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Abstract. 1. Barany and L. Lovasz [ Acta Math. Acad. Sci. Hung. 40, 323329 (1982)] showed that a
d-dimensional centrally-symmetric simplicial polytope & has at least 2 facets, and conjectured a
lower bound for the number f; of i-dimensional faces of 2 in terms of d and the number f;, = 2n of

d d
vertices. Define integers A, ..., By by Y fii(x — 17" = 3 h;x?"\. A. Bj6rner conjectured (un-
=0 i=0
d
published) that k; > <> (which generalizes the result of Barany-Lovasz since f;_; = 3 h;), and
; :

more strongly that h; — h;_y >

i
conjecture of Barany-Lovasz. In this paper the conjectures of Bjorner are proved.

d d . . .
( > — < . 1), 1 <i<|d/2], which is easily seen to imply the
i—

1. Introduction

Let 2 be a simplicial d-polytope, i.e., a d-dimensional simplicial convex polytope.
Let f; denote the number of i-dimensional faces of £, where we set f_, = 1. Define
the h-vector h(P) = (ho, hy, ..., hy) of 2 by the formula

a

Zofi_l(x — 1y = _ hyx* L (1)

i=0

il

Suppose now that £ is also centrally-symmetric (about the origin), ie., 2 is
embedded in Euclidean speze so that if ve 2 then —ve . Barany and Lovasz [1]
showed that 2 then has at least 2¢ facets (or (d — 1)-faces), equality being achieved
by the d-dimensional cross-polytope (the dual to the d-cube). They also conjectured
that if 2 has 2n vertices (i.e., f, = 2n), then

ﬁ22“<f1>+qm—ﬂc> 0<izd—2, B

fon 2 20+ 2(n — d)(d — 1), 3)

(Actually, Barany and Lovasz deal with simple polytopes and state all their results
and conjectures in dual form to ours.) The inequalities {2) and (3) are best possible,
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since they can be achieved by taking the d-cross-polytope and applying n —d
successive pairs of stellar subdivisions of antipodal facets.
In terms of the h-vector, the inequality f;_, > 2¢ of Barany-Lovasz takes the
form
ho +hy + -+ hy > 2%

Moreover, for any simplicial d-polytope we have h; = h,_; (the Dehn-Sommerville
equations) and 1 = hy < hy <+ < hyypyy (the Generalized Lower-Bound Conjec-

d
ture), as surveyed in [10]. For the d-cross-polytope we have h; =| . |. These
i

considerations led A. Bjorner to conjecture (unpublished) that for any centrally-
symmetric simplicial d-polytope 2 with h-vector (hy, hy, ..., h;), we have

hlz(‘ii), 0<i<d, (4)

and more strongly (since hy = 1),

By — by 2 (‘f) - (l, f 1>, 1 <i<[df2]. ()

It is easily seen (see Corollary 4.2) that the inequalities (5) imply (2) and (3).

In this paper we will prove the conjectures (4) and (5) of Bjorner. We will
establish (4) for a much broader class of objects than centrally-symmetric simplicial
polytopes, but for (5) we are unable to weaken these hypotheses. Briefly, the idea
behind the proofs is as follows. If 4 is a Cohen-Macaulay simplicial complex, then
the theory of Cohen-Macaulay rings shows that h; > 0 by interpreting k; as the
dimension of a certain vector space A;. When in fact 4 is the boundary complex of
a simplicial polytope, the theory of toric varieties allows us to construct injective
linear transformations A; ; —» A;, 1 <i < [d/2]. Hence herewegeth, < h, <~ <
hyg2)- When we have a group G of order 2 acting on 4 in a suitable way (which for
the boundary complex of a centrally-symmetric polytope is induced by the map
v— —von 2)then G acts on the vector spaces 4,, and by decomposing this action
into isotypic components (with respect to the two inequivalent irreducible re-
presentations of G), we can improve the inequalities b, > Oand hy < by < -+ < By
to (4) and (5), respectively. '

