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Abstract. I. Bfirfiny and L. Lovfisz [Acta Math. Acad. Sci. Hung. 40, 323-329 (1982)] showed that a 
d-dimensional centrally-symmetric simplicial polytope ~ has at least 2 d facets, and conjectured a 
lower bound for the number f~ of i-dimensional faces o f ~  in terms ofd and the number f0 = 2n of 

d 
vertices. Define integers ho . . . . .  he by Z f~-1(x - 1) d-' = ~ hi xd-'. A. Bj6rner conjectured (un- 

i=O i=O 

pub~ished) that hi > (di) (whi~ genera~ize~ the re~u~t ~f B~r~ny~L~v~ since f~-~ = ~ hi), and 

m°restr°nglythath~-hH>(di)-(- i d_.l) l<i<[d/2J ,  _ _ 

conjecture of Bfirfiny-Lovfisz. In this paper the conjectures of Bj6rner are proved. 

1. Introduction 

Let N be a simplicial d-polytope,  i.e., a d-dimensional  simplicial convex polytope.  
Let f~ denote  the number  of / -d imens iona l  faces of  ~ ,  where we set f -1  = 1. Define 
the h-vector h(~)  = (ho,h I . . . . .  he) of  ~ by the formula  

d d 

Z f/--l( "X'- 1) a - i =  Z hi xa-i" (1) 
i=O i=O 

Suppose now that  ~ is also centra l ly-symmetr ic  (about  the origin), i.e., ~ is 
embedded  in Euclidean s p ~ e  so that  if v s ~ then - v  ~ ~ .  Bfirfiny and Lovfisz [1] 
showed that  ~ then has at least 2 d facets (or (d - t)-faces), equality being achieved 
by the d-dimensional  cross-polytope (the dual to the d-cube). They also conjectured 
that  if ~ has 2n vertices (i~e., fo = 2n), then 

- i + 1  + 2 ( n - d )  , 0 _ < i _ d - Z ,  (2) 

L - ,  >-- 2" + 2 ( .  - d)(d - 1). (3) 

(Actually, Bfirfiny and Lov~.sz deal with simple polytopes  and state all their results 
and conjectures in dual form to ours.) The  inequalities (2) and (3) are best possible, 
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since they can be achieved by taking the d-cross-polytope and applying n -  d 
successive pairs of stellar subdivisions of antipodal facets. 

In terms of the h-vector, the inequality f~_~ _> 2 e of Bfir/my-Lovfisz takes the 
form 

h o + h i  + ' " + h a > 2  2 • 

Moreover, for any simplicial d-polytope we have hi = he-~ (the Dehn-Sommerville 
equations) and 1 = h o < h~ <_.. .  < hte/z I (the Generalized Lower-Bound Conjec- 

/ T N  

ture), as surveyed in [10]. For the d-cross-polytope we have h , =  (~ ) .  These 
\ / 

considerations led A. Bj6rner to conjecture (unpublished) that for any centrally- 
symmetric simplicial d-polytope ~ with h-vector (h o, hi . . . . .  ha), we have 

h i > _ ( d i ) ,  O<_i<_d ,  (4) 

and more strongly (since ho = 1), 

h i - h i - l >  - i - 1  

It is easily seen (see Corollary 4.2) that the inequalities (5)imply (2) and (3). 
In this paper we will prove the conjectures (4) and (5) of Bj6rner. We will 

establish (4) for a much broader class of objects than centrally-symmetric simplicial 
polytopes, but for (5) we are unable to weaken these hypotheses. Briefly, the idea 
behind the proofs is as follows. If A is a Cohen-Macaulay simplicial complex, then 
the theory of Cohen-Macaulay rings shows that h~ > 0 by interpreting h; as the 
dimension of a certain vector space A i. When in fact A is the boundary complex of 
a simplicial polytope, the theory of toric varieties allows us to construct injective 
linear transformations Ai_ 1 -* A i, 1 <_ i <_ [d/2]. Hence here we get h 0 <_ h~ _< ... _< 
h~e/2 ~. When we have a group G of order 2 acting on A in a suitable way (which for 
the boundary complex of a centrally-symmetric polytope is induced by the map 
v ~ - v  on N)then G acts on the vector spaces A~, and by decomposing this action 
into isotypic components (with respect to the two inequivalent irreducible re- 
presentations of G), we can improve the inequalities h~ _ 0 and ho < h~ < " "  < hte/2 J 
to (4) and (5), respectively. 

