted to [i] is not a permutation of [i].
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For example, 4 2 1 3 is indecomposable:

but 2 1 5 3 4 is not:

Thus if g(x) is the generating function for indecomposable permutations, we have
∞∑
n=0

n!xn =
(
1− g(x)

)−1
,

so

g(x) = 1−
( ∞∑
n=0

n!xn
)−1

,

as shown by Comtet (1972).

5. Circular words
We now study some properties of words in which the letters are thought of as arranged
in a circle, so that the last letter is considered to be followed by the first. (This should
not be confused with the problem of counting equivalence classes of words under cyclic
permutation, which we discuss in Section 14.)

We define the cyclic shift operator C on words by

C a1a2 · · · ak = a2a3 · · · aka1.

A conjugate or cyclic permutation of a word w is a word of the form Cmw for some m. If
S is a set of words, then we define S◦ to be the set of all conjugates of words in S.

Suppose that S∗ is a free submonoid of the free monoid A∗, and let w = s1s2 · · · sk be
an element of Sk, where each si is in S. It is clear that Ciw ∈ Sk whenever i takes on any
of the k values 0, l(s1), l(s1s2), . . . , l(s1s2 · · · sk−1), where l(v) denotes the length of the
word v. If these are the only values of i, with 0 ≤ i < l(w), for which Ciw ∈ S∗, then we
call S∗ cyclically free1. For example, {ab, b}∗ is cyclically free, but {aa}∗ is not.

If S∗ is cyclically free then it is clear that for w ∈ (Sk)◦, there are exactly k values of
i, with 0 ≤ i < l(w), for which Ciw ∈ Sk.

1 In the theory of codes, S is called a circular code and S∗ is called a very pure free
monoid. See, for example, Berstel and Perrin (1983).
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(5.1) Theorem. Suppose that S∗ is cyclically free and let Q = Sk ∩ An. Then k|Q◦| =
n|Q|.
Proof. We count pairs (i, w), where Ciw ∈ Q and 0 ≤ i < n. First we may choose Ciw in
|Q| ways. Then w is determined by i, which may be chosen arbitrarily in {0, 1, · · · , n− 1}.
Thus there are n|Q| pairs. On the other hand, we may choose w first as an arbitrary
element of Q◦ and by the remark above, there are k choices for i.

In the next section we shall use a weighted version of Theorem (5.1) which is proved
exactly the same way.

From Theorem (5.1) we can easily derive a generating function for (S∗)◦:

(5.2) Corollary. Suppose that S∗ is cyclically free and let g(z) =
∑

w∈S z
l(w). Then

∞∑
n,k=1

|(Sk)◦ ∩An|tkzn =
tzg′(z)

1− tg(z)
.

Equivalently,
∞∑

n,k=1

|(Sk)◦ ∩An|tk z
n

n
= log

1
1− tg(z)

.

We can use Theorem (5.1) to count the number of k-subsets of [n] with no two con-
secutive elements, where 1 and n are considered consecutive. We take S = {ab, b}. The
subsets we want correspond to words in

(
Sn−k ∩ {a, b}n

)◦. These words contain n letters,
of which n− k are b’s, and hence k are a’s. The positions of the a’s in one of these words
determines the subset. S∗ is clearly cyclically free, so by Theorem (5.1), the number of
such subsets is n

n−k
(
n−k
k

)
.

Our next example will be useful in proving the Lagrange inversion formula in the next
section. Let φ be any function from A to the real numbers. Extend φ to all of A∗ by
defining φ(a1a2 · · · ak) = φ(a1) + · · ·+ φ(ak). Define R by

(5.3) R = {w | if w = uv with u 6= 1 then φ(u) < 0 }.

It is easily verified that R is a cyclically free submonoid of A∗.
The following description of R◦ is the key step in our proof of the Lagrange inversion

formula in the next section:

(5.4) Lemma. Let R and φ be as above. Then R◦ = {1} ∪ {w | φ(w) < 0 }.
Proof. We need only show that if φ(w) < 0 then for some i, then Ciw ∈ R. Of the heads
(initial segments) h of w which maximize φ(h), let u be the longest, and let w = uv. Then
vu is easily verified to be in R.

6. Lagrange inversion
In the last example, let A = {x−1, x0, x1, x2, · · ·} and define φ : A∗ → Z by

φ(xi1 · · ·xim) = i1 + · · ·+ im.
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Let R be as in (5.3) and let S = {w | w ∈ R and φ(w) = −1. }. We claim that R = S∗.
Since we know that R is a free monoid, we need only show that if w is a prime of R then
φ(w) = −1.

To see this, let w be a prime of R. Since φ(w) < 0 and φ(xi) ≥ −1 for each xi ∈ A,
w must have a head h with φ(h) = −1. Let w = uv, where u is the longest head of w for
which φ(u) = −1. Then v must be in R, since otherwise w would have a longer head h
with φ(h) ≥ −1. Since w is a prime of R, this means w = u. It follows that if v is any
word in R with φ(v) = −k then v ∈ Sk.

Now let v be any word in S and suppose v = uxi. Then u is in R with φ(u) + i = −1,
so φ(u) = −1− i, and thus u ∈ Si+1. It follows that

(6.1) S =
∞⋃

i=−1

Si+1xi,

where the union is disjoint. We are now ready to prove the Lagrange inversion formula.
We use the notation [xn]F (x) to denote the coefficient of xn in F (x).

(6.2) Theorem. Let g(u) =
∑∞

n=0 gnu
n, where the gn are indeterminates. Then there is

a unique formal power series f in the gn satisfying f = g(f), and for k > 0,

(6.3) fk =
∞∑
n=1

k

n
[un−k]g(u)n.

Proof. It is easily seen that the equation f = g(f) has a unique solution. Let us assign to
the letter xi the weight gi+1 and let f be the image of G(S) under this assignment. Then
from (6.1) we have

f =
∞∑

i=−1

fi+1gi+1 = g(f).

By the weighted version of Theorem (5.1), the sum of the weights of the words of length
n in Sk is k/n times the sum of the weights of the words in (Sk ∩ An)◦. But by Lemma
(5.4), the sum of the weights of the words in (Sk ∩An)◦ is

[u−k]
(
g(u)
u

)n
= [un−k]g(u)n.

The proof we have just given is essentially that of Raney (1960). It is clear that if
the gi are assigned values that are not necessarily indeterminates, then the theorem still
holds as long as the sum in (6.3) converges as a formal power series and f is uniquely
determined as a formal power series by f = g(f). The usual formulation of Lagrange
inversion is obtained by taking g(u) = z

∑∞
n=0 rnu

n, where z is an indeterminate and the
rn are arbitrary.
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One of the most important applications of Lagrange inversion is to the enumeration
of ordered trees. (An ordered tree is a rooted unlabeled tree in which the children of any
node are linearly ordered.) Let us weight a node with i children in an ordered tree by
gi, and weight the tree by the product of the weights of its nodes. If f is the sum of the
weights of all ordered trees, then since an ordered tree consists of a root together with
some number (possibly zero) of children, each of which may be an arbitrary ordered tree,
we have

f =
∞∑
i=0

gif
i = g

(
f
)
,

where g(u) =
∑∞

i=0 giu
i. The Lagrange inversion formula then yields the following:

(6.4) Theorem. The number of k-tuples of ordered trees in which a total of ni nodes
have i children is

k

n

(
n

n0, n1, n2, · · ·

)
, where n =

∑
i ni,

if n1 + 2n2 + 3n3 · · · = n− k, and 0 otherwise.

It is not hard to derive Theorem (6.2) from Theorem (6.4), so any other proof of
Theorem (6.4) (for example, by induction), yields a proof of the Lagrange inversion formula.
Our approach can also be used to give a purely combinatorial proof of (6.4) without the
use of generating functions.

A few special cases of Theorems (6.2) and (6.4) are especially important. If there are
a nodes with 2 children, b nodes with no children, and no other nodes, then with b = a+k
the number of k-tuples of such trees is

k

n

(
n

a

)
=

k

2a+ k

(
2a+ k

a

)
.

These numbers are called ballot numbers. The special case k = 1 gives the Catalan numbers

1
2a+ 1

(
2a+ 1
a

)
=

1
a+ 1

(
2a
a

)
.