2. Algebraic Background

We now review some algebraic concepts associated with simplicial complexes. See,
e.g., [2] or [10] for more details. Let 4 be an abstract simplicial complex on the
vertex set V = {x,,...,x,}. Let K be a field, and let I, be the ideal of the polynomial
ring K[x,,...,x,] generated by all square-free monomials x;, -~ x; for which
{x;,....x; }¢4. Let K[4] = K[xy,...,%,3/14 called the face ring (or Stanley-
Reisner ring) of 4. Let K[47; denote the space of all homogeneous polynomials of
degree iin K[4], so K[4] has the structure

K[4]=K[4], ® K[4], & -
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of a graded K-algebra. If dim 4 = d — 1 (i.e, the largest face F € 4 has d vertices),
then d is the maximum number of algebraically independent (over K) elements of
K[A4] (or of K[4];). A set 6, ..., 8,6 K[4], is called a homogeneous system of
parameters (h.s.0.p.) of degree one if dimg K[4]/(6;,...,6,) < co. (This implies that
6y, ..., 6, are algebraically independent.) An h.s.o.p. of degree one always exists if
K is infinite, which for convenience we will assume henceforth.

We say that K[4] is Cohen-Macaulay (or that 4 is Cohen-Macaulay over K)
if for some (equivalently, every) h.s.o.p. 6y, ..., 6, of degree one, K[ 4] is a finitely-
generated free module over the polynomial subring K[#6,,...,6,]. (Equivalently, 6,
is a non-zero-divisor modulo (6,,...,6,_,), 1 <i < d.) Thus

t
K[4] =]]n:-K[6,...,6;], (vector-space direct sum) (6)
1

where each #; is a non-zero-divisor on K[6,,...,6,]. We can choose each #; to be
homogeneous, and conversely a set 4, ..., %, of homogeneous elements of K[ 4]
satisfies (6) if and only if they form a K-basis of the quotient ring

A =K[41/6,,...,6,).

The ring A inherits a grading 4 = 4, ® A; @ -+, and a simple counting argument
shows that
dim A4; = hy(4),

where 4 has f; = f;(4) i-dimensional faces (so f, = n)and h; = h(d)is defined by (1).
Let us recall the fundamental theorem of G. Reisner (see [8, Thm. 5] or [9,

p. 707) characterizing Cohen-Macaulay complexes. Given any face F € 4, define the
link of F by

IkF={Ged:FUGedand FNG = g}.
In particular, Ik g = 4.

Theorem 2.1. Let 4 be a ( finite) simplicial complex. Then 4 is Cohen-Macaulay over
K if and only if for all Fe 4,

Ak F;K)=0 if i<dim(kF),
where H Ik F; K) denotes reduced simplicial homology over K. ]

In particular, all triangulations of spheres are Cohen-Macaulay. More generally
(e.g. [8, Thm. 5]), the question of whether 4 is Cohen-Macaulay depends only on
the geometric realization | 4] of 4.

We also need a characterization of h.s.o.p.’s of degree one in K[4]. If

y= ), o xeK[4],

xeV

where o, € K, then define the restriction y|p of y to the face Fe 4 by

yiF: Z OCX'X.

xeF
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Lemma 2.2 (see, e.g., [2, p. 66]). For any (d — 1)-dimensional simplicial complex 4,
aset 0y, ..., 0,e K[A], is an hs.o.p. if and only if for all Fe A, the vector space
spanned by 6,|F, ..., 0, has dimension equal to |F|. O

3. Group Actions

Now let G be a group of automorphisms of the simplicial complex 4. Thus each
o€ Gisabijection g: 4 - 4 such thatif F < F' € 4, then ¢(F) < ¢(F'). In particular,
o permutes the vertex set V, and o is completely determined by its action on V. We
say that G acts freely on 4 if for every ¢ # 1 in G and every vertex x e V, we have
that x # ¢(x) and that {x,¢(x)} is not an edge of 4. Equivalently, for every xe V
the open stars of the elements of the orbit Gx are pairwise disjoint.

We come to the first of our two main results.

Theorem 3.1. Let 4 be a (d — 1)-dimensional Cohen-Macaulay simplicial complex,
and suppose that a group G of order 2 acts freely on A. Then

d
hi(d) = <) 0<i<d.
i
In particular,
Jacr=ho + -+ by =20

Proof. Let G = {1, 0}, and let K be a field of characteristic #2. If W is any K-vector
space on which G acts, then define

Wt ={weW:a(w) = w}
W~ ={weW:a(w) = —w}

It is clear that W = W* @ W™. (In terms of representation theory, W* and W~
are the isotypic components corresponding to the trivial and non-trivial irreducible
representations of G, respectively. However, G is such a “simple” group that there
is no need here to invoke explicitly the representation theory of finite groups.)