2. Algebraic Background 

We now review some algebraic concepts associated with simplicial complexes. See, 
e.g., [2] or [10] for more details. Let A be an abstract simplicial complex on the 
vertex set V = {xl . . . . .  x,}. Let K be a field, and let I s be the ideal of the polynomial 
ring K [ x l  . . . . .  x,] generated by all square-free monomials x q ' " x ~  r for which 
{xi,, . . . .  xir} ~A. Let K [ A ]  = K [ x l  . . . . .  x , ] / I~ ,  called the f ace  ring (or Stanley- 
Reisner ring) of A. Let K[A]~  denote the space of all homogeneous polynomials of 
degree i in K [ A ] ,  so K [ A ]  has the structure 

K[A]  = K[A]o @ K[A] ,  O "  
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of a graded K-algebra. If dim A = d - 1 (i.e., the largest face F ~ A has d vertices), 
then d is the maximum number of algebraically independent (over K) elements of 
K[A] (or of K[A]I). A set 01 . . . . .  OdeK[A]I is called a homogeneous system of 
parameters (h.s.o.p.) of degree one if dim K K [A]/(O 1 . . . .  ,0a) < oe. (This implies that 
01 . . . . .  Od are algebraically independent.) An h.s.o.p, of degree one always exists if 
K is infinite, which for convenience we will assume henceforth. 

We say that K[A] is Cohen-Macaulay (or that A is Cohen-Macaulay over K) 
if for some (equivalently, every) h.s.o.p. 01, . . . ,  Od of degree one, K[A] is a finitely- 
generated free module over the polynomial subring K[01,. i., Od]. (Equivalently, 0~ 
is a non-zero-divisor m o d u l o  (01 . . . . .  0i-1) ,  ] ~_~ i ~_~ d.) Thus 

t 
K[A] = ~_I q~" K[Ox . . . . .  Od], (vector-space direct sum) (6) 

I 

where each t/i is a non-zero-divisor on K[01,. . . ,  Od]. We can choose each t/i to be 
homogeneous, and conversely a set t h . . . . .  t/t of homogeneous elements of K[A] 
satisfies (6) if and only if they form a K-basis of the quotient ring 

A = g [ . ~ ] / ( O l , . . .  , Od). 

The ring A inherits a grading A = A 0 • A~ O ' " ,  and a simple counting argument 
shows that 

dim A i = hi(A ), 

where A has f~ = f~(A)/-dimensional faces (so fo = n) and hl = hi(A)is defined by (1). 
Let us recall the fundamental theorem of G. Reisner (see [8, Thm. 5] or [9, 

p. 70]) characterizing Cohen-Macaulay complexes. Given any face F e A, define the 
link of F by 

lkF  = {GsA" F U G E A  and Ff~ G = Z~}. 

In particular, lk N -- A. 

Theorem 2.1. Let A be a (finite) simplicial complex. Then A is Cohen-Macaulay over 
K if and only if for all F ~ A, 

/41(lk F; K) = 0 if i < dim(lk F), 

where/4i(lk F; K) denotes reduced simplicial homology over K. [] 

In particular, all triangulations of spheres are Cohen-Macaulay. More generally 
(e.g. [-8, Thm. 5]), the question of whether A is Cohen-Macaulay depends only on 
the geometric realization [A[ of A. 