To apply (6.2) directly to this case, we may take g0 = 1, g2 = x, and gi = 0 for i 6= 0, 2.
Then f satisfies f = 1 + xf 2, so f =

(
1−
√

1− 4x
)
/2x, and we obtain

(
1−
√

1− 4x
2x

)k
=

∞∑
a=0

k

2a+ k

(
2a+ k

a

)
xa.

To count all ordered trees we set gi = x for all i, to obtain the equation f(x) =
x/
(
1− f(x)

)
, with the solution

f(x)k =
(

1−
√

1− 4x
2

)k
=

∞∑
n=0

k

n

(
2n− k − 1
n− k

)
xn =

∞∑
n=0

k

2n+ k

(
2n+ k

n

)
xn+k,
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so we again obtain the Catalan and ballot numbers. It is an instructive exercise to find a
bijection between these classes of trees, and to relate these results to formula (4.1).

Our analysis gives a well-known bijection between ordered trees and words in S. The
code c(t) for a tree T may be defined as follows: If the root of T has no children, then
c(T ) = x−1. Otherwise, if the children of the root of T are (in order) the roots of trees T1,
T2, . . . , Tk, then

c(T ) = c(T1) · · · c(Tk)xk−1.

For another example, we define a binary tree to be a rooted tree in which every node
has a left child, a right child, neither, or both. Thus

and

are different binary trees. Let us weight a binary tree with n nodes, i left children, and j
right children by xnLiRj . Then if f is the generating function for these trees, we have

f = x(1 + Lf)(1 +Rf),

and thus by Lagrange inversion we have

fk =
∞∑
n=k

n−k∑
i=0

k

n

(
n

i

)(
n

i+ k

)
LiRn−k−ixn.

For k = 1, the numbers
1
n

(
n

i

)(
n

i+ 1

)
are called Runyon numbers or Narayana numbers.

7. The transfer matrix method
Many enumeration problems can be transformed into problems of counting walks in di-
graphs, which can be solved by the transfer matrix method. Suppose D is a finite digraph.
To every arc of D we associate a weight. Let M be the matrix in which rows and columns
are indexed by the nodes of D and the (i, j) entry of M is the sum of the weights of the
arcs from i to j. Then by the definition of matrix multiplication, the (i, j) entry in Mk is
the sum of the weights of all walks of k arcs from i to j. It follows that (as long as the
infinite sums exist)

∑∞
k=0 M

k = (I−M)−1 counts all walks, where I is the identity matrix,
and trace (I −M)−1 counts walks that end where they begin.

For example, consider the following problem: Given integers n and i, what is the
number t(n, i) of sequences a1a2 · · · an of 0’s, 1’s, and −1’s with a1 + · · ·+an ≡ i (mod 6)?
Here we take D to be the digraph with node set {0, 1, 2, 3, 4, 5} and an arc from each j to
j − 1, j, and j + 1, reduced modulo 6. We weight each arc by x. So M is

x x 0 0 0 x
x x x 0 0 0
0 x x x 0 0
0 0 x x x 0
0 0 0 x x x
x 0 0 0 x x

 .
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x1 1

x 1 0

x0 0

x 0 1

0 1

We find that (I −M)−1 is the circulant matrix with first column

1
6



1
1− 3x

+
2

1− 2x
+

1
1 + x

+ 2
1

1− 3x
+

1
1− 2x

− 1
1 + x

− 1
1

1− 3x
− 1

1− 2x
+

1
1 + x

− 1
1

1− 3x
− 2

1− 2x
− 1

1 + x
+ 2

1
1− 3x

− 1
1− 2x

+
1

1 + x
− 1

1
1− 3x

+
1

1− 2x
− 1

1 + x
− 1


Thus for n > 0,

t(n, 0) = (3n + 2n+1 + (−1)n)/6

t(n, 1) = t(n, 5) = (3n + 2n − (−1)n)/6

t(n, 2) = t(n, 4) = (3n − 2n + (−1)n)/6

t(n, 3) = (3n − 2n+1 − (−1)n)/6.

As another example, how many 0-1 sequences are there with specified numbers of
occurrences of 00, 01, 10, and 11? Here we take D to be the weighted digraph

Then

(I −M)−1 =
(

1− x00 −x01
−x10 1− x11

)−1

=

(
1− x11 x01
x10 1− x00

)
(1− x00)(1− x11)− x01x10

.

Thus, for example, the generating function for 0-1 sequences beginning with 0 and ending
with 1 is

x01

(1− x00)(1− x11)− x01x10
=

∞∑
i=0

xi+1
01 x

i
10

(1− x00)i+1(1− x11)i+1

=
∑
i,j,k

xi+1
01 x

i
10x

j
00x

k
11

(
i+ j

j

)(
i+ k

k

)
.
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so
(
i+j
j

)(
i+k
k

)
is the number of 0-1 sequences beginning with 0 and ending with 1, with i

occurrences of 10 (and thus i+1 occurrences of 01), j occurrences of 00, and k occurrences
of 11 (and thus i+ j + 1 zeros and i+ k + 1 ones).

The transfer matrix method can often be used to show that a generating function is
rational. For example, consider the problem of counting the number of ways of covering
an m × n rectangle with a fixed finite set of polyominos. It is not hard to show, using
the transfer matrix method, that for fixed m the generating function on n is rational,
although it is difficult to give an explicit formula. We will see another example of this type
in Section 10.

8. Multisets and partitions
We have so far considered problems involving linear arrangements. In this and the next
section we turn to unordered collections. We first consider the problem of counting mul-
tisets, which are sets with repeated elements allowed. More formally, a multiset on a set
S is a function from S to the nonnegative integers; if ν is a multiset then ν(s) represents
the multiplicity of s. If each element s in S has a weight w(s), then we define the weight
of the multiset ν to be

∏
s∈S w(s)ν(s).

For each s in S, let Ms be a set of positive integers. Then the sum of the weights of
all multisets ν on S such that ν(s) is in Ms for each s in S is easily seen to be∏

s∈S

∑
i∈Ms

w(s)i.

We give a few examples. Let us take w(s) = x for all s in S, and assume |S| = n. If
Ms = {0, 1} for each s, we are counting subsets, and the generating function is

(1 + x)n =
n∑
k=0

(
n

k

)
xk.

If Ms is the set of all nonnegative integers for each s, we are counting unrestricted multisets,
and the generating function is

(1 + x+ x2 + · · ·)n = (1− x)−n =
∞∑
k=0

(
n+ k − 1

k

)
xk.

If Ms = {0, 1, . . . ,m} for each s, the generating function is

(1 + x+ · · ·+ xm)n =
(

1− xm+1

1− x

)n
=

∞∑
k=0

xk
∑
i

(−1)i
(
n

i

)(
n+ k − (m+ 1)i− 1

k − (m+ 1)i

)
.

A multiset of positive integers with sum k is called a partition of k. The elements of
a partition are called its parts. It is customary to list the parts of a partition in decreasing
order, so a partition of k is often defined as a (weakly) decreasing sequence of positive

14



integers with sum k. To count partitions, we weight i by qi, where q is an indeterminate.
Then the generating function for all partitions is

∏∞
i=1(1−qi)−1 and the generating function

for partitions with distinct parts is
∏∞

i=1(1 + qi).
Many theorems in the theory of partitions assert that one set of partitions is equinu-

merous with another. The simplest of these, due to Euler, is that the number of partitions
of n with odd parts is equal to the number of partitions of n with distinct parts. To prove
this, we note that the generating function for partitions with odd parts is

∏
i odd

(1− qi)−1 =
∞∏
i=1

(1− qi)−1
∞∏
j=1

(1− q2j)

=
∞∏
i=1

1− q2i

1− qi =
∞∏
i=1

(1 + qi),

which is the generating function for partitions with distinct parts.
It is not difficult to give a combinatorial proof of this result: Suppose π is a partition

with odd parts. If π contains the odd part i with multiplicity k, let k = 2e1 + 2e2 +
· · · + 2es , where 0 ≤ e1 < e2 < · · · < es. We now replace the k copies of part i by the
distinct parts 2e1i, 2e2i, . . . , 2es i. Doing this to every part of π we obtain a partition π′

with distinct parts. The correspondence is easily seen to be a bijection. For example, if
π = {9, 9, 7, 7, 7, 1, 1, 1, 1}, then π′ = {18, 14, 7, 4}.