The action of G on 4 induces an action on the face ring K[4]. Let x* be a
monomial in K[4] of degree i > 0. Since G acts freely on 4, the K-span of the
G-orbit of x* has a basis consisting of x* + o(x*)e K[4]; and x* — o(x*)e K[4];".
Hence

1
dimK[4]/ = dimK[4]; = >dimK[4], iz 1 (7)

Assume now K is infinite and (as above) char K # 2. We claim there exists an
hs.o.p.0,...,0,€ K[A]] of K[4]. To see this, choose V' <= V to consist of exactly
one element from each G-orbit of V. Since K is infinite, there exist functions f, ...,
f4: V' — K such that the restrictions of f, ..., f; to any d-clement subset of V' are
linearly independent. Extend fi, ..., f; to all of V by defining fi(s(x)) = — fi(x) for
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xeV'. Define
6= Y fix)x

xeV
Clearly 0, K[4]] . Since x and o(x) are not both vertices of any face of 4, it follows
from Lemma 2.2 that 6, , ..., 6, form an h.s.o.p., as desired.

Let A = K[41/(6;,...,0,), with 6,, ..., 6, as above. Since (6,) = —8,, it follows
that G acts on the ideal (6,,...,0,), and therefore on the graded algebra 4 =
Ay ® - @ A, We want to compute dim A and dim A; . Let g and t be indeter-
minates, and set 2 =1. If V=V, @V, ® is any graded vector space, with
dim V; < o0, on which G acts, set

F(V.q)= }. (dim ¥)q’
iz0
and
F(V,q.t) = ¥ [(dim V") + (dim ¥;")t]q".

i=0

Since (see [10, eqn. (5)])

n

FKLALG) = (1 = %, h{)a

it follows from (7) that (writing h; = h,(4))
1 Z§=o hq'
F(K[4],q,t)=1+ | & — —1|(1 .
(KLt =1 5| HML g ®
(We have F(K[4],0,t) = 1 since G fixes the empty face @)

Now since ¢(f;) = — 6, and since the decomposition K[4] = K[4]" @ K[4]~
defines a G-grading of K[4] (ie, K[4]"-K[4]" = K[4]*, etc.), the ideal (6,)
satisfies (since 6, is a non-zero-divisor of degree one)

F((6,).9.1) = qt- F(K[4],4,1).

Hence
F(K[41/(0,).9.t) = (1 — qt)F(K[4],4,1).
Each time we divide out by another 6; we pick up another factor of I — gt, so

F(A,q,t) = (1 — qt)'F(K[4],q.¢)

S U [1 (I (I—g S hiq‘], ©)

=0

+ 1), it follows that g(¢)(1 + £} = g(1)(1 + t) for any func-
t} = g(—1)(1 — ¢). In particular,

(1 —qt)f'(1 — 1) =(1 + q)*(1 — 1),
(1 —qrf(1 +6)=(1 - g1 +1).

by (8). Since (1 + t) = #(1
tion g. Similarly g(z)(1 —
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Hence

F(A,q,1) =

[+ af0=0+ 040 3 ha|

B = dim AF — l(hi ' @)
2 i

b = dim A = E(hi _ @)
2 i

Since dim 4; > 0, the proof follows. O

N -

It follows that

Note. Rather than choosing each 0, K[4];, we could choose £ of the 6;’s to belong
to K[4]T and d — ¢ to belong to K[4]7. We could then compute ;" and h; for
this choice of ;s and hope that some additional information about the 4’s will

d
arise. If we choose £ = d then we obtain k; > () as in the case of / = 0 (except
1

that for # = d we need to use that both 7 > 0 and h; > 0, rather than just b7 > 0,

as in the proof of Theorem 2.3 below.) If, however, we choose 0 < 7 < d, then it can
. d .

be checked that we obtain inequalities weaker than h; > ( i)' Thus the choice £ = 0

leads to the strongest possible result, and we will see in the next section why it is

more “natural” than the choice £ = d.