We also need a characterization of h.s.o.p.'s of degree one in K[-A]. If 

Y= Z ~x'xeK[zl]l 
x~V 

where c~ x E K, then define the restriction YlF of y to the face F E A by 

YlF = ~ c~x'x. 
xEF 
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L e m m a  2.2 (see, e.g., [2, p. 661). For any (d - 1)-dimensional simplicial complex A, 
a set 01 . . . .  , Od~K[A] 1 is an h.s.o.p, if and only if for all F ~ A ,  the vector space 
spanned by 01 IF . . . . .  Oel~ has dimension equal to IF[. [ ]  

3. Group Actions 

N o w  let G be a group of au tomorph i sms  of the simplicial complex A. Thus each 
~ G is a bijection a: A ~ A such that  i f F  c F ' ~  A, then a(F) c a(F') .  In particular,  

a permutes  the vertex set V, and a is completely  determined by its act ion on V. We 
say that  G acts freely On A if for every a ~ 1 in G and every vertex x ~ V, we have 
that  x v~ a(x )and  that  {x,a(x)} is not  an edge of A. Equivalently,  for every x ~  V 
the open stars of  the elements of the orbit  Gx are pairwise disjoint. 

We come to the first of our  two main  results. 

Theorem 3.1. L e t  A be a (d - 1)-dimensional Cohen-Macaulay simplicial complex, 
and suppose that a group G of order 2 acts freely on A. Then 

In particular, 

hi(A) >_ (di),  O <_ i <_ d. 

fd-1 = ho + "'" + ha >- 2d" 

Proof. Let G = { i, a}, and let K be a field of characteristic ~ 2. If  W is any K-vec tor  
space on which G acts, then define 

W + = { w + W : a ( w ) = w }  

w -  : (w~ w:  ~(w) : - w } .  

it  is clear that  W = W + • W - .  (In terms of representat ion theory, W + and W -  
are the isotypic componen t s  corresponding to the trivial and non-tr ivial  irreducible 
representat ions of G, respectively. However ,  G is such a "simple" group  that  there 
is no need here to invoke explicitly the representat ion theory of finite groups.) 

The act ion of G on A induces an action on the face ring K[A].  Let x ~ be a 
monomia l  in K[A]  of degree i > 0. Since G acts freely on A, the K-span  of the 
G-orbit  of x ~ has a basis consisting of x ~ + a(x ~) ~ K [A] + and x ~ - a(x ~) ~ K [A]~-. 
Hence 

d i m K [ z J ]  + = dimK[A]~-  = ~ d i m K [ A ] ~ ,  i >_ 1. (7) 

Assume now K is infinite and (as above) char  K ¢ 2. We claim there exists an 
h.s.o.p. 01 , . . . ,  Oa~K[A]~o fK[A] .  To see this, choose V' ~ V t o  consist of exactly 
one element from each G-orbit  of V. Since K is infinite, there exist functions f l  . . . . .  
fa: V' ~ K such that  the restrictions of f1  . . . . .  fa to any d-element subset of V' are 
linearly independent.  Extend f~, . . . ,  fa to all of V by defining f~(a(x)) = - f~(x)  for 
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x • V'. Define 

2 
x e V  

Clearly 0~ • K[A]7. Since x and a(x) are not  both  vertices of any face of A, it follows 
from Lemma 2.2 that  01 . . . . .  0d form an h.s.o.p., as desired. 

Let A = K[A]/(OI ..... Od), with 01 . . . .  , Od as above. Since a(O~) = -01, it follows 
that G acts on the ideal (0a . . . . .  0d), and therefore on the graded algebra A = 
Ao 03"" • Ad. We want to compute  dim A + and dim Ai .  Let q and t be indeter- 
minates, and set t 2 = 1. If V = V 0 ® 1/i ® ""  is any graded vector space, with 
dim Vii < o% on which G acts, set 

r(V,q) : Z (dim Vi)q i 
i ~O  

and 

F(V,q,t)= E 
i>_O 

Since (see [10, eqn. (5)3) 

[(dim Vi +) + (dim Vi-)t3q i. 

d 

F(K[A],q) = (1 - q)-d E hi(A)q i, 
/ = 0  

it follows from (7) that  (writing h i = hi(A)) 

rX~d h i 7 i 
F(K[A], q, t) = 1 + ~ L (1 - q)~ 1~(1 + t). (8) 

(We have F(K [A], 0, t) = 1 since G fixes the empty face •.) 
Now since a(Oi) = - 0 / a n d  since the decomposi t ion KId] = KEA3 + G K[A]- 

defines a G-grading of K[A-1 (i.e., K[A3 + . K [ A ]  + c_ K[A]  +, etc.), the ideal (01) 
satisfies (since 01 is a non-zero-divisor of degree one) 

r((01), q, t) = qt" F(KEA3, q, t). 