One of the most famous results in the theory of partitions is the following:

(8.1) Theorem. The number of partitions of n with distinct parts in which any two parts
differ by at least 2 is equal to the number of partitions of n with parts congruent to 1 or 4
(mod 5).

This result follows easily from the Rogers-Ramanujan identity

∞∑
i=0

qi
2

(1− q)(1− q2) · · · (1− qi) =
∞∏
j=0

1
(1− q5j+1)(1− q5j+4)

.

No simple bijective proof of (8.1) is known. A complicated bijective proof was found by
Garsia and Milne (1981).

We now prove an identity called the q-binomial theorem, which has many applications
to partitions. We introduce the notation (a)n for (1 − a)(1 − aq) · · · (1 − aqn−1), where q
is understood. In particular, (q)n = (1 − q)(1 − q2) · · · (1 − qn). We also write (a)∞ for∏∞

i=0(1− aqi).

(8.2) Theorem. (The q-binomial theorem.)

∞∑
n=0

(a)n
(q)n

tn =
(at)∞
(t)∞

.

15



Proof. Let
(at)∞
(t)∞

=
∞∑
n=0

fnt
n.

Then
(at)∞
(tq)∞

= (1− t) (at)∞
(t)∞

= (1− t)
∞∑
n=0

fnt
n.

But also,
(at)∞
(tq)∞

= (1− at) (atq)∞
(tq)∞

= (1− at)
∞∑
n=0

fnq
ntn.

Equating coefficients of tn, we have

fn − fn−1 = qnfn − aqn−1fn−1, n ≥ 1,

and thus fn(1− qn) = fn−1(1− aqn−1). Since f0 = 1, this gives

fn =
n∏
i=1

1− aqi−1

1− qi =
(a)n
(q)n

.

Two cases are particularly worth noting. If a = qm, where m is a positive integer,
then we have

(8.3)
∞∑
n=0

(qm)n
(q)n

tn =
1

(t)m
.

The q-binomial coefficient is defined to be[
n

k

]
=

(q)n
(q)k(q)n−k

.

Since (qm)n = (q)m+n−1/(q)m−1, we may rewrite (8.3) as

(8.4)
∞∑
n=0

[
m+ n− 1

n

]
tn =

1
(1− t)(1− tq) · · · (1− tqm−1)

.

It follows from (8.4) that
[
n
k

]
is a polynomial in q that reduces to the binomial coefficient(

n
k

)
for q = 1.
We can use (8.4) to count partitions with at most n parts, each part at most m. It is

clear that the desired generating function is the coefficient of tn in

1
(1− t)(1− tq) · · · (1− tqm)

=
1

(t)m+1
,
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and by (8.4) this is
[
m+n
n

]
.

The case a = q−m of the q-binomial theorem yields similarly (after changing q to q−1

and t to −t/q)

(8.5)
m∑
n=0

tnq(
n
2)
[
m

n

]
= (1 + t)(1 + tq) · · · (1 + tqm−1),

which implies that the generating function for partitions with n distinct parts, all less
than m, where 0 is allowed as a part, is q(

n
2)
[
m
n

]
. This result may be derived directly from

our previous generating function for partitions with repeated parts allowed, since every
partition with distinct parts is obtained uniquely from an unrestricted partition by adding
0 to the smallest part, 1 to the next smallest, and so on.

There is an important interpretation for q-binomial coefficients in terms of vector
spaces over finite fields. (See, for example, Stanley (1986), p. 28, for the proof.)

(8.6) Theorem. Let q be a prime power. Then the number of k-dimensional subspaces

of an n-dimensional vector space over a field with q elements is
[
n
k

]
.

A comprehensive reference on the theory of partitions is Andrews (1976).

9. Exponential generating functions
If a0, a1, . . . is a sequence of numbers, the power series

∞∑
n=0

an
xn

n!

is called the exponential generating function for the sequence. Exponential generating
functions arise in counting ‘labeled objects.’ Their usefulness comes from the fact that

xm

m!
xn

n!
=
(
m+ n

m

)
xm+n

(m+ n)!
.

If A is an object with label set [m] and B is an object with label set [n], we can combine
them in

(
m+n
m

)
ways to get an object (A′, B′) with label set [m+n]: We first choose an m-

element subset S of [m+n] and replace the labels of A with the elements of S (preserving
their order) to get A′, and in the same way we get B′ from B and [m+ n] \ S.

Thus if f(x) and g(x) are exponential generating functions for classes of labeled ob-
jects, then their product f(x)g(x) will be the exponential generating function for ordered
pairs of these objects. For example, the exponential generating function for nonempty sets
is

ex − 1 =
∞∑
n=1

xn

n!
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since the elements of [n] can be arranged as a nonempty set in one way if n > 0 and in no
ways if n = 0. Thus

(ex − 1)2 =
∞∑
n=2

(2n − 2)
xn

n!

is the exponential generating function for ordered partitions of a set into two nonempty
blocks. More generally, (ex − 1)k is the exponential generating function for ordered parti-
tions of a set into k nonempty blocks, and

∞∑
k=0

(ex − 1)k =
1

2− ex

is the exponential generating function for all ordered partitions of a set.
Now suppose that f(x) is the exponential generating function for a class of labeled

objects and that f(0) = 0. As we have seen, f(x)k is the exponential generating function
for k-tuples of these objects. Every k-set can be arranged into a k-tuple in k! ways, so
f(x)k/k! is the exponential generating function for k-sets of these objects.

Thus, for example, (ex − 1)k/k! is the exponential generating function for partitions
of a set into k blocks. The numbers S(n, k) defined by

(9.1)
(ex − 1)k

k!
=

∞∑
n=0

S(n, k)
xn

n!

are called Stirling numbers of the second kind. If we sum on k we obtain the exponential
generating function exp(ex − 1) for all partitions of a set. The coefficients Bn defined by

∞∑
n=0

Bn
xn

n!
= ee

x−1

are called Bell numbers.
In general ef(x) counts sets of labeled objects each counted by f(x). Another important

application of this principle (often called the ‘exponential formula’) is to the enumeration
of permutations by cycle structure. A permutation may be considered as a set of cycles. If
we weight a cycle of length i by ui and weight a permutation by the product of the weights
of its cycles, then the exponential generating function for cycles is

∞∑
n=1

(n− 1)!un
xn

n!
=

∞∑
n=1

un
xn

n
,

and thus the exponential generating function for permutations by cycle structure is

exp(
∞∑
n=1

unx
n/n).
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If we set un = u for all n, then we are counting permutations by the number of cycles, and
we obtain the generating function for the (unsigned) Stirling numbers of the first kind,

(1− x)−u =
∞∑
n=0

u(u+ 1) · · · (u+ n− 1)
xn

n!
=

∞∑
n=0

xn

n!

n∑
k=0

c(n, k)uk,

which we derived in a different way in Section 3.
In some cases, there is a simpler expression for ef(x) than for f(x). For example,

any labeled graph is a set of connected labeled graphs. Thus if g(x) is the exponential
generating function for connected labeled graphs, then eg(x) is the exponential generating
function for all labeled graphs. But there are 2(n2) labeled graphs on [n], so

g(x) = log

( ∞∑
n=0

2(n2)x
n

n!

)
.

Exponential generating functions often satisfy simple differential equations which can
be explained combinatorially. If

f(x) =
∞∑
n=0

fn
xn

n!

then

f ′(x) =
∞∑
n=0

fn+1
xn

n!
,

so an object counted by f ′(x) with label set [n] is the same as an object counted by f(x)
with label set [n+ 1]. For example, let

f(x) =
∞∑
n=0

n!
xn

n!
=

1
1− x

be the exponential generating function for permutations (considered as linear arrangements
of numbers). Then f ′(x) counts permutations of [n+ 1] in which only the numbers in [n]
are considered to be labels. We can consider n + 1 to be a ‘marker’ that separates the
original permutation into a pair of permutations on [n], and we obtain the differential
equation f ′(x) = f(x)2. This decomposition can be used to obtain more information
about permutations, as we shall see next.

