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It is not our purpose here to give a comprehensive survey of the theory of plane
partitions. Such a survey up to 1971 was given in [21], while summaries of more
recent work appear in [22] and [23]. We will instead sketch some basic definitions,
results, and conjectures that should provide an entry into more detailed work for
readers interested in pursuing the subject further.

A plane partition is an array = = (m;}}; ;», of nonnegative integers #; that is
weakly decreasing in rows and columns, and for which |n|: = Z n; < co. When
writing a plane partition the zero entries are usually suppressed. Thus, for instance,

5 5433221
54 4311
3 3211

is a plane partition = with 3 rows, 8 columns, fargest part 5, and with {n{ = 53. The
study of plane partitions began with MacMahon (who collected his results in this
area in [12, secs. IX and X]). MacMahon's principal result is equivalent to the
remarkable formula
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summed over all plane partitions = with <r rows, <s columns, and largest part <t.
In particular, letting r, s, t — oo yields the beautiful result

Tai=T10-"
kz1
summed over all plane partitions,

MacMahon’s proof involved intricate combinatorial arguments together with
manipulations of determinants. At present there are three basic techniques (all
closely interrelated) for dealing with plane partitions: (a) the Robinson-Schensted
correspendence and its variants, (b) the theory of symmetric functions and related
results from representation theory, and (c} manipulations of determinants. In partic-
ular, (a) can be used to give an elegant combinatorial proof of (1) in the limiting case
t — oo, while either (b) or (c) can be used to prove (1) in its full generality. For the
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basic connections between plane partitions and (a}{c), see [21]. For a com-
prehensive treatment of the theory of symmetric functions, with many applications
{mostly implicit) to plane partitions, see Macdonald [11]. The connection between
plane partitions and determinants is given an elegant development by Gessel and
Viennot [6-8]. Some additional references related to enumerating plane partitions
in general include [2-5, 10, 17, 19, 20, 24, 26].

A currently very active topic within the theory of plane partitions is that of plane
partitions satisfying certain symmetry conditions. This work goes back to a conjec-
ture of MacMahon [12, sec. 520] on symmetric plane partitions (i.e., m;; = =), later
proved by Andrews {1} and Gordon [9] using complicated manipulations of deter-
minants, by Macdonald [11, ex. 17, p. 52] using root systems and symmetric func-
tions, and by Proctor [18] using algebraic methods (Seshadri’s standard monomial
theory for minuscule representations). This result may be stated as follows:
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where n ranges over all symmetric plane partitions with <r rows and largest part
<t, and where §;; denotes the Kronecker delta.

A total of ten symmetry classes of plane partitions can be defined, and the
known results concerning them are summarized in [22]. In particular, seven of the
ten classes have simple formulas that enumerate them, while the remaining three
have simple conjectured formulas. For instance, it is conjectured that the number of
symmetric plane partitions n with largest part <n, such that every row of 2 is a
self-conjugate partition {as defined, e.g., in {11, p. 2]) is equal to
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Compare Equation {3) with the case g = 1 of (1} and (2), namely,
i+ k—1
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where A(r, s, t} [respectively, B(r, t}] is the number of plane partitions (respectively,
symmetric plane partitions) with <r rows, <s columns, and largest part <t
(respectively, <r rows and largest part <t}). The correct “q-analog” of (3} is not so
obvious and is given in [22] or [23]. For other recent work related to symmetries of
plane partitions, see [13, 15-17].
There is a close connection between plane partitions and certain triangular
arrays known as Gelfand patterns (see [23]). A Gelfand pattern is an array

ay, a2 A1n
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of nonnegative integers satislying a;; <@, ;,, and a,_, ;_, <g;<a;_, ;. I we
require the stronger condition a;; < a; ;. ,, then we obtain a strict Gelfand pattern. A
strict Gelfand pattern with first row 1, 2, .., n is a monotone triangle of length n,
introduced by Mills et al. [14]. There is a simple bijection [14, pp. 354-355]
between monotone triangles of length n and n x n alternating sign matrices, that is,
n x n matrices whose entries are 0, + 1, whose row and column sums all equal I,
and whose nonzero entries in every row and column alternate in sign. The seven
monotone triangles of length 3 are

123 123 123 123 123 123 123
12 12 13 13 13 23 23
1 2 1 2 3 2 3

The seven 3 x 3 alternating sign matrices consist of the six 3 x 3 permutation
matrices, together with

0 1 0
1 -1 1
0 1 0

There are now a plethora of closely interrelated conjectures, due mostly to Mills—
Robbins-Rumsey, concerning the enumeration of monotone triangles and related
objects. These conjectures are summarized in [23]. Let us mention a few of these
conjectures.

If T is an alternating sign matrix, then let s(T) denote its number of — 1s. Define
A(x) =¥, x*", where T ranges over all n x n alternating sign matrices. For
instance, A3(x) =6 + x.

THEOREM {easy): A (0} = n!.

_ 3k 4 )
CONIECTURE: A[l1) = k]:[() e

THEOREM: A,(2) = 2(3)

CONJECTURE: A,(3) = 3'™C,, where
m{m — 1), n=72m
fin) = {mz, n=2m+1,
and where C, is determined by the recurrence

3n 3n
Cape1 _ AR Cia n
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° C, 2n Caumr o 20
n n

Conrecrure: The number C, is equal to the number of n x n alternating sign
matrices that are invariant under a 180° rotation.
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ConseCTURE: There exist polynomials B,(x) for which

{B,,(x}B,,,, J(x), n odd
Afx) =
2B, (x)B, . {(x), n even,

Moreover, B,,, (x) =37 x*™ summed over all (2n + 1) x (2n + 1) alternating
sign matrices T that are invariant under a reflection in a vertical axis through the
center of T, and where T has 20(T) + n entries equal to — L.

For a recent result related to the enumeration of strict Gelfand patterns, see

[25].
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