Hence 

F(K[A]/(01), q, t) = (1 - qt)F(K[a], q, t). 

Each time we divide out  by another  0 i we pick up another  factor of 1 - qt, so 

F(A, q, t) = (1 - qt)dF(K[A], q, t) 

- - (12qt )d[  1 - t+( l+t ) ( l -q ) -d~ ' i=ohiq i l '  (9) 

by (8). Since (1 + t ) =  t(1 + t), it follows that g(t)(1 + t ) =  g(1)(1 + t) for any func- 
tion g. Similarly g(t)(1 - t) = g ( -  1)(1 - t). In particular, 

(1 -- qt)d(1 -- t ) =  (1 + q)d(1 -- t), 

(1 - qt)"(l + t) = (1 - q) (i + 0. 
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Hence 

It follows that 

F ( A ' q ' t ) = ~ [  (l+q)a(1-t)+(l+t)£h'qi]~=o 

(9) h + = d i m A  + = ~  h i+  , 

(10) 
hi = d i m A [  = hl - . 

Since dim A[ >__ O, the proof follows. [] 

Note. Rather than choosing each 0 i ~ K [A] ~-, we could choose Y of the 0/s to belong 
to K[A]~ and d - ( to belong to K[A]i .  We could then compute h[ and hi  for 
this choice of 0i's and hope that some additional information about the hi's will 

arise. I f w e c h o o s e ( = d t h e n w e o b t a i n h i > ( d i )  a s i n t h e c a s e o f f = O ( e x c e p t  

that for ~ = d we need to use that both hi + > 0 and hi  > 0, rather than just hi  > 0, 
as in the proof of Theorem 2.3 below.) If, however, we choose 0 < f < d, then it can 

be checked that we obtain inequalities weaker than h/_> ( J ) .  Thus the choice t° = 0 

leads to the strongest possible result, and we will see in the next section why it is 
more "natural" than the choice g' = d. 

Before turning to the case of centrally-symmetric polytopes, let us briefly 
consider extending Theorem 3.1 to other groups G. We only deal with the case 
where G is abelian; for nonabelian G we need to consider delicate properties of 
irreducible representations of G and their tensor products. 

Theorem 3.2. Let A be a (d - 1)-dimensional Cohen-Macaulay simplicial complex, 
and suppose that an abelian 9roup G of order g > 1 acts freely on A. Then 

In particular, 

fe-1 = ho + "'" + ha -> g" 2d-k 

Proof. Let G denote the group of all homomorphisms Z: G ~ C* = C - {0} (so G 
and G are isomorphic as abstract groups). Then C[A] has an ~ x G grading, 

c[~]  = [ I  H cEA]~, 
i_>O zE@ 

given by 

C [A]~ = { f e  C [A],: w . f  = Z(w)f for all w 6 G}. 
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For any (N x G)-graded vector space V = LI vii x with each dim V~ x < 0% define the 
Hilbert series 

F(V, G; q) = y'  ~ ,  (dim ViZ)zq i, 
i>_Oy~G 

an element of the ring (Z(~) ® Z [ [q] ], where ZG is the ring of virtual characters of 
(formal Z-linear combinations of elements of G). 