A descent of the permutation a1a2 · · · an is an i for which ai > ai+1. It is convenient
to count n as a descent also, if n > 0. Let

A(x) =
∞∑
n=0

An(t)
xn

n!

be the exponential generating function for permutations by descents, where a permutation
with k descents is weighted tk. If we take a permutation π = a1a2 · · · an+1 on [n + 1]
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and remove the element n + 1, we are left with two permutations, π1 = a1a2 · · · aj−1 and
π2 = aj+1 · · · an+1, where aj = n+1. The number of descents of π is the sum of the number
of descents of π1 and π2 unless π1 is empty, when π has an additional descent. Thus we
obtain the differential equation

A′(x) =
(
A(x)− 1

)
A(x) + tA(x),

together with the initial condition A(0) = 1. The differential equation is easily solved by
separation of variables, yielding

A(x) =
1− t

1− te(1−t)x

The polynomials An(t) are called Eulerian polynomials and their coefficients are called
Eulerian numbers.

As another example, let us define an up-down permutation to be a permutation
a1a2 · · · an satisfying a1 < a2 > a3 < a4 · · · ><an. Let Dn be the number of up-down
permutations of [n] and let

T (x) =
∞∑
n=0

D2n+1
x2n+1

(2n+ 1)!
.

Removing 2n+1 from an up-down permutation of [2n+1] for n ≥ 1 leaves a pair of up-down
permutations of odd length. Taking into account the exceptional case n = 0, we obtain the
differential equation T ′(x) = T (x)2 + 1, with the initial condition T (0) = 0. Solving the
differential equation yields T (x) = tanx. The numbers D2n+1 are called tangent numbers.

For the generating function

S(x) =
∞∑
n=0

D2n
x2n

(2n)!
,

a similar analysis yields the differential equation S ′(x) = T (x)S(x), with the initial con-
dition S(0) = 1, which has the solution S(x) = secx. The numbers D2n are called secant
numbers. We will show that S(x) = secx by a different method in Section 11.

Another application of exponential generating functions is to the enumeration of la-
beled rooted trees. Since a rooted tree can be represented as a root together with a set of
subtrees, the exponential generating function t(x) for rooted trees satisfies

t(x) = xet(x).

We can solve this equation by the Lagrange inversion formula, and we obtain

t(x)k

k!
=

∞∑
n=k

nn−k
(
n− 1
k − 1

)
xn

n!
,
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which for k = 1 gives a formula equivalent to Cayley’s.

10. Permutations with restricted position
In this and the next several sections we discuss methods for dealing with formulas that
involve subtraction. One way to deal with such formulas is to replace them with equivalent
formulas having only positive terms. The example we give here is based on the fact that the
formula

∑
k Akt

k =
∑

k Bk(t− 1)k is equivalent to the formula
∑

k Ak(t+ 1)k =
∑

k Bkt
k.

(10.1) Theorem. Let R be a subset of [n]× [n]. For any permutation π of [n], let r(π)
be the number of values of i ∈ [n] for which

(
i, π(i)

)
∈ R. Let

a(t) =
n∑
k=0

akt
k =

∑
π∈Sn

tr(π),

where Sn is the set of permutations of [n]. Let bk be the number of k-subsets of R in which
no two pairs agree in either coordinate. Then

a(t) =
n∑
k=0

bk(n− k)! (t− 1)k.

In particular,

a0 = a(0) =
n∑
k=0

bk(n− k)! (−1)k.

Proof. We prove that

a(t+ 1) =
n∑
k=0

bk(n− k)! tk

by counting in two ways pairs (π,Q), in which π ∈ Sn and Q ⊆ G(π) ∩ R, where G(π) =
{
(
i, π(i)

)
| i ∈ [n] }. We weight such a pair by t|Q|.

First, we have∑
(π,Q)

t|Q| =
∑
π

∑
Q⊆G(π)∩R

t|Q| =
∑
π

(t+ 1)|G(π)∩R| = a(t+ 1).

Second, we have ∑
(π,Q)

t|Q| =
∑
Q⊆R

∣∣{π | G(π) ⊇ Q }
∣∣t|Q|.

If G(π) ⊇ Q then Q does not contain two ordered pairs which agree in either coordinate,
and if this condition is satisfied, Q can be expanded to the graph of a permutation in
(n− |Q|)! ways. Thus the sum is equal to

∑n
k=0 bk(n− k)! tk.
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Theorem 10.1 is often proved by inclusion-exclusion, which we discuss in Section 12.
See, for example, Riordan (1958), chapters 7 and 8.

For our first example, let R = { (i, i) | i ∈ [n] }. Then a(t) counts permutations by
fixed points. Here b(k) =

(
n
k

)
, so

a(t) = n!
n∑
k=0

(t− 1)k

k!
,

and in particular, a0 = n!
∑n

k=0(−1)k/k! is the number of derangements (permutations
without fixed points) of [n], denoted dn.

Next we consider the case R = { (i, j) | i−j ≡ 0 or 1 (mod n) }, which is the classical
problème des ménages. Here we can evaluate bk by a simple trick, but the generalizations
in which i− j ≡ 0, 1, . . . , s (mod n) could be solved by the transfer matrix method.

Let us set p2i−1 = (i, i) for 1 ≤ i ≤ n, p2i = (i, i+ 1) for 1 ≤ i ≤ n−1 and p2n = (n, 1).
Then bk is the number of k-subsets of {p1, . . . , p2n} containing no pi and pi+1 (or p2n and
p1). Then as we saw in Section 5,

bk =
2n

2n− k

(
2n− k
k

)
,

and thus

a0 =
n∑
k=0

(−1)k
2n

2n− k

(
2n− k
k

)
(n− k)! .

Finally, let us take R = { (i, j) | i > j }. Then bk is the Stirling number S(n, n − k).
We prove this by giving a bijection between k-subsets of R counted by bk and partitions
of [n] with n− k blocks: to the subset {(i1, j1), (i2, j2), . . . , (ik, jk)} of R counted by bk we
associate the finest partition in which is and js are in the same block for each s. Thus

a(t) =
n∑
k=0

S(n, n− k)(n− k)! (t− 1)k.

If we call this polynomial an(t), then a straightforward computation using (9.1) shows
that

∞∑
n=0

an(t)
xn

n!
=

t− 1
t− e(t−1)x = 1 + t−1

(
−1 +

1− t
1− te(1−t)x

)
= 1 +

∞∑
n=1

t−1An(t)
xn

n!
,

where An(t) is the Eulerian polynomial.
Similarly, if we had taken R = { (i, j) | i ≥ j }, we would have found a(t) = An(t) for

all n.
Thus for n ≥ 1 the three polynomials∑

π∈Sn
t1+|{ i |π(i)>π(i+1) }|,

∑
π∈Sn

t|{ i | i≥π(i) }|, and
∑
π∈Sn

t1+|{ i | i>π(i) }|,
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are all equal. A combinatorial proof is easily found through Foata’s transformation: For
example, if

π = 5 7·2·1 6·3 8·4·
(where the dots represent descents) then Foata’s transformation takes π to

π1 = (5 7·)(2·)(1 6·3 8·4·),

in which occurrences of π(i) > π(i + 1) together with the extra descent at the end have
been transformed into occurrences of i ≥ π1(i).

The variant of Foata’s transformation with left-right maxima instead of minima trans-
forms π to

π2 = (5)(7·2·1 6·3)(8·4),

in which occurrences of π(i) > π(i+1) have been transformed into occurrences of i > π2(i).

11. Cancellation
In this section we consider a technique for simplifying sums of positive and negative

terms by cancellation. We have two sets A+ and A−, which we think of as ‘positive
objects’ with sign +1 and ‘negative objects’ with sign −1. We want to find a combinatorial
interpretation to |A+| − |A−|. We do this by finding a partial pairing of positive objects
with negative objects; then |A+|−|A−| will be equal to the contribution from the unpaired
objects.

(11.1) Theorem. Let A = A+ ∪ A− and suppose that there is subset B of A and an
involution ω defined on A \ B which is sign reversing: if ω(x) is defined, then x ∈ A+ if
and only if ω(x) ∈ A−. Then |A+| − |A−| = |A+ ∩B| − |A− ∩B|.

In most (but not all) applications, B is a subset of either A+ or A−.
As an example, we give a combinatorial proof of the identity

n∑
k=0

(−1)k
(
n

k

)(
r + k

m

)
= (−1)n

(
r

m− n

)
.

Let us first consider the special case m = 0, which we may write as

n∑
k=0

(−1)k
(
n

k

)
=
{

1, n = 0;
0, n > 0.

It is clear that we should take A to be the set of subsets of [n], with A+ the subsets of
even cardinality and A− the subsets of odd cardinality. For n > 0 we want to find a sign-
reversing involution on all of A, so that B = ∅. Clearly the map given by ω(K) = K∆{1}
has the right properties, where ∆ denotes the symmetric difference.