Before turning to the case of centrally-symmetric polytopes, let us briefly
consider extending Theorem 3.1 to other groups G. We only deal with the case
where G is abelian; for nonabelian G we need to consider delicate properties of
irreducible representations of G and their tensor products.

Theorem 3.2. Let A be a (d — 1)-dimensional Cohen-Macaulay simplicial complex,
and suppose that an abelian group G of order g > 1 acts freely on 4. Then

d
hi{d) = (i)’ [ even,

() > (g — 1)(”_’), 1 odd.

I
In particular,
Jocy=ho 4+ hy =g 277

Proof. Let G denote the group of all homomorphisms y: G —» C* = C — {0} (so G
and G are isomorphic as abstract groups). Then C[4] has an N x G grading,

cra1 = 1 11 cram,

i20 xeG
given by
Cl41¥ = {feC[4];: w- f = y(w)f for all we G}.
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For any (N x G)-graded vector space V = 1 V¥ with each dim V* < oo, define the
Hilbert series '

F(V,Gig)= Y. 3 (dimV?¥)xq',

iz20xeG

an element of the ring (ZG) ® Z[[q]], where ZG is the ring of virtual characters of
G (formal Z-linear combinations of elements of G).

Since G acts freely on 4, the C-span of the orbit of any monomial x*e C[4] of
positive degree affords the regular representation of G (since the only transitive
faithful permutation representation of a finite abelian group is the regular repre-
sentation). It follows that

F(C[4],G;4) = 1 +g[gd hqq }( Y x) (11)

xeG
where g = |G|
Let 1 denote the trivial character of G. The hypothesis that G acts freely on 4
implies, as in the proof of Theorem 3.1, that there is an h.s.o.p. 8, ..., 6,e C[4],.
Let A = C[47/(0,,...,6,). We obtain as in (9) that

F(A,G;q) = (1 — q)?F(C[4], G; q). (12)
Substituting (11) into (12) and using the “symmetrizing” property of 3. x, we get

FAGia) = (1 —af + | Sha — (- 0 ) (13

Suppose i is even. Let 1 # y € G. The coefficient of ¢’y in the right-hand side of

(13)is (hi - <f)>/g, so h; > <‘f>

Suppose i is odd. The coefficient of ¢’z in the right-hand side of (13) is

d 1 d 1 d
() o () =36 -0(3))
i g i g i
d .
Hence h; > (g — 1)| . |, and the proof is complete. O
i
As was the case for Theorem 3.1, one can check that choosing 8, C[4]% for
arbitrary y,, ..., ys€ G does not lead to a stronger resuit.
d
The inequality h; > ( > in Theorem 3.1 is best possible, since the boundary
complex 4 of the d-dimensional cross-polytope admits a free (Z/2Z)-action and
d
satisfies h; = <) for 0 < i < d. However, Theorem 3.2 is not sharp for g > 2. For
i
instance, it is impossible for any Cohen-Macaulay simplicial complex to satisfy
d d
hy, = <2> and hy = (g — 1)(3) whenever (g — 2)(d — 2) > 3. We also have the

following simple congruence condition.
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Proposition 3.3. Let A be any finite (d — 1)-dimensional simplicial complex, and
suppose that an abelian group G of order g acts freely on 4. (In fact, we need only to
assume that if 1 # o€ G and & # Fe 4, then o(F) # F.) Then

i) = (= 1)(§ Jimod ),

14

In particular, the reduced Euler characteristic
WA= —fi + fo— + (=1 oy = (=11 hy(4)
satisfies
7(4) = —1(mod g).
Proof. Since G is abelian, the orbit of any nonempty face F of 4 contains exactly g

elements. Hence f; = 0(mod g),i > 0. The prooffollows from (1) (using that f_, = 1).
|

Consider once again the situation of Theorem 3.1. It is natural to ask what
further information about the h-vector (h, hy, ..., hy) of 4 can be obtained from the
decomposition

A:A*@A-;<];]A:)®<];1A;>.