Since G acts freely on A, the C-span of the orbit of any monomial x ~  C [A] of 
positive degree affords the regular representation of G (since the only transitive 
faithful permutation representation of a finite abelian group is the regular repre- 
sentation). It follows that 

l[~d°h-iqi l(z~6 ) 
F(C[A],G;q)= 1 + g [ _ ( 1 - q ) ~  1 Z , (11) 

where g = I G]. 
Let t denote the trivial character of G. The hypothesis that G acts freely on A 

implies, as in the proof of Theorem 3.1, that there is an h.s.o.p. 01 . . . . .  0 a ~ C [A]~. 
Let A = C[A]/(OI,..., Od). We obtain as in (9)that 

F(A, G; q) = (i - qt)dF(C[A], G; q). (12) 

Substituting (11)into (12) and using the "symmetrizing" property of 2 ;(, we get 

F(A,G;q)=(1-ql) d +l_~gk0 hiqi-(1-q)e] (~Z)" (13) 

Suppose i is even. Let t # X e G. The coefficient of q~z in the right-hand side of 

(13)is(hi-(di))/g, sohi>-(di) • 
Suppose i is odd. The coefficient of q~l in the right-hand side of (13) is 

Hence hi >_ ( g -  1) ( d ) ,  and the proof is complete. [] 

As was the case for Theorem 3.1, one can check that choosing 0isC[A]~' for 
arbitrary X1, -.., Zd e G does not lead to a stronger result. 

The inequality hi _> ( d ) i n  Theorem 3.1 is best possible, since the boundary 

complex A of the d-dimensional cross-polytope admits a free (Z/22~)-action and 

satisfieshi=(di) forO<_i<_d. However, Theorem3.2isnotsharpforg>2. For 
instance, it is impossible for any Cohen-Macaulay simplicial complex to satisfy 

h2 = (~) and ha = (g -1) (~)  whenever (g - 2)(d - 2) > 3. We also have the 
following simple congruence condition. 
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Proposition 3.3. Let A be any finite ( d -  1)-dimensional simplicial complex, and 
suppose that an abelian group G of order g acts freely on A. (In fact, we need only to 
assume that if 1 ¢ ~ ~ G and ;g ~ F ~ A, then tr(F) ~ F.) Then 

hi( A) =- ( -1)i  ( di ) (mod g ). 

In particular, the reduced Euler characteristic 

~(A) := - f-1 + fo . . . .  + ( -  1)d~l fd-1 = (-- 1)e-l hd(A) 

satisfies 

2(A) = - 1 (modg). 

Proof. Since G is abelian, the orbit of any nonempty face F of A contains exactly g 
elements. Hence f/--= 0 (mod g), i > 0. The proof follows from (1) (using that f - 1  ~--" 1). 

[] 

Consider once again the situation of Theorem 3.1. It is natural to ask what 
further information about the h-vector (ho, h~ . . . . .  hd) of A can be obtained from the 
decomposition 

A = A +  O A  - = A 0 A . 

In the case of arbitrary Cohen-Macaulay A (i.e., no group action), the ring structure 
on A leads to a complete characterization of the h-vector of Cohen-Macaulay 
simplicial complexes (see, e.g., I-9, Thm. 2.2, p. 65]). In the present situation we don't 
see how to obtain such strong results, it is easy to see that A + is a graded algebra 
generated by elements of degrees one and two (whose number can be specified) and 
that A- is a graded A+-module with generators (as an A+-module) in degree one. 
This observation ieads to some information about the h-vector, but it seems far 
from definitive. For instance, we have the following result. 

Proposition 3.4. Let A be a finite (d - 1)-dimensional Cohen-Macaulay simplicial 

complex admitting a free (Z/2Z)-action. Suppose hi = (di) for some i >_ 1. Let j >_ i. 

I f e i t h e r j i s e v e n o r j - i z s e v e n ,  t h e n h j = ( ~ ) .  

Proof. S incehi=(di )  w e h a v e A  7, = 0 b y ( 1 0 ) .  S u p p o s e j > _ i a n d A f  •0. Since 
\ - - /  

A- is generated by A 1 as an A+-module and A + is generated by A~ and A~- as a 
K-algebra, there exist elements t eA~  and ul, . . . ,  ur~A~( LJ A~ such that 

0 ¢ u l " " u r t e A ; .  