Now we consider the general case. Let R be an r-element set disjoint from [n]. We
may take A to be the set of all pairs (K,M), where K is a subset of [n] and M is an
m-subset of R ∪ K. Then the number of such pairs with |K| = k is

(
n
k

)(
r+k
m

)
. We take
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the sign of (K,M) to be (−1)|K|. It is not immediately obvious what B should be, but
we may try to construct a sign-reversing involution on as large a subset of A as possible,
and B will be whatever is left over. Given a pair (K,M) ∈ A, let j be the least element of
[n] \M if [n] \M is nonempty. Then we set ω

(
(K,M)

)
= (K ∆ {j},M). This is clearly a

sign-reversing involution. The only pairs (K,M) for which it is not defined are those for
which [n] ⊆ M . But if [n] ⊆ M then since M ∩ [n] ⊆ K, we must have K = [n] and M

must consist of [n] together with an (m − n)-subset of R. There are
(

r
m−n
)

of these and
they all have sign (−1)n. Thus the identity is proved.

For our next example, let Dn be the number of up-down permutations of [n], as defined
in Section 9. We give a completely different proof that

(11.2)
∞∑
n=0

D2n
x2n

(2n)!
= secx.

If we multiply both sides of (11.2) by cosx and equate coefficients of x2n/(2n)!, we see that
(11.2) is equivalent to the recurrence

(11.3)
n∑
k=0

(−1)n−k
(

2n
2k

)
D2k =

{
1, if n = 0;
0, otherwise.

The case n = 0 of (11.3) is clear. To interpret (11.3) for n > 0, let A be the set of all
ordered pairs (α, β) such that for some subset S ⊆ [2n] of even cardinality, α is an up-down
permutation of S and β is the increasing permutation of [2n] \ S. If |S| has cardinality 2k
then we give (α, β) the sign (−1)k. Thus for n = 8, a typical element of A is (1427, 3568).
Now let γ = (a1a2 . . . a2k, b1b2 . . . b2n−2k) be an element of A. If a2k > b1 or k = 0, we
define ω(γ) to be (a1a2 . . . a2kb1b2, b3 . . . b2n−2k) and if a2k < b1 or k = n we define ω(γ) to
be (a1a2 . . . a2k−2, a2k−1a2kb1b2b3 . . . b2n−2k). It is clear that ω is a sign-reversing involution
defined on all of A, and thus (11.3) is proved. The formula

∞∑
n=0

D2n+1
x2n+1

(2n+ 1)!
= tanx

can be proved similarly.

Following Zeilberger (1985), we now use a sign-reversing involution to prove the ‘ma-
trix tree theorem,’ which gives a determinantal formula for the number of spanning ar-
borescences of a digraph, rooted at a given node. Similar proofs have been found by several
people, of whom the first seems to be Temperley (1981).

For each i, j, with 1 ≤ i, j ≤ n, let wij be an arbitrary weight. We define the weight
of a digraph on [n] to be the product

∏
wij over all arcs (i, j) of the digraph. We shall find

a formula for the sum of the weights of all arborescences on [n], rooted at n. (Then given
any digraph D on [n], the number of spanning arborescences of D is obtaining by set wij
equal to 1 for arcs (i, j) in D and to 0 for arcs not in D.)
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First we observe that a determinant can be interpreted as a sum of signed weights
of digraphs. A permutation digraph is a digraph in which every vertex has indegree and
outdegree 1, or equivalently, in which every weakly connected component is a directed
cycle. Any permutation π of a set corresponds to the permutation digraph in which the
arcs are

(
i, π(i)

)
, and conversely, every permutation digraph is of this form. Now let M

be the matrix (−wij)i,j=1...n−1. Then the determinant of M is equal to the sum over all
permutations π of [n− 1] of

(11.4) (sgnπ)
n−1∏
i=1

(−wiπ(i)).

This product is clearly, up to sign, the weight of the permutation digraph corresponding
to π. Now suppose that π has r cycles, of lengths l1, l2, . . . , lr. Then sgnπ =

∏r
i=1(−1)li+1

and (−1)n−1 =
∏r

i=1(−1)li , so (11.4) is (−1)r times the weight of the permutation digraph
corresponding to π.

Now consider the determinant

W =

∣∣∣∣∣∣∣∣
w21 + · · ·+ wn1 −w21 · · · −wn−1,1

−w12 w12 + w32 + · · ·+ wn2 · · · −wn−1,2
...

...
. . .

...
−w1,n−1 −w2,n−1 · · · w1,n−1 + · · ·+ wn−2,n−1 + wn,n−1

∣∣∣∣∣∣∣∣
This is the determinant of M above, with wii replaced by

−
∑
1≤j≤n
j 6=i

wji.

The digraphs that W counts will be obtained from permutation digraphs by replacing
each loop (i, i) with an arc (j, i) for some j 6= i (with j = n allowed), and the sign of
such a digraph is (−1)r, where r is the number of cycles length at least 2 in the original
permutation digraph. More precisely, W is the sum of the signed weights of all pairs (P, T )
of digraphs on [n] such that

(1) P is a permutation digraph, with every cycle of length at least 2, on a set of nodes
NP ⊆ [n− 1].

(2) T is a digraph without loops on [n] in which every node in [n− 1] \NP has indegree
1 and every node in NP ∪ {n} has indegree 0.

The signed weight of the pair (P, T ) is (−1)r times the product of the weights of P and T ,
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n

T

P

where r is the number of cycles of P . Here is a typical pair (P, T ):

We now define the sign-reversing involution ω on all pairs (P, T ) such that either P or T
contains a cycle: take the cycle containing the least vertex and transfer it from P to T or
from T to P . Then ω is a weight-preserving sign-reversing involution that cancels all pairs
except those in which P is empty and T is an arborescence rooted at n.

Further examples of cancellation can be found in Stanton and White (1986).

12. Inclusion-exclusion
The inclusion-exclusion principle is probably the most well-known technique for dealing
with subtraction.

(12.1) Theorem. Let f and g be two functions defined on the subsets of a finite set S

such that f(A) =
∑

B⊆A g(B). Then g(A) =
∑

B⊆A(−1)|A−B|f(B).

Proof. We have∑
B⊆A

(−1)|A−B|f(B) =
∑
B⊆A
C⊆B

(−1)|A−B|g(C)

=
∑
C⊆A

g(C)
∑

C⊆B⊆A
(−1)|A−B| = g(A).

A dual form of inclusion-exclusion may be proved the same way as Theorem (12.1):

(12.2) f(A) =
∑

S⊇B⊇A
g(B) if and only if g(A) =

∑
S⊇B⊇A

(−1)|B−A|f(B).
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An important special case of inclusion-exclusion occurs when f(A) and g(A) depend
only on |A|, so we may write f(A) = f|A| and g(A) = g|A|. Then the relation between f
and g may be written

fn =
n∑
k=0

(
n

k

)
gk and gn =

n∑
k=0

(−1)n−k
(
n

k

)
fk.

These relations may be expressed in terms of exponential generating functions: if F (x) =∑∞
n=0 fnx

n/n! and G(x) =
∑∞

n=0 gnx
n/n! then F (x) = exG(x) and G(x) = e−xF (x).

Another form of inclusion-exclusion is often used: Suppose we have a finite set X of
elements, each of which has certain ‘properties,’ and let S be the set of all such properties.
For each subset A of S let f(A) be the number of elements of X having all the properties
in A (and possibly others).

(12.3) Theorem. Let Mi =
∑
|A|=i f(A) and let Ni be the number of elements of X

having exactly i properties. Then

Ni =
∑
l≥i

(−1)l−i
(
l

i

)
Ml,

and in particular,
N0 = M0 −M1 +M2 − · · · .