In the case of arbitrary Cohen-Macaulay 4 (i.e., no group action), the ring structure
on A leads to a complete characterization of the h-vector of Cohen-Macaulay
simplicial complexes (see, e.g., [9, Thm. 2.2, p. 65]). In the present situation we don’t
see how to obtain such strong results. Ii is easy to see that 4™ is a graded algebra
generated by elements of degrees one and two (whose number can be specified) and
that A~ is a graded 4*-module with generators (as an A*-module) in degree one.
This observation leads to some information about the h-vector, but it seems far
from definitive. For instance, we have the following result.

Proposition 3.4. Let A be a finite (d — 1)-dimensional Cohen-Macaulay simplicial

d
complex admitting a free (Z/2Z)-action. Suppose h; = | | for some i > 1. Let j = i.
i
L L d
If either j is even or j — i is even, then h; = | ).
J

d .
Proof. Since h; = <> we have A; = 0 by (10). Suppose j > i and A; # 0. Since
i

A~ is generated by A7 as an A*-module and A" is generated by A and A5 asa
K-algebra, there exist elements te A7 and u,, ..., u,€ A7 U AJ such that

O#u; uted;.

If j is even then some u € A7. Then some subproduct v of u, -+ u, will have degree
i — 1. Hence O # vte A;, contradicting A7 = 0. Similarly if j —i is even then
again some subproduct of u; - -u, will have degree i — 1, and we reach the same
contradiction. O
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Proposition 3.4 suggests the following conjecture.
Conjecture 3.5. Let 4 be a finite (d — 1)-dimensional Cohen-Macaulay simplicial

d
complex admitting a free (Z/2Z)-action. Suppose h; = (1) for some i > 1. Then

d
h; = <]> for allj > i. ]

4. Centrally-Symmetric Simplicial Polytopes

Let 2 be a centrally-symmetric (about the origin) simplicial d-polytope. The
boundary complex 4 of 2 is a (d — 1)-dimensional Cohen-Macaulay (since the
geometric realization | 4] is a (d — 1)-sphere) simplicial complex with a free (Z/2Z)-
action induced by the map v— —v on £. Hence by Theorem 3.1, h(#):=

d .
h(4) > < > But in this situation we can say considerably more.
i

Theorem 4.1. If 2 is a centrally-symmetric simplicial d-polytope, then

h(P) — hy 1 (2) = (f) — (i 4 1>, 1 <i<[d/2] (14)
Proof. We may assume that 2 < R?. Moreover, since any sufficiently small per-
turbations of the vertices of a simplicial polytope do not affect its combinatorial
type, we may assume that & is rational, i.e., the vertices of & have rational co-
ordinates (with 2 still centrally-symmetric about the origin). We can now invoke
the theory of toric varieties, as discussed, e.g., in [10]. Let X = X(2) be the toric
variety corresponding to 2 with cohomology ring (over R, say)

H*(X) = H¥X;R) = H(X) @ H*(X) ® - @ H*(X).
Let 4 denote the boundary complex of 2. By a result of Danilov [3, Thm. 10.8],
H*(X) = R[4]/(0;,...,0,) (15-)
=A=A4,D DA,

for a certain hs.o.p. 0y, ..., 6; of R[A] of degree one, the grading being such that
A; = H*(X). The hs.o.p. 0, ..., 0, is described as follows. Let ¢, ..., ¢, be any set
of linearly independent linear functionals ¢;: R? — R. Then
0; = Z (pi(x)x:
xeV
where Vis the set of vertices of 2 (or 4). Since 2 is centrally-symmetric, any vertex
x €V has an antipodal vertex X = —x, and ¢,(X) = — ¢;(x) since ¢ is linear.

The group G = {1,0} of order two acts on £ by o(v) = —v for ve 2. This
induces an action on X(2) (as is easily seen from the definition of X(¢)) and on
H*(X) by the rule o(x) = X for x & V (identifying H*(X) with 4 as in (15)). It follows
that ¢(6;) = —8,, so by (10) the vector space 4, = H*(X) decomposes under G into
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HZi(X) — H2i(x)+ @ HZi(x)—’

dim H(X)" = %(h,- - <‘f)) (16)

We now use the fact [10, p. 219] that X satisfies the hard Lefschetz theorem.
(J. Steenbrink has informed me that his original proof [11] of this fact is invalid,
but that a correct proof was subsequently given by M. Saito [6] (see in particular
[5]) based on the theory of perverse sheaves.) In particular, if € H*(X) is the class
of a hyperplane section, then the map w: H*~V(X) » H*(X), given by multiplica-
tion by o, is injective for 1 < i < [d/2].