I f j  is even then some use A~-. Then some subproduct v of Ux'"ur will have degree 
i - 1 .  Hence 0 ¢ vt~A~, contradicting h~ = 0. Similarly if j -  i is even t h e n  
again some subproduct of Ul"''Ur will have degree i - 1, and we reach the same 
contradiction. [] 
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Proposition 3.4 suggests the following conjecture. 

Conjecture 3.5. Let A be a finite (d - 1)-dimensional Cohen-Macaulay simplicial 

complex admitting a free (Z/2Z)-action. Suppose hi = (di) for some i >_ l. Then 

h j=(~) foral l j>_i .  [] 

4. Centrally-Symmetric Simplicial Polytopes 

Let ~ be a centrally-symmetric (about the origin) simplicial d-polytope. The 
boundary complex d of ~ is a (d - 1)-dimensional Cohen-Macaulay (since the 
geometric realization ]A I is a (d - 1)-sphere) simplicial complex with a free (Z/ZZ)- 
action induced by the map v - -* -v  on ~.  Hence by Theorem 3.1, hi(~):= 

hi(A) > (~) .  But in this situation we can say considerably more. 

Theorem 4.1. I f  ~ is a centrally-symmetric simplicial d-polytope, then 

hi(5°)- h i - l ( ~ )  >-- - -  i-- 1 

Proof. We may assume that N a ~d. Moreover, since any sufficiently small per- 
turbations of the vertices of a simplicial polytope do not affect its combinatorial 
type, we may assume that ~ is rational, i.e., the vertices of ~ have rational co- 
ordinates (with ~ still centrally-symmetric about the origin). We can now invoke 
the theory of toric varieties, as discussed, e.g., in [10]. Let X = X(~) be the toric 
variety corresponding to ~ with cohomology ring (over N, say) 

/4*(X) = H*(X; ~ ) =  H°(X) e H 2 ( X ) e  ""e/-/2d(X). 

Let d denote the boundary complex of ~.  By a result of Danilov [3, Thin. 10.8], 

H*(X) ~- ~[A]/(01,...,  Od) (15i 

= A = A o G ' " O A d ,  

for a certain h.s.o.p. 01 . . . . .  Od of ~ [ d ]  of degree one, the grading being such that 
Ai ~ H2i(X). The h.s.o.p. 0x, . . . ,  Od is described as follows. Let qh . . . . .  (Pd be any set 
of linearly independent linear functionals (&: ~d ~ ~. Then 

o,= Z 
x ~ V  

where V is the set of vertices o f ~  (or A). Since ~ is centrally-symmetric, any vertex 
x e V has an antipodal vertex :~ = - x, and ~oi(Y ) = -q~i(x)since ~o i is linear. 

The group G = {1,a} of order two acts on ~ by a(v) = - v  for v~.~. This 
induces an action on X(~)(as  is easily seen from the definition of X(gZ)) and on 
H*(X) by the rule a(x) = Y for x e V (identifying H*(X) with A as in (15)). It follows 
that a(Oi) = -0 i ,  so by (10)the vector space A i = H2i(X) decomposes under G into 
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where 

m ' ( x )  = m ' ( x )  + • H'i(x) -, 

(')) ,16, 

We now use the fact [10, p. 219] that X satisfies the hard Lefschetz theorem. 
(J. Steenbrink has informed me that his original proof [11] of this fact is invalid, 
but that a correct proof was subsequently given by M. Saito [6] (see in particular 
[-5]) based on the theory of perverse sheaves.) In particular, if co ~ H 2 (X) is the class 
of a hyperplane section, then the map co: H2"-~)(X) ~ H2i(X), given by multiplica- 
tion by co, is injective for 1 < i _< [d/2]. 