Proof. For A ⊆ S, let g(A) be the number of elements of X having the proper-
ties in A and no others. Then f(A) =

∑
B⊇A g(B), so by inclusion-exclusion, g(A) =∑

B⊇A(−1)|B−A|f(B). Thus Ni =
∑
|A|=i g(A) and the result follows by a straightforward

calculation.
Our first example of inclusion-exclusion is to permutation enumeration. The descent

set D(π) of a permutation π of [n] is { i | π(i) > π(i + 1) }. Fix n, and for A ⊆ [n − 1],
let g(A) be the set of permutations with descent set A. We shall find a simple formula
for f(A) =

∑
B⊆A g(B). Let A = {a1 < a2 < · · · < ak}. Then D(π) ⊆ A if and only

if π(1) < π(2) · · · < π(a1), π(a1 + 1) < · · · < π(a2), · · · , π(ak + 1) < · · · < π(n). To
construct such a permutation π, we choose a1 elements of [n] to be {π(1), . . . , π(a1)} and
arrange them in increasing order, then choose a2 − a1 of the remaining elements to be
{π(a1 + 1), . . . , π(a2)}, and so on. Thus f(A) is the multinomial coefficient(

n

a1, a2 − a1, · · · , ak − ak−1, n− ak

)
so g(A) is given explicitly by g(A) =

∑
B⊆A(−1)|A−B|f(B).

If we set a0 = 0 and ak+1 = n, then g(A) can be expressed compactly as the determi-
nant

(12.4) n!
∣∣∣∣ 1
(aj − ai−1)!

∣∣∣∣
i,j=1,...,k+1
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where we interpret 1/r! as 0 for r < 0. To see this, suppose that (mij) is an r × r matrix
for which mij = 0 if j < i−1. Then if

∏r
i=1 miπ(i) 6= 0, every cycle of π must be of the form

(t t − 1 · · · s + 1 s). If in addition mi,i−1 = 1 for 2 ≤ i ≤ r then the contribution to the
determinant |mij | from the permutation (t1 t1−1 · · · 2 1) (t2 · · · t1 +1) · · · (tl · · · tl−1 +1),
where t1 < t2 < · · · < tl = r, is (−1)r−lm1,t1mt1+1,t2 · · · mtl−1+1,r. We obtain (12.4) by
taking r = k + 1, mij = 1/(aj − ai−1)!.

As another example, we find a formula for the number cn of cyclic permutations π of
[n] satisfying π(i) 6≡ i + 1 (mod n). For any subset A of [n] let f(A) be the number of
permutations π with π(i) ≡ i + 1 (mod n) for all i in A and let g(A) be the number of
permutations π with π(i) ≡ i+1 (mod n) for all i in A but for no other i. Thus cn = g(∅).
Then it is clear that f(A) =

∑
B⊇A g(B), so by (12.2), g(A) =

∑
B⊇A(−1)|B−A|f(B). It is

easily seen that f(A) = (n− 1− |A|)! for |A| < n, with f([n]) = 1. Thus

cn = (−1)n +
n−1∑
k=0

(−1)k
(
n

k

)
(n− 1− k)! .

If instead of considering only cyclic permutations, we counted all permutations π satisfying
π(i) 6≡ i+1 (mod n), we would have obtained the derangement number dn. The numbers
cn are closely related to the derangement numbers; it can be shown that dn = cn + cn+1

and cn+1 = (−1)n+1 +
∑n

k=0(−1)n−kdk.

13. Möbius inversion

Consider the following problem: out of 100 students who are taking Algebra, Biology,
and Chemistry, 23 have Algebra and Biology at the same time, 40 have Algebra and
Chemistry at the same time, 42 have Biology and Chemistry at the same time, and 15
have all three courses at the same time. How many students have no schedule conflict?

We can solve this problem by inclusion-exclusion. Let U be the set of all 100 students.
Let S1 be the subset of students with an Algebra-Biology conflict, and similarly for S2 and
S3. Then the answer is

|U | −
∑
i

|Si|+
∑
i<j

|Si ∩ Sj | − |S1 ∩ S2 ∩ S3|

But in this case
|S1 ∩ S2| = |S1 ∩ S3| = |S2 ∩ S3| = |S1 ∩ S2 ∩ S3|

so the formula reduces to

(13.1) |U | − |S1| − |S2| − |S3|+ 2|S1 ∩ S2 ∩ S3| = 20.

The theory of Möbius inversion explains formulas like (13.1), and in particular explains
the significance of the coefficient 2. In this problem there are 5 possibilities for a student’s
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No Conflict

A-B Conflict A-C Conflict B-C Conflict

A-B-C Conflict

schedule conflict: no conflict, A-B conflict, A-C conflict, B-C conflict, and A-B-C conflict.
These conflicts are partially ordered in a natural way as follows:

Then if we let g(x) be the number of students with conflict of type x (but no worse), then
we want to determine g(no conflict) given f(x) for all x, where f(x) =

∑
y≥x g(y).

In the general situation, we have a finite poset P and two functions f and g on P
related by

(13.2) f(x) =
∑
y≥x

g(y),

and we want to find the coefficients m(x, y) which express g in terms of f ;

(13.3) g(x) =
∑
y≥x

m(x, y)f(y).

It is convenient to consider the problem from a slightly different point of view. First
let P be a finite poset. The incidence algebra I(P ) of P is the set of all complex-valued
functions f on P × P such that f(x, y) = 0 unless x ≤ y. Addition of these functions is
pointwise and multiplication is defined by the formula

(fg)(x, y) =
∑
x≤z≤y

f(x, z)g(z, y).

I(P ) is isomorphic to an algebra of matrices in which the rows and columns are
indexed by the elements of P ; the function f corresponds to the matrix in which the (x, y)
entry is f(x, y). If the rows and columns are ordered consistently with P , then these
matrices will all be upper triangular. In particular, if f(x, x) is nonzero for all x then f is
invertible.
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There are three particularly important elements of the incidence algebra. First there
is the identity element δ defined by

δ(x, y) =
{

1 if x = y
0 if x 6= y.

Next is the zeta function ζ defined by

ζ(x, y) =
{ 1 if x ≤ y

0 otherwise.
The Möbius function µ of P is the inverse of ζ. By the remark above, µ must exist. An
easy way to compute µ is from the recurrence

µ(x, y) = −
∑
x≤z<y

µ(x, z),

for x < y, with the initial condition µ(x, x) = 1. This recurrence follows immediately from
the formula µζ = δ.

It is easy to give a formula for µ(x, y). We have ζ−1 = (δ + ζ − δ)−1. It is clear that
(ζ − δ)k(x, y) is the number of chains x = x0 < x1 < · · · < xk = y and thus is zero for k
sufficiently large. So we have the explicit formula

µ =
(
δ + (ζ − δ)

)−1 =
∑
k≥0

(−1)k(ζ − δ)k,

where only finitely many terms on the right are nonzero. If we define the length of a chain
to be one less than its cardinality, we have P. Hall’s theorem:

(13.4) Theorem. µ(x, y) = C0−C1 +C2 · · ·, where Ci is the number of chains of length i
from x to y.

Hall’s theorem implies that µ(x, y) depends only on the interval [x, y] = { z | x ≤
z ≤ y }. An important, but less obvious, aspect of Hall’s theorem is that it provides an
interpretation of the Möbius function of a poset P as the reduced Euler characteristic of a
topological space associated with P , and thus allows the machinery of algebraic topology
to be applied to the study of posets. (See, for example, Stanley (1986), pp. 120–124 and
137–138.)

Let us return to our original problem. We claim that in (13.3) we should takem(x, y) =
µ(x, y). To see that this works, set

g̃(x) =
∑
y≥x

µ(x, y)f(y).

Then we have∑
y≥x

g̃(y) =
∑
y≥x

∑
z≥y

µ(y, z)f(z) =
∑
z≥x

f(z)
∑
x≤y≤z

ζ(x, y)µ(y, z) = f(x).

Since g is uniquely determined by (13.2), we must have g = g̃.
There is a dual form of Möbius inversion in which y ≥ x is replace by y ≤ x. We state

both forms in the following theorem.
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(13.5) Theorem. Let f , g, and h be complex-valued functions on the finite poset P .
Then

(a) f(x) =
∑

y≥x g(y) if and only if g(x) =
∑

y≥x µ(x, y)f(y)
(b) h(x) =

∑
y≤x g(y) if and only if g(x) =

∑
y≤x h(y)µ(y, x).

If P and Q are posets then the product order on P ×Q is given by (p1, q1) ≤ (p2, q2)
if and only if p1 ≤ p2 and q1 ≤ q2. The Möbius function of P × Q is easily expressed in
terms of the Möbius functions of P and Q (the straightforward proof is omitted):

(13.6) Theorem. Let P and Q be finite posets. Then

µP×Q
(
(p1, q1), (p2, q2)

)
= µP (p1, p2)µQ(q1, q2).