We claim that the action of ¢ on H*(X) commutes with multiplication by w,
ie., o(wy) = w(o- y) for all ye H*(X). I am grateful to S. Kleiman for providing the
following argument. It is clear from the definition [3,§6.9] of the embedding of X
into projective space P that the action of ¢ on X extends to a linear transformation
of P. Hence if H — P is a hyperplane then so is ¢ H. Since any two hyperplane
sections of X (with respect to a fixed embedding X < P) represent the same
cohomology class, we have ¢ - @ = w. Since o acts on H*(X) by pullback, ¢ induces a
ring homomorphism on H*(X). Hence ¢ (wy) = (¢~ w)(o" y) = w(o - ), as desired.

It follows that the subspaces H*(X)" and H*(X)™ are w-invariant. Thus in
particular @ sends H**™)(X)™ to H*(X)™, 1 <i < [d/2], and is of course still
injective (being the restriction of the injective function w: H2"V(X) —» H*(X)).
Therefore dim H**"V(X)™ < dim H*(X)™, 1 <i < [d/2], so by (16),

1 d 1 d _
5<hi_1 - (i - 1)) < §<hi _ <l)) 1 <i<[df2].

This is equivalent to (14), completing the proof. O

where

Corollary 4.2. Let ? be as in the previous theorem, and suppose P has f; i-faces,
0 <i<d— L. Let f = 2n. Then the s satisfy (2) and (3).

Proof. We have h; = f, — d = 2n — d. Hence by (14) and the Dehn-Sommervilie
equations,
d

.>, I<i<d~-1

hi_>,2(n—d)+<l
Thus

i+l d—j
ﬁ:j;()(i—i—l—j)hj
d i+1 d—j d .
<i+1>+j;<i+1_j>(2(n—d)+<j>>, 0<i<d-2

1+d§<2(n—d)+(;l>>+1, i=d—1.

j=1

This is equivalent to (2) and (3) by simple binomial coefficient identities. |
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As was the situation for Theorem 3.1, the ring A = A™ @ A~ together with the
element e A] can be used to obtain some additional information about A-vectors
of centrally-symmetric simplicial polytopes, but nothing nearly as definitive as
McMullen’s g-conjecture (see [10, p. 217]) for arbitrary simplicial polytopes. In
particular, we don’t know an analogue of the Upper Bound Conjecture for poly-
topes (or spheres). In other words, given a centrally-symmetric simplicial d-polytope
# with f, = 2n vertices, what is the largest possible value of f;? Even a plausible
conjecture is not known. The most obvious conjecture is that f; is maximized by

choosing f,= 27 " ), 0 <j<[d/2] — 1 (equivalently, if 0 <j < [d/2] — 1
J j+1

then every set of j + 1 vertices, no two antipodal, of 2 forms the vertices of a j-face).
However, a result [4, Thm. 23] of McMullen and Shephard shows this conjecture
to be false for n > d + 2. For additional results along these lines, see [7].

Let us also remark that Conjecture 3.5 is valid for centrally-symmetric simplicial
polytopes. In fact, we have the following result.

Proposition 4.3. Let & be a centrally-symmetric simplicial d-polytope. Suppose that
d d
for some 1 <i<d~—1we have h(?) = ( > Then h(?) = (J) for all j, and 2 is

i
affinely equivalent to a cross-polytope.

d
Proof. Let k; = h(?) — <> By Theorem 4.1 the sequence (kg,ky,...,k,) is non-
l

negative (since hy = 1, or by Theorem 3.2) and unimodal. Moreover, k; = k,_; by
the Dehn-Sommerville equations. Thus if k; =0 for some 1 <i<d— 1, then
k; = 0. Hence f,(2) = 2d. Let F by any facet of 2 and F the antipodal facet. Since
FUF contains 2d vertices, it follows that 2 is the convex hull of FUF and is
therefore affinely equivalent to a cross-polytope. |
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