We claim that the action of o- on H*(X) commutes with multiplication by co, 
i.e., o-(coy) --- co(o-.y) for all y ~ H*(X). I am grateful to S. Kleiman for providing the 
following argument. It is clear from the definition [-3, §6.9] of the embedding of X 
into projective space P that the action of ~ on X extends to a linear transformation 
of P. Hence if H c P is a hyperplane then so is a .H.  Since any two hyperplane 
sections of X (with respect to a fixed embedding X a P) represent the same 
cohomology class, we have a" co = co. Since a acts on H*(X) by pullback, ~ induces a 
ring homomorphism on H*(X). Hence a'(coy) = (o-. co)(a, y) = co(a-y), as desired. 

It follows that the subspaces H*(X) + and H*(X)-  are co-invariant. Thus in 
particular co sends H2"-I)(X) - to H2~(X) -, 1 < i < [d/Z], and is of course still 
injective (being the restriction of the injective function co: Hz"-I)(X)-+ H2i(X)), 
Therefore dim HZti-1)(X) - _< dim HZI(X) -, 1 <_ i < [d/2], so by (16), 

~(hi-~-(i-dl))<l-(hi-(di))'-2, l <i<[d/2]._ _ 

This is equivalent to (14), completing the proof. [] 

Corollary 4.2. Let g~ be as in the previous theorem, and suppose ~ has f~ i-faces, 
0 <__ i <_ d - 1. Let fo = 2n. Then the fi's satisfy (2) and (3). 

Proof. We have hl = fo - d = 2n - d. Hence by (14) and the Dehn-Sommerville 
equations, 

hi >_ 2(n - d) + (di), l < i <_ d - l. 

Thus 

- J  h j 
i=o i + l - - j  

i + l (,  + l _ j  + 

> / 1 -  + d-*Y. (2(n -- d) + ( d ~  + l, i = d -  . 
t,_ j=~ \ \ J / /  

This is equivalent to (2) and (3) by simple binomial coefficient identities. 

O < i < d - 2  

[] 
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As was the si tuation for Theorem 3.1, the ring A = A + • A -  together  with the 
element co e A~- can be used to obtain  some addit ional  informat ion abou t  h-vectors 
of centra l ly-symmetr ic  simplicial polytopes,  but nothing nearly as definitive as 
McMul len ' s  g-conjecture (see [10, p. 2173) for arbi t rary  simplicial polytopes.  In 
particular,  we don ' t  know an analogue of the Uppe r  Bound Conjecture for poly- 
topes (or spheres). In other  words, given a central ly-symmetr ic  simplicial d-polytope 

with fo = 2n vertices, what  is the largest possible value of f ?  Even a plausible 
conjecture is not  known. The  most  obvious  conjecture is that  f~ is maximized by 

ch°°singfj=2J+l( n ) O < j < [ d / 2 ] - I  ' - 

then every set o f j  + 1 vertices, no two antipodal ,  o f ~  forms the vertices of a j-face). 
However ,  a result [4, Thm. 23] of McMul len  and Shephard  shows this conjecture 
to be false for n > d + 2. Fo r  addit ional  results a long these lines, see [7]. 

Let us also remark  that  Conjecture 3.5 is valid for central ly-symmetric  simplicial 
polytopes.  In fact, we have the following result. 

Proposition 4.3. Let ~ be a centrally-symmetric simplicial d-polytope. Suppose that 

forsomel <_i<_d-1 wehavehi(~)=(d).  Thenhj(~)=(j) foral l j ,  and~is 

affinely equivalent to a cross-polytope. 

Proof. Let ki = hi(~) - (d). By Theorem 4.1 the sequence (ko,k 1 . . . . .  kd) is non- 
\ / 

negative (since ho = 1, or  by Theorem 3.2) and unimodal.  Moreover ,  k i = ke-i by 
the Dehn-Sommervi l le  equations.  Thus if ki = 0 for some 1 < i _< d - 1, then 
k 1 = 0. Hence fo (~ )  = 2d. Let F by any facet of ~ and ff  the ant ipodal  facet. Since 
F U ff conta ins  2d vertices, it follows that  N is the convex hull of F U ff  and is 
therefore affinely equivalent  to a cross-polytope.  [ ]  
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