It is easily seen that if we consider the set [n] as a poset under the usual order, so
that it is a chain, then

µ(i, j) =

{ 1 if i = j
−1 if i+ 1 = j

0 otherwise
Since the poset of subsets of a set is a product of 2-element chains, we find that its Möbius
function is given by µ(A,B) = (−1)|B|−|A|, which with Theorem (13.5) is the inclusion-
exclusion formula.

We now prove two theorems on Möbius functions of lattices. A poset P is a lattice if
any two elements x, y ∈ P have a unique join, or least upper bound, denoted x ∨ y, and a
unique meet, or greatest lower bound. We assume that all posets are finite, so any set S
of elements of a lattice has a join which we denote by

∨
S. We denote the unique minimal

element of a lattice by 0̂, and the unique maximal element by 1̂. An atom is an element
that covers 0̂.

In our example we computed a Möbius function by using inclusion-exclusion. The
next theorem generalizes that example, though we give a different proof.

(13.7) Theorem. Let P be a lattice. Then µ(0̂, x) =
∑

S(−1)|S|, where S ranges over all
sets of atoms with join x.

Proof. For each x in P , let g(x) =
∑
∨S=x(−1)|S|, where S ranges over sets of atoms.

Define f(x) by f(x) =
∑

y≤x g(y) =
∑
∨S≤x(−1)|S|. Then if A is the set of atoms less than

or equal to x, we have

f(x) =
∑
S⊆A

(−1)|S| =
{

1 if A = ∅
0 if A 6= ∅ =

{
1 if x = 0̂
0 if x 6= 0̂.

Then by Möbius inversion, g(x) =
∑

y≤x f(y)µ(y, x) = µ(0̂, x).

(13.8) Corollary. Under the above hypothesis, if x is not a join of atoms, then µ(0̂, x) =
0.

Next we prove another basic result on Möbius functions of lattices, called Weisner’s
theorem.
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(13.9) Theorem. Let P be a lattice. Fix a and x in P , with a > 0̂. Then∑
z∨a=x

µ(0̂, z) = 0.

Proof. For fixed a, let g(x) =
∑

z∨a=x µ(0̂, z), and set

f(x) =
∑
y≤x

g(y) =
∑
z∨a≤x

µ(0̂, z).

We shall show that f(x) = 0 for all x, which implies that g(x) = 0. If a 6≤ x then f(x) is
clearly 0. If a ≤ x then x ≥ a > 0̂, so f(x) =

∑
z≤x µ(0̂, z) = 0.

(13.10) Corollary. Let P be a lattice. Suppose that
(i) P has a rank function ρ with the property that if a is an atom then for all x in P ,

ρ(a ∨ x) ≤ ρ(x) + 1.
(ii) Every element of P is a join of atoms.

Then (−1)ρ(1̂)µ(0̂, 1̂) > 0.
Proof. The assertion is trivially true if 0̂ = 1̂. Otherwise, in Theorem (13.9) let a be an
atom and take x = 1̂. Then if z ∨ a = 1̂, z must be 1̂ or a coatom (of rank ρ(1̂) − 1). So
µ(0̂, 1̂) = −

∑
z µ(0̂, z), where the sum is over all coatoms z with z ∨ a = 1̂. The assertion

will follow by induction if we can show that a may be chosen so that there is at least one
such coatom. But if the sum is empty for all a, then every atom is less than or equal to
every coatom, contradicting (ii).

Lattices satisfying the conditions of Corollary (13.10) are called geometric lattices.
(There are many other equivalent characterizations of geometric lattices.)

We can use Theorem (13.9) to compute the Möbius function for the lattice Ln of
subspaces of the vector space Vn of dimension n over a finite field of q elements. Since the
interval [x, y] is isomorphic to Lm, where m = dim y − dimx, it is sufficient to compute
µ(0̂, 1̂) in Ln, which we denote by µn.

As in Corollary (13.10), let us take a to be an atom and take x = 1̂. Then if z is a
coatom for which z ∨ a = 1̂, z must be a subspace of Vn of dimension n− 1 which does not
contain a, and the number of these is

[
n
n−1

]
−
[
n−1
n−2

]
= qn−1. Thus we have the recurrence

µn = −qn−1µn−1. From this recurrence and the initial condition µ0 = 1, we obtain

(13.11) µn = (−1)nq(
n
2).

As an application of (13.11), we compute the number g(x) of m-tuples of elements of
Vn which span a given subspace x. Let f(x) =

∑
y≤x g(y). Then if dimx = d, we have

f(x) = qdm, so by Möbius inversion we have

g(x) =
∑
y≤x

f(y)µ(y, x) =
d∑

k=0

qmk(−1)d−kq(
d−k

2 )
[
d

k

]
.
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Using (8.5), we can simplify this to

g(x) =
d−1∏
k=0

(qm − qk),

which can also be found directly. Similarly, the number of m-subsets of Vn with span x (of
dimension d) is

d∑
k=0

(
qm

k

)
(−1)d−kq(

d−k
2 )
[
d

k

]
.

Rota (1964) initiated the systematic use of Möbius functions in combinatorics. Further
information about them may be found in Chapter 3 of Stanley (1986).

14. Symmetric functions
A formal power series in the variables x1, x2, . . . , xn is called symmetric if it is invariant
under any permutation of the variables. It is convenient to work with infinitely many
variables, allowing sums such as x1 + x2 + · · ·. These symmetric formal power series are
traditionally (but somewhat misleadingly) called symmetric functions.

A symmetric function is homogeneous of degree k if every monomial in it has total
degree k. It is clear that every symmetric function can be expressed as a (possibly infinite)
sum of homogeneous symmetric functions. If we take our coefficients to be complex num-
bers, then the homogenous symmetric functions of degree k form a vector space, denoted
Λk. There are several important bases for Λk, which are indexed by partitions of k. If
λ = (λ1, · · · , λn) is a partition of k (with the parts listed in decreasing order), then the
monomial symmetric function mλ is defined to be the sum of all distinct monomials of
the form xα1

i1
· · ·xαnin for permutations (α1, . . . , αn) of λ. It is clear that the mλ, over all

partitions λ of k, form a basis for Λk.
For each integer r ≥ 0, the rth elementary symmetric function er is the sum of all

products of r distinct variables, so e0 = 1, and for r > 0,

er =
∑

i1<i2<···<ir
xi1xi2 · · ·xir .

For any partition λ = (λ1, λ2, . . .) we define eλ = eλ1eλ2 · · · . The ‘fundamental theorem of
symmetric functions’ implies that the eλ over all partitions λ of k form a basis for Λk, or
equivalently, that every element of Λk can be expressed uniquely as a polynomial in the
er.

The rth complete symmetric function hr is the sum of all monomials of degree r, so
h0 = 1 and for r > 0,

hr =
∑

i1≤i2≤···≤ir
xi1xi2 · · ·xir .

The rth power sum symmetric function is

pr =
∑
i

xri .
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For any partition λ = (λ1, λ2, . . .), we define hλ = hλ1hλ2 · · · and pλ = pλ1pλ2 · · · .
The generating functions

∞∑
r=0

hrt
r =

∞∏
i=1

1
1− xit

= exp

( ∞∑
r=1

pr
r
tr

)
and

∞∑
r=0

ert
r =

∞∏
i=1

(1 + xit) =

( ∞∑
r=0

hr(−t)r
)−1

are easy to derive. They imply that er can be expressed as a polynomial in the hi and also
in the pi, and thus {hλ}λ`k and {pλ}λ`k are both bases for Λk. (Here λ ` k means that λ
is a partition of k.)

There is another important basis for Λk which is less obvious. If λ is a partition with
n parts, we define the Schur function (or S-function) sλ by

(14.1) sλ = det(hλi−i+j)1≤i,j≤n,

where we take hm = 0 for m < 0.
The Schur functions (in a finite number of variables) arise very naturally from irre-

ducible representations of general linear groups. The irreducible polynomial representa-
tions of the general linear group GLn (over the complex numbers) may be indexed in a
natural way by partitions with at most n parts. If χλ is the character of the representation
associated with λ, then for any matrix M in GLn with eigenvalues x1, x2, . . . , xn, we have
χλ(M) = sλ(x1, . . . , xn).

The expansions of the sλ in the other bases for Λk are all interesting. The expansion
in elementary symmetric functions is a determinant similar to (14.1).

The expansions of Schur functions in power sum symmetric functions are related to
irreducible representations of symmetric groups. There is a natural way of associating to
each partition of k an irreducible representation of the symmetric group Sk. Let us denote
by χλ the character of the representation associated with λ, and by χλρ its value at an
element of Sk of cycle type ρ. Then if λ is a partition of k,

sλ =
∑
ρ`k

χλρ
pρ
zρ
,

where if ρ has mi parts equal to i then zρ =
∏

i≥1 i
mimi!.

The coefficients of sλ (which give its expansion into monomial symmetric functions)
have an interesting combinatorial interpretation. The Ferrers diagram of a partition λ
is an arrangements of cells with λi cells, left justified, in the ith row. Thus the Ferrers
diagram of the partition (4, 3, 1) is
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A column-strict plane partition of shape λ is a filling of the Ferrers diagram of λ with
positive integers which decrease weakly from left to right and strictly from top to bottom.
For example,

5 4 4 1

3 3 1

1

is a column-strict plane partition of shape (4, 3, 1). Then the coefficient of xr1
1 x

r2
2 · · ·xrnn in

sλ is the number of column-strict plane partitions of shape λ containing ri entries equal to
i.

The weight of a plane partition is the sum of its entries. If we set xi = qi in sλ, we get
the generating function by weight for column-strict plane partitions of shape λ. There is a
very nice explicit formula for this generating function, which can be stated most elegantly
in terms of the hook lengths of λ. We define the hook length of a cell in a Ferrers diagram
to be the number of cells to its right plus the number of cells below it plus one. Thus the
hook lengths for the partition (4, 3, 1) are

6 4 3 1

4 2 1

1

(14.2) Theorem. The generating function by weight for column-strict plane partitions
of shape λ is

qN(λ)
∏
c

1
1− qh(c) ,

where the product is over all cells c of the Ferrers diagram of λ, h(c) is the hook length of
c, and N(λ) =

∑
i iλi.

For the proof of this theorem, and other results on plane partitions, see Stanley (1971)
or Macdonald (1979).

One of the most famous theorems of enumerative combinatorics is the theorem of
Pólya (1937) on counting orbits under a group action. (See also Pólya and Read (1987).)
Pólya’s theorem can be stated in several different ways, but one of the most useful is in
terms of symmetric functions.

Suppose that a finite group G acts on a finite set A. Then G also acts on functions
f : A → N, where N is the set of positive integers: for g ∈ G and f : A → N, we define
g · f by (g · f)(α) = f(g−1 · α). We define the weight of a function f : A → N to be the
monomial

∏
α∈A xf(α). It is clear that two functions in the same orbit of G have the same

weight, so we may define the weight of an orbit to be the weight of any of its elements.
Pólya’s theorem gives a formula for the sum of the weights of all orbits of functions. We
may think of a function A → N as a ‘coloring’ of the elements of A, so Pólya’s theorem
enables us to count colorings which are distinct with respect to the action of G.
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Pólya’s theorem is a consequence of an elementary result in group theory, often called
Burnside’s lemma:

(14.3) Lemma. Suppose that a finite group acts on a weighted set X, and that weights
are constant on orbits. Define the weight of an orbit to be the weight of any of its elements.
For each g in G let Φ(g) be the sum of the weights of the elements of X fixed by G. Then
the sum of the weights of the orbits is

1
|G|

∑
g∈G

Φ(g).

If G acts on a finite set A, then to each element g of G we may associate a permutation
πg of A by πg(α) = g · α for α in A. We define the cycle index for the action of G on A to
be the symmetric function

(14.4) Z(G) =
1
|G|

∑
g∈G

p
j1(g)
1 p

j2(g)
2 · · · ,

where jk(g) is the number of k-cycles in the cycle decomposition of πg. We may now state
Pólya’s theorem:

(14.5) Theorem. The sum of the weights of the orbits of functions on A under the action
of G is Z(G).

Proof. It is not hard to see that a function f : A→ N is fixed by g ∈ G if and only if f
is constant on each cycle of πg. Thus the sum of the weights of the functions fixed by g is

p
j1(g)
1 p

j2(g)
2 · · ·. Then the theorem follows by applying Lemma (14.3) to the action of G on

the set X of functions from A to N.
One of the simplest applications of Pólya’s theorem is to counting equivalence classes

of words under the relation of conjugacy introduced in Section 5. If we take A to be the
set [n], then the functions A→ N may be identified with words of length n in N∗. Let G
be the cyclic group Cn acting in the usual way on [n]. Then two words are in the same
orbit under the action of Cn if and only if they are conjugates. To evaluate the cycle index
of G, let g be a generator for Cn. Then πgm has d cycles, each of length n/d, where d is
the greatest common divisor of m and n. There are φ(n/d) values of m corresponding to
each divisor d of n, where φ is Euler’s totient function, and thus

(14.6) Z(Cn) =
1
n

∑
d|n

φ(n/d)pdn/d.

In particular, the number of equivalence classes under conjugation of words in [k]n is
obtained by setting x1 = x2 = · · · = xk = 1, xi = 0 for i > k, in (14.6), so that pi = k, and
(14.6) becomes n−1∑

d|n φ(n/d)kd.
For a more complicated example, we count isomorphism classes of graphs on n vertices.

We start with the action of the symmetric group Sn on [n]. This action yields in a natural
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way an action on the set A of unordered pairs of distinct elements of [n], which are the
edges of the complete graph Kn on [n]. Then a function from A to N may be thought of
as a coloring of the edges of Kn. There is a bijection between 2-colorings of edges of Kn

and all graphs on [n]: given a graph G on [n], we assign an edge of Kn color 1 if it is in G
and color 2 if it is not in G. Two graphs are isomorphic if and only if their corresponding
2-colorings of Kn are in the same orbit. Thus to count isomorphism classes of graphs we
need only find the cycle index for this action of Sn, then substitute x1 = x2 = 1; xi = 0
for i > 2, which gives pi = 2 for all i.

We shall show that the cycle index is

(14.7)
∑ 1

1m1m1! 2m2m2! · · ·
∏
k

(pkpk−1
2k )m2k ·

∏
k

pkm2k+1
2k+1 ·

∏
k

p
k(mk2 )
k ·

∏
i<j

p
gcd(i,j)mimj

lcm(i,j) ,

where the sum is over all m1,m2, . . . satisfying m1 +2m2 + · · · = n, and lcm and gcd denote
the least common multiple and greatest common divisor. To see this, we first observe that
the cycle type of πg for g in Sn depends only on the cycle type of g. The number of
permutations in Sn with mi cycles of length i for each i, where

∑
i imi = n is

n!
1m1m1! 2m2m2! · · · .

For such a permutation g we must determine the cycle type of πg, the permutation on
pairs induced by g.

First we consider pairs in which both elements lie in the same cycle of g. It turns
out that we must consider separately cycles of even length and of odd length. In a cycle
of g of even length 2k, the pairs {α, gk(α)} constitute a single cycle of length k; all the
other pairs lie in cycles of length 2k, and there are k − 1 of these cycles. Thus this cycle
of g contributes a factor pkpk−1

2k to the product in (14.7); since there are altogether m2k

cycles of this length, their contribution is (pkpk−1
2k )m2k . For cycles of g of odd length 2k+ 1,

every pair is in a cycle of πg of length 2k+ 1, and there are k of these, yielding the second
product in (14.7).

Next we consider pairs in which the two elements lie in different cycles of g. First
suppose that α and β lie in two different cycles of g of the same length k. Then {α, β} is
in a cycle of length k of πg. The pairs obtained from these two cycles of g will constitute
k cycles of πg, and there are

(
mk

2

)
ways to choose two cycles of g of length k. This explains

the third product in (14.7). Finally, the last product in (14.7) corresponds to the case of a
pair of elements from two cycles of g of lengths i and j, with i < j. Each pair will lie in a
cycle of πg of length lcm(i, j). The pairs obtained from these two cycles of g will constitute
gcd(i, j) cycles of πg, and there are mimj ways to choose two cycles of g of these lengths.

Although (14.7) looks rather complicated, it is actually useful in computing the num-
ber of unlabeled graphs on n vertices, as long as n is not too large. For a comprehen-
sive account of applications of Pólya’s theorem to graphical enumeration, see Harary and
Palmer (1973